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ABSTRACT. In this note, we study three differential problems with a dynamic, which are be rep-

resented by a self referred equation and a boundary condition, which are expressed as an integral

constraint. We prove that under certain assumptions, there exists at least one solution of for all of

these problems by using Schauder’s fixed point theorem. In the end, we propose briefly some open

problems.
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1. Introduction

The hereditary phenomena were widely studied in the past (see, e.g., [2, 3, 11]) due to their

impact in applied sciences, for example, in engineering and biology. Hence, the so called self-

referred and hereditary equations were proposed in order to write a model to describe this type of

events (see, e.g., [1, 5–7] and [10]). Formally we may represent this class of equations as follows:

let us consider X a space of functions, A : X → R, B : X → R two functional operators. Then a

self referred equation may be written as

Au(x, t) = u(Bu(x, t), t).

In our problems, the boundary condition will be expressed in the form

β∫
0

ẏ2(t)dt = δβ > 0

or
β∫

0

y2(x)dx = δβ > 0,

where 0 < β ≤ 1 and 0 < δ < 1. This constraint may represent, roughly speaking, a quantity

which is preserved in an isolated system (e.g., the energy). This condition was implemented in

2020 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 34A34, 45G10.
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an ODE problem in [4] with a dynamic in the form ÿ(t) = f(t, y(t), ẏ(t)), with f was a positive,

bounded and globally Lipschitz function.

The goal of this paper is to study a differential problem which mix self referred equations and

integral boundary constraints. We study the differential problem
ÿ(t) = βy(y(t)), t ∈ [0, 1],

y(0) = α,
β∫
0

ẏ2(t)dt = δβ > 0,

(1.1)

where 0 < δ < 1, 0 ≤ α ≤ 1 and 0 < β ≤ 1. We may also study a variation of (1.1), where we do

not know the initial state of our system. Hence, the second problem which will be studied is
ẏ(t) = βy

( t∫
0

y(s)ds
)
, t ∈ [0, 1],

β∫
0

y2(t)dt = δβ,

(1.2)

where 0 < δ < 1 and 0 < β ≤ 1. In the last problem, we introduce also a space variable, i.e.,
∂
∂ty(x, t) = βy

( t∫
0

y(x, s)ds, t
)
, (x, t) ∈ [0, 1]× [0, 1],

β∫
0

y2(x, t)dt = βg(x),

(1.3)

where 0 < β ≤ 1 and g : [0, 1]→ [0, 1] is smooth function.

The technique to find the existence of a solution follows these steps: we will study the problems

heuristically, obtaining the operator which we want to study and the space, where we will work

on. Then we will check that under certain conditions, the space of functions which we have found

is bounded, closed and convex. Then we will prove that operator is continuous and compact and

we conclude applying the Schauder’s fixed point theorem.

The paper is organized as follows: in the Section 2, we recall briefly some preliminaries of

functional analysis, such as Ascoli-Arzelà theorem and Schauder’s fixed point theorem; in the

Section 3, we prove that the problem (1.1) has at least one solution; in the Section 4, we prove

a similar result for the problem (1.2); in the Section 5, we study the problem (1.3) and in the

Section 6, we state briefly some open problems.

2. Preliminaries

Let us recall some classical definitions and results of functional analysis. For further details, we

refer to [8].

Definition 1. Let us consider a sequence {fn}n∈N of continuous functions on an interval I ⊂ R.

• The sequence {fn}n∈N is equibounded if there exists a real number M > 0 such that it holds

true

|fn(x)| ≤M
for all n ∈ N and for every x ∈ I.
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• The sequence {fn}n∈N is equicontinuous if, for every ε > 0, there exists a δ > 0 such that

|fn(x)− fn(y)| < ε

whenever |x− y| < δ and for all n ∈ N.

Definition 2. Let us consider two normed spaces X, Y and an operator T : X → Y . Then the

operator T is compact if, for every bounded subsequence {xn}n∈N ⊂ X, it is possible to extract a

convergent subsequence of the sequence {Txn}n∈N ⊂ Y .

These definitions are necessary in order to state the following classical results of functional

analysis. These theorems are crucial to prove the existence of a fixed point for a functional and

then the existence of a solution for our differential problem.

Theorem 2.1 (Ascoli-Arzelà theorem). Let us consider a sequence of real-valued continuous func-

tions {fn}n∈N defined on a closed and bounded interval [a, b] of the real line. If {fn}n∈N is equi-

bounded and equicontinuous, then there exists a subsequence {fnk}nk∈N that converges uniformly.

Theorem 2.2 (Fixed point Schauder’s theorem). Let us consider a bounded, closed and convex

Banach spaces X and a continuous and compact operator T : X → X. Thus the operator will have

a fixed point.

3. First problem

As stated in the Introduction, we will divide our proof in smaller steps. We will start finding

by heuristic methods the operator which we want to study (namely T ) and the space, where we

will work on (namely X). We will prove then that under certain conditions, X is bounded, closed

and convex. Then we will prove that T is continuous and compact, and in the end, we conclude

applying the Schauder’s theorem.

3.1. The definition of the functional T

In this section, we will study heuristically the ODE problem stated in (1.1).

Let us start observing that the dynamic of the system is easily integrable by using standard

technique of ODEs theory. By multiplying both sides with ẏ(t), we get immediately

ÿ(τ)ẏ(τ) = βy(y(τ))ẏ(τ) =⇒ 1

2

d

dτ
ẏ2(τ) = β

d

dτ

y(τ)∫
0

y(s)ds.

Then, by integrating on the interval [0, t] both sides of the equation, it is straightforward to get

1

2

t∫
0

d

dτ
ẏ2(τ)dτ = β

t∫
0

d

dτ

y(τ)∫
0

y(s)dsdτ

=⇒ 1

2
ẏ2(t) =

1

2
ẏ2(0) + β

[ y(t)∫
0

y(s)ds−
α∫

0

y(s)ds

]
,
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which implies

ẏ2(t) = ẏ2(0) + 2β

y(t)∫
α

y(s)ds. (3.1)

Thus, by applying the condition (3.1) on our integrodifferential condition, we obtain

δβ =

β∫
0

ẏ2(t)dt = ẏ2(0)β + 2β

β∫
0

y(t)∫
α

y(s)dsdt

from which we deduce

ẏ(0) = ±

√√√√√δ − 2

β∫
0

y(t)∫
α

y(s)dsdt. (3.2)

The existence condition on (3.2) leads us naturally to the definition of the operator T and of the

space of function X.

Definition 3. Let us consider the space of continuous functions C([0, 1], [0, 1]). Then we define

the space of function X ⊂ C([0, 1], [0, 1]) as

X :=

{
y

∣∣∣∣ y ∈ C([0, 1], [0, 1]) and δ − 2

β∫
0

y(t)∫
α

y(s)dsdt ≥ 0

}
, (3.3)

and the operator T as

Ty(t) = α+ t

√√√√√δ − 2

β∫
0

y(t)∫
α

y(s)dsdt+ β

t∫
0

( τ∫
0

y(y(s))ds

)
dτ, t ∈ [0, 1]. (3.4)

Let us remark some immediate properties related to the boundedness of our operator.

Remark 1. Since y ∈ X, then

Ty(t) ≥ α
for all y ∈ X and for all t ∈ [0, 1].

Remark 2. Let us recall that for all y ∈ X and for all t ∈ [0, 1], it holds true that |y(t)| ≤ 1.

Hence, β
t∫
0

τ∫
0

y(y(s))dsdτ ≤ β
2 . Therefore, we obtain

Ty(t) ≤ α+

√√√√√δ − 2

β∫
0

y(t)∫
α

y(s)dsdt+
β

2
≤ α+

√√√√√δ + 2

∫
{t∈[0,β]|y(t)<α}

α∫
y(t)

y(s)dsdt+
β

2

≤ α+

√√√√√δ + 2

∫
{t∈[0,β]|y(t)<α}

α∫
0

y(s)dsdt+
β

2
.

Thus we can write

Ty(t) ≤ α+
√
δ + 2βα+

β

2
.

Assuming that α+
√
δ + 2βα+ β

2 ≤ 1, we get that α ≤ Ty(t) ≤ 1 for all y ∈ X and for all t ∈ [0, 1].
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Remark 3. We estimate

δ − 2

β∫
0

Ty(t)∫
α

Ty(s)dsdt = δ − 2

∫
{t∈[0,β]|α<Ty(t)}

Ty(t)∫
α

Ty(s)dsdt

+ 2

∫
{t∈[0,β]|α≥Ty(t)}

α∫
Ty(t)

Ty(s)dsdt

≥ δ − 2

∫
{t∈[0,β]|α<Ty(t)}

Ty(t)∫
α

Ty(s)dsdt

≥ δ − 2

∫
{t∈[0,β]|α<1}

1∫
α

Ty(s)dsdt

≥ δ − 2β(1− α).

Hence, if we consider δ − 2β(1− α) ≥ 0, we have also Ty ∈ X for all y ∈ X.

Remark 4. The Remarks 1, 2, 3 suggest us the following assumptions:α+
√
δ + 2βα+

β

2
≤ 1,

δ − 2β(1− α) ≥ 0.
(3.5)

Let us show that the system (3.5) has at least one solution. Let us consider α = 0. Then
√
δ ≤ 2− β

2
2β ≤ δ

=⇒ 2β ≤ δ ≤
(

2− β
2

)2

.

This system of inequalities is well defined since it is equivalent to 8β ≤ 4− 4β + β2, which implies

that 0 < β ≤ 6 − 4
√

2. Hence, it is possible to find a triple (α, β, δ) which solves our system of

inequalities.

Proposition 3.1. Under the assumption (3.5), the operator T : X→ X is well defined.

P r o o f. The proof is an immediate consequence of the Remarks 1, 2, 3 and 4. �

3.2. The properties of the space X
Let us focus now on the topological properties on space X. In order to apply our fixed point

theorem, we have to check that the space X is closed and convex.

Proposition 3.2. Under the assumptions (3.5), the space X as defined in (3.3) is closed.

P r o o f. Let us consider a Cauchy sequence {yn}n∈N in X ⊂ C([0, 1], [0, 1]). Let us recall that

C([0, 1], [0, 1]) is complete. Hence, there will exists y∞ ∈ C([0, 1], [0, 1]) such that yn → y∞
uniformly in [0,1]. We obtain, of course, that y∞ ∈ C([0, 1], [0, 1]). We have to prove that y∞
satisfies the conditions of the space X. To remark it, let us observe that∣∣∣∣

yn(t)∫
α

yn(s)ds−
y∞(t)∫
α

y∞(s)ds

∣∣∣∣ ≤ ∣∣∣∣
yn(t)∫
α

yn(s)ds−
y∞(t)∫
α

yn(s)ds

∣∣∣∣+

∣∣∣∣
y∞(t)∫
α

yn(s)ds−

y∞(t)∫
α

y∞(s)ds

∣∣∣∣
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≤
∣∣∣∣
yn(t)∫
y∞(t)

yn(s)ds

∣∣∣∣+

∣∣∣∣
y∞(t)∫
α

|yn(s)− y∞(s)|ds

∣∣∣∣
≤ 2‖yn − y∞‖∞,

where ‖ ‖∞ is the standard L∞ norm. Hence, it is straightforward to get

lim
n→∞

yn(t)∫
α

yn(t) =

y∞(t)∫
α

y∞(s)ds (3.6)

and, by using the standard limit theorem for integrals, we obtain that since for all n ∈ N it holds

yn ∈ X, then y∞ ∈ X. �

Proposition 3.3. Under the assumptions given in (3.5), the space X is convex.

P r o o f. Let us consider y1, y2 ∈ X and µ, λ ∈ [0, 1] such that λ + µ = 1. It is immediate to

observe that λy1 + µy2 ∈ C([0, 1], [0, 1]). Now our goal is to prove that λy1 + µy2 ∈ X, which is

immediate remarking

δ − 2

β∫
0

λy1+µy2∫
α

(λy1 + µy2)dsdt

= δ − 2

∫
{t∈[0,β]|α≤λy1(t)+µy2(t)}

λy1(t)+µy2(t)∫
α

(λy1(s) + µy2(s))dsdt

+ 2

∫
{t∈[0,β]|α>λy1(t)+µy2(t)}

α∫
λy1(t)+µy2(t)

(λy1(s) + µy2(s))dsdt

≥ δ − 2β(1− α) ≥ 0.

Hence, the space X is convex. �

Hence, we may conclude stating the following theorem which sum up all our results.

Theorem 3.4. Let us consider the operator T : X → X as defined in Definition 3. Under the

assumptions (3.5), the operator T : X → X is well defined and the space X is closed, bounded and

convex.

P r o o f. The statement is a direct consequence of Propositions 3.1, 3.2 and 3.3. �

3.3. The continuity and compactness of T

Let us study now the properties of the operator T . In the following proposition, we show that

T is continuous.

Proposition 3.5. Under the assumptions given in (3.5), the operator T : X → X as defined in

Definition 3 is continuous.
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P r o o f. Let us consider the sequence of functions {yn}n∈N ⊂ X and such that yn → y∞ uniformly

in the set X. Let us consider the sequence {Tyn}n∈N and Ty∞. Let us remark we may deduce

from (3.6) that

lim
n→∞

β∫
0

yn(t)∫
α

yn(s)dsdt =

β∫
0

y∞(t)∫
α

y∞(s)dsdt.

Then it is obvious to obtain by continuity that

lim
n→∞

√√√√√δ − 2

β∫
0

yn(t)∫
α

yn(s)dsdt =

√√√√√δ − 2

β∫
0

y∞(t)∫
α

y∞(s)dsdt.

Let us recall that y∞ ∈ C([0, 1], [0, 1]) is uniformly continuous in the set [0, 1]. Then we have that

∀ε > 0 ∃δ > 0 such that ξ, η ∈ [0, 1] |ξ − η| < δ ⇒ |y∞(ξ)− y∞(η)| < ε.

We estimate

|yn(yn(t))− y∞(y∞(t))| ≤ |yn(yn(t))− y∞(yn(t))|+ |y∞(yn(t))− y∞(y∞(t))|
≤ ‖yn − y∞‖+ |y∞(yn(t))− y∞(y∞(t))|
≤ ‖yn − y∞‖+ ε

(3.7)

for a sufficiently large n. The inequality (3.7) implies that for all ε > 0 and for all t ∈ [0, 1],

lim
n→∞

|yn(yn(t))− y∞(y∞(t))| ≤ ε

and, as consequence,

lim
n→∞

|yn(yn(t))− y∞(y∞(t))| = 0.

We deduce immediately that

lim
n→∞

t∫
0

τ∫
0

yn(yn(s))dsdτ =

t∫
0

τ∫
0

y∞(y∞(s))dsdτ,

and then we conclude that T is continuous. �

In the following proposition, we prove that the operator T is compact.

Proposition 3.6. Under the assumption (3.5), the operator T : X→ X as defined in Definition 3

is compact.

P r o o f. Let us remark that for all y ∈ X, it holds true

0 ≤ Ty(t) ≤ α+
β

2
+
√
δ + 2βα ≤ 1.

Thus if we consider an equibounded sequence {yn}n∈N, then we also get that {Tyn}n∈N is equi-

bounded. Moreover, from the definition of T , we remark that for every y ∈ X, there exists the

derivative d
dtTy(t). In particular, we get∣∣∣∣ d

dt
Ty(t)

∣∣∣∣ ≤ α+
β

2
+
√
δ + 2βα.

Then the sequence {Tyn}n∈N is equicontinuous. Thus, by Ascoli-Arzelà theorem, it is possible to

extract a convergent subsequence, which implies that T is a compact operator. �
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We conclude this section proving the theorem which allows us to state that there is at least one

solution of the differential problem (1.1).

Theorem 3.7. Under the assumptions (3.5), the differential problem
ÿ(t) = βy(y(t)), t ∈ [0, 1],

y(0) = α,
β∫
0

ẏ2(t)dt = δβ > 0

has at least one solution.

P r o o f. Let us recall that by Theorem 3.4, the space X is bounded, closed and convex. Fur-

thermore, the operator T : X → X is continuous and compact. Then, by Schauder’s fixed point

theorem, we obtain immediately that there exists a y ∈ X such that T (y) = y. �

Example 1. By Theorem 3.7, we get that the integrodifferential problem
ÿ(t) = βy(y(t)), t ∈ [0, 1],

y(0) = 0,
1
10∫
0

ẏ2(t)dt = 1
50

(3.8)

has at least one solution.

4. Second problem

We prove now that the problem (1.2) has at least one solution. As in the previous case, we will

find an operator T1, a space of function X1 ⊂ C([0, 1], [0, 1]) and some assumptions which will allow

us to apply the Schauder’s fixed point theorem and recover the existence of a solution. Also in this

case, we have to show that X1 is bounded, closed and convex and our operator T1 is continuous

and compact.

4.1. The definition of the operator T1

We start studying heuristically the differential problem (1.2).

Let us remark that multiplying both sides our ODE by y(t) and applying standard techniques,

we deduce

ẏ(τ)y(τ) = βy

( τ∫
0

y(s)ds

)
y(τ) =⇒ d

dτ

t∫
0

y2(τ)

2
dτ = β

t∫
0

d

dτ

τ∫
0

y(s)ds∫
0

y(s)ds.

This implies

y2(t) = y2(0) + 2β

t∫
0

y(τ)dτ∫
0

y(s)ds.
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Hence, by using the boundary condition of the problem (1.2), we obtain

δβ =

β∫
0

y2(t)dt = βy2(0) + 2β

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt.

Hence, we may rewrite

y(0) = ±

√√√√√√√δ − 2

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt.

We define the space of functions X1 and the operator T1 which will be studied in order to find the

existence of a solution of (1.2).

Definition 4. Let us consider the space of continuous functions C([0, 1], [0, 1]). We define the

space of functions X1 ⊂ C([0, 1], [0, 1]) as

X1 =

{
y ∈ C([0, 1], [0, 1])

∣∣∣∣ δ − 2

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt ≥ 0

}
(4.1)

and the operator T1 as

T1y(t) =

√√√√√√√δ − 2

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt+ β

t∫
0

(
y

( τ∫
0

y(s)ds

))
dτ.

Remark 5. Let us remark that the function F (t) =
t∫
0

y(τ)dτ is increasing in t since y ∈

C([0, 1], [0, 1]) and that, since |y(t)| ≤ 1 for all t ∈ [0, 1], it holds true that 0 ≤ F (t) ≤ t.

Remark 6. If δ − 2β ≥ 0, then it is immediate to get

T1y(t) ≥
√
δ − 2β ≥ 0

for all y ∈ X1 and t ∈ [0, 1].

Remark 7. Since y ∈ C([0, 1], [0, 1]), we observe that by Remark 5, we obtain

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt ≤ β and β

t∫
0

(
y

( τ∫
0

y(s)ds

))
dτ ≤ βt

and, if
√
δ + β ≤ 1, then

T1y(t) =

√√√√√√√δ − 2

β∫
0

( t∫
0

y(τ)dτ∫
0

y(s)ds

)
dt+ β

t∫
0

(
y

( τ∫
0

y(s)ds

))
dτ

≤
√
δ + βt ≤

√
δ + β ≤ 1.
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Remark 8. The conditions for which our operator is well defined are{√
δ + β ≤ 1,

δ − 2β ≥ 0.
(4.2)

The system (4.2) has at least one solution. In fact it may be solved, for instance, by the couple

(δ, β) = (1
4 ,

1
8 ).

Hence, we may conclude stating the following proposition.

Proposition 4.1. Under the conditions (4.2), the operator T1 : X1 → X1 as in Definition 4 is

well defined.

P r o o f. It follows immediately from the Remarks 6, 7, 8. �

4.2. The properties of the space X1

In this section, we will prove that X1 is closed and convex, as did previously with the space X.

Proposition 4.2. Under the assumptions (4.2), the space X1 is closed.

P r o o f. Let us consider a Cauchy sequence {yn}n∈N in X1 ⊂ C([0, 1], [0, 1]). Then, by the com-

pleteness of this space, there will exist a y∞ ∈ C([0, 1], [0, 1]) such that yn → y∞ uniformly in

[0, 1]. We get immediately that y∞ ∈ C([0, 1], [0, 1]). Furthermore, we remark that

∣∣∣∣
t∫
0

yn(τ)∫
0

yn(s)ds−

t∫
0

y∞(τ)dτ∫
0

y∞(s)ds

∣∣∣∣

≤
∣∣∣∣
t∫
0

yn(s)ds∫
0

yn(τ)dτ −

t∫
0

y∞(s)ds∫
0

yn(τ)dτ

∣∣∣∣

+

∣∣∣∣
t∫
0

y∞(s)ds∫
0

yn(τ)dτ −

t∫
0

y∞(s)ds∫
0

y∞(τ)dτ

∣∣∣∣

≤
∣∣∣∣

t∫
0

yn(τ)dτ −
t∫

0

y∞(τ)dτ

∣∣∣∣+

∣∣∣∣
t∫
0

y∞(s)ds∫
0

(yn(τ)− y∞(τ))dτ

∣∣∣∣

(4.3)

which will converge to zero as n→∞. Hence,

lim
n→∞

t∫
0

yn(τ)∫
0

yn(s)ds =

t∫
0

y∞(τ)dτ∫
0

y∞(s)ds (4.4)

which concludes our proof. �

Proposition 4.3. Under the assumptions (4.2), the space X1 is convex.
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P r o o f. Let us consider y1, y2 ∈ X1 and λ, µ ∈ [0, 1] and λ + µ = 1. It is immediate to deduce

that λy1 + µy2 ∈ C([0, 1], [0, 1]). To prove that λy1 + µy2 ∈ X1 is sufficient to remark that

δ − 2

β∫
0

( t∫
0

λy1(τ)+µy2(τ)dτ∫
0

λy1(s) + µy2(s)ds

)
dt

≥ δ − 2

β∫
0

( t∫
0

(λ+µ)dτ∫
0

(λ+ µ)ds

)
≥ δ − 2β ≥ 0. �

Hence, we deduce the following theorem which sum up all our results about the space X1.

Theorem 4.4. Under the assumptions (4.2), the operator T1 : X1 → X1 is well defined and the

space X1 is bounded, closed and convex.

P r o o f. It is an immediate consequence of the Propositions 4.2 and 4.3. �

4.3. The continuity and compactness of T1

Our goal now is to check that our operator T1 is continuous and compact. This is a necessary

step in order to apply the Schauder’s theorem.

Proposition 4.5. Under the assumptions (4.2), the operator T1 : X1 → X1 as defined in Defini-

tion 4 is continuous.

P r o o f. We have obtained from (4.3) that if {yn}n∈N converges uniformly to y∞, then

lim
n→∞

β∫
0

t∫
0

yn(τ)∫
0

yn(s)ds =

β∫
0

t∫
0

y∞(τ)dτ∫
0

y∞(s)ds (4.5)

as n → ∞. Hence, by standard theorems of convergence and continuity, it is straightforward to

remark that

lim
n→∞

√√√√√√√δ − 2

β∫
0

( t∫
0

yn(τ)dτ∫
0

yn(s)ds

)
dt =

√√√√√√√δ − 2

β∫
0

( t∫
0

y∞(τ)dτ∫
0

y∞(s)ds

)
dt.

Let us recall that y∞ ∈ C([0, 1], [0, 1]) is uniformly continuous in the set [0, 1]. Then we have that

∀ε > 0 ∃δ > 0 such that ∀ξ, η ∈ [0, 1] |ξ − η| < δ ⇒ |y∞(ξ)− y∞(η)| < ε.

Thus we estimate∣∣∣∣yn(
τ∫

0

yn(s)ds

)
− y∞

( τ∫
0

y∞(s)ds

)∣∣∣∣
≤
∣∣∣∣yn(

τ∫
0

yn(s)ds

)
− y∞

( τ∫
0

yn(s)ds

)∣∣∣∣+

∣∣∣∣y∞(
τ∫

0

yn(s)ds

)
− y∞

( τ∫
0

y∞(s)ds

)∣∣∣∣
≤ ‖yn − y∞‖∞ + ε,
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where ‖ ‖∞ is the standard L∞ norm. Thus it is immediate to get the continuity. �

Proposition 4.6. Under the assumptions (4.2), the operator T1 : X1 → X1 as defined in Defini-

tion 4 is compact.

P r o o f. Let us consider the sequence {yn}n∈N ⊂ X1. Then it is straightforward to see that also

the sequence {T1yn}n∈N will be equibounded. Let us remark that

d

dt
T1yn(t) = βyn

( t∫
0

yn(τ)dτ

)
yn(τ),

and then,
∣∣ d
dtT1yn(t)

∣∣ ≤ β. Hence, the sequence {Tyn}n∈N is equicontinuous. Hence, by the

Ascoli-Arzelà theorem it is possible to extract a subsequence. Thus T is compact. �

We conclude this section showing the existence of a solution of the problem (1.2).

Theorem 4.7. Under the assumptions (4.2), the integrodifferential problem
ẏ(t) = βy

( t∫
0

y(s)ds
)
, t ∈ [0, 1],

β∫
0

y2(t)dt = δβ

with 0 < β ≤ 1 has at least one solution.

P r o o f. Let us recall that by Theorem 4.4, the space X1 is bounded, closed and convex. Further-

more, the operator T1 : X1 → X1 is continuous and compact. Then, by Schauder’s theorem, we

obtain immediately that there exists a y ∈ X1 such that T1(y) = y. �

Example 2. By Theorem 4.7, we get that the integrodifferential problem
ẏ(t) = 1

8y
( t∫
0

y(s)ds
)
, t ∈ [0, 1],

1
8∫
0

y2(t)dt =
1

32

has at least one solution.

5. Third problem

5.1. The definition of the operator TL

Finally, let us study the problem (1.3).

Let us start remarking that by multiplying both sides of the integrodifferential equation of (1.3)

by y(x, t), we get

∂

∂t
y2(x, t) = 2βy(x, t)y

( t∫
0

y(x, s)ds, t

)
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which implies, by integrating both sides w.r.t. the time variable between 0 and t

y2(x, t) = y2(x, 0) + 2β

t∫
0

y(x, s)y

( s∫
0

y(x, τ)dτ, s

)
ds. (5.1)

Integrating one more time w.r.t. the time variable both the sides of the integrodifferential equation

(5.1) and by using the boundary condition of (1.3), we get

βg(x) = βy2(x, 0) + 2β

β∫
0

t∫
0

y(x, τ)y

( τ∫
0

y(x, s)ds, τ

)
dτdt.

Then it is straightforward to deduce

y2(x, 0) = g(x)− 2

β∫
0

t∫
0

y(x, τ)y

( τ∫
0

y(x, s)ds, τ

)
dτdt.

Now we define the space of functions and the operator that we need to prove the existence of a

solution of (1.3).

Definition 5. Let us consider the space of continuous functions C([0, 1]× [0, 1], [0, 1]). We define

the space XL ⊂ C([0, 1]× [0, 1], [0, 1]) as

XL =

{
y ∈ C

(
[0, 1]×[0, 1], [0, 1]

) ∣∣∣∣g(x)− 2

β∫
0

t∫
0

y(x, τ)y

( τ∫
0

y(x, s)ds, τ

)
dτdt ≥ ε0

with |y(x2, t)− y(x1, t)| ≤ L|x2 − x1| for a L > 0 and for all x1, x2 ∈ [0, 1] and t ∈ [0, 1]

}
with ε0 > 0. We define the functional TL as

TLy(x, t) =

√√√√√g(x)− 2

β∫
0

t∫
0

y(x, τ)y

( τ∫
0

y(x, s)ds, τ

)
dτdt

+ β

t∫
0

y

( τ∫
0

y(x, s)ds, τ

)
dτ.

Remark 9. Let us remark that for all y ∈ XL, we get

TLy(x, t) ≥
√
ε0 > 0 and TLy(x, t) ≤

√
g(x) + β.

If we assume as condition
√
g(x) + β ≤ 1 for all x ∈ [0, 1], then it is straightfoward to deduce that

0 <
√
ε0 ≤ TLy(x, t) ≤ 1.

Remark 10. Let us remark that for all y ∈ XL, there exists the derivative w.r.t. the time variable

of the operator TLy. In particular,

0 ≤ ∂

∂t
TLy(x, t) ≤ βy

( t∫
0

y(x, s)ds, t

)
≤ β.
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Remark 11. Since g : [0, 1]→ [0, 1] is smooth, then we remark that there exists a constant Lg > 0

such that |g(x2)− g(x1)| ≤ Lg|x2 − x1|. Thus we may estimate the difference

TLy(x2, t)− TLy(x1, t) =

√√√√√g(x2)− 2

β∫
0

t∫
0

y(x2, τ)y

( τ∫
0

y(x2, s)ds, τ

)
dτdt

−

√√√√√g(x1)− 2

β∫
0

t∫
0

y(x1, τ)y

( τ∫
0

y(x1, s)ds, τ

)
dτdt

+ β

t∫
0

[
y

( τ∫
0

y(x2, s)ds, τ

)
− y
( τ∫

0

y(x1, s)ds, τ

)]
dτ.

We remark, using the Lipschitz property of the function y, that∣∣∣∣
t∫

0

[
y

( τ∫
0

y(x2, s)ds, τ

)
− y
( τ∫

0

y(x1, s)ds, τ

)]
dτ

∣∣∣∣
≤ L

t∫
0

τ∫
0

|y(x2, s)− y(x1, s)|dsdτ ≤
L2

2
|x2 − x1|

and, by considering standard algebraic computations, the Remark 9 and the Lipschitz condition

of the functions g and y, we get

∣∣∣∣∣
√√√√√g(x2)− 2

β∫
0

t∫
0

y(x2, τ)y

( τ∫
0

y(x2, s)ds, τ

)
dτdt

−

√√√√√g(x1)− 2

β∫
0

t∫
0

y(x1, τ)y

( τ∫
0

y(x1, s)ds, τ

)
dτdt

∣∣∣∣∣
≤ 1

2
√
ε0

[∣∣g(x2)− g(x1)
∣∣

+

β∫
0

t∫
0

∣∣∣∣y(x2, τ)y

( τ∫
0

y(x2, s)ds, τ

)
− y(x1, τ)y

( τ∫
0

y(x1, s)ds, τ

)∣∣∣∣dτdt

]

≤ 1

2
√
ε0

[
Lg|x2 − x1|+ 2

β∫
0

t∫
0

|y(x2, τ)− y(x1, τ)|dτdt

+ 2

β∫
0

t∫
0

∣∣∣∣y(
τ∫

0

y(x2, s)ds, τ

)
− y
( τ∫

0

y(x1, s)ds, τ

)∣∣∣∣dτdt

]

≤ 1

2
√
ε0

[
Lg + Lβ2 + L2 β

3

3

]
|x2 − x1|.
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If we consider L > 0 such that 1
2
√
ε0

[
Lg +Lβ2 +L2 β

3

3

]
+β L

2

2 ≤ L, then we have that |TLy(x2, t)−
TLy(x1, t)| ≤ L|x2 − x1| for all y ∈ XL.

Remark 12. Let us observe that if we assume that g(x)− 2β2 ≥ ε0 for all x ∈ [0, 1], we observe

g(x)− 2

β∫
0

t∫
0

TLy(x, τ)TLy

( τ∫
0

TLy(x, s)ds, τ

)
dτdt ≥ g(x)− 2β2 ≥ ε0.

Remark 13. Remarks 9, 10, 11, 12 allow us to define as set of assumptions

√
g(x) + β ≤ 1,

|g(x2)− g(x1)| ≤ Lg|x2 − x1|,
1

2
√
ε0

[
Lg + Lβ2 + L2 β

3

3

]
+ β

L2

2
≤ L,

g(x)− 2β2 ≥ ε0.

(5.2)

By the previous remarks, we get immediately the following result.

Proposition 5.1. Under the assumptions (5.2), the operator TL : XL → XL as in Definition 5 is

well defined.

P r o o f. It is an immediate consequence of the Remarks 9, 10, 11, 12. �

5.2. The properties of the space XL

As did for the two previous problems, we prove now that XL is closed and convex.

Proposition 5.2. Under the assumptions (5.2), the space XL is closed.

P r o o f. Let us suppose that {yn}n∈N ⊂ XL and, due to the completeness of C([0, 1]× [0, 1], [0, 1]),

yn → y∞ uniformly with y∞ ∈ C([0, 1]× [0, 1], [0, 1]). It is immediate to remark that since it holds

true that |yn(x2, t)− yn(x1, t)| ≤ L|x2−x1|, then we may estimate y∞ as |y∞(x2, t)− y∞(x1, t)| ≤
L|x2 − x1|.

Furthermore, let us remark∣∣∣∣
β∫

0

t∫
0

yn(x, t)yn

( τ∫
0

yn(x, s)ds, τ

)
dτdt−

β∫
0

t∫
0

y∞(x, t)y∞

( τ∫
0

y∞(x, s)ds, τ

)
dτdt

∣∣∣∣
≤

β∫
0

t∫
0

|yn(x, τ)− y∞(x, τ)|dτdt+

β∫
0

t∫
0

∣∣∣∣yn(
τ∫

0

yn(x, s)ds, τ

)
− y∞

( τ∫
0

y∞(x, s)ds, τ

)∣∣∣∣dτdt

≤ β2

2
‖yn − y∞‖+

β∫
0

t∫
0

∣∣∣∣yn(
τ∫

0

yn(x, s)ds, τ

)
− yn

( τ∫
0

y∞(x, s)ds, τ

)
(5.3)

+ yn

( τ∫
0

y∞(x, s)ds, τ

)
− y∞

( τ∫
0

y∞(x, s)ds, τ

)∣∣∣∣dτdt

≤
∣∣∣∣β2

2
+ L

β3

3
+
β2

2

∣∣∣∣‖yn − y∞‖∞,
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where ‖ ‖∞ is the standard L∞ norm. Finally, remarking that

ε0 ≤ lim
n→∞

[
g(x)− 2

β∫
0

t∫
0

yn(x, τ)yn

( τ∫
0

yn(x, s)ds, τ

)
dτdt

]
,

then it is immediate to conclude that XL is closed. �

Proposition 5.3. Under the assumptions (5.2), the space XL is convex.

P r o o f. Let us consider y1, y2 ∈ XL and λ, µ ∈ [0, 1] and λ + µ = 1. It is easy to observe that

λy1 + µy2 ∈ C([0, 1]× [0, 1], [0, 1]). To prove that λy1 + µy2 ∈ XL is sufficient to remark that

g(x)− 2

β∫
0

t∫
0

(λy1 + µy2)(x, τ)(λy1 + µy2)

( τ∫
0

(λy1 + µy2)(x, s)ds, τ

)
dτdt

≥ g(x)− 2β2 ≥ ε0. �

Thus we may state the following theorem.

Theorem 5.4. Under the assumptions (5.2), the operator TL : XL → XL as defined in Definition 5

is well defined and XL is a bounded, closed and convex space.

P r o o f. It is an immediate consequence of the Propositions 5.1, 5.2 and 5.3. �

5.3. The continuity and compactness of TL

We show now that the operator TL is continuous and compact.

Proposition 5.5. Under the assumptions (5.2), the operator TL : XL → XL as defined in Defini-

tion 5 is continuous.

P r o o f. From Proposition 5.2, we get

lim
n→∞

t∫
0

yn

( τ∫
0

yn(x, s)ds, τ

)
dτ =

t∫
0

y∞

( τ∫
0

y∞(x, s)ds, τ

)
dτ.

From this estimate, it is immediate to deduce the continuity of our operator TL. �

Proposition 5.6. Under the assumptions (5.2), the operator TL : XL → XL defined as in Defini-

tion 5 is compact.

P r o o f. Let us consider the sequence {yn}n∈N ⊂ XL. It is straightforward to remark that

{TLyn}n∈N is equibounded by Remark 9. Let us observe that also {TLyn}n∈N is equicontinuous,

since by Remarks 10 and 11, it holds true

|TLyn(x2, t)− TLyn(x1, t)| ≤ L|x2 − x1| and 0 ≤ ∂

∂t
TLyn(x, t) ≤ β (5.4)

for all n ∈ N. Hence, by Ascoli-Arzelà theorem, it is possible to extract a convergent subsequence

of our sequence. Thus the operator TL is compact. �

We conclude stating and proving that our differential problem (1.3) has at least one solution.
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Theorem 5.7. Under the assumptions (5.2), the integrodifferential problem
∂

∂t
y(x, t) = βy

( t∫
0

y(x, s)ds, t
)
, (x, t) ∈ [0, 1]× [0, 1],

β∫
0

y2(x, t) = βg(x)

with 0 < β ≤ 1 has at least one solution.

P r o o f. Let us recall that by Theorem 5.4, the space XL is bounded, closed and convex. Further-

more, the operator TL : XL → XL is continuous and compact. Then, by Schauder’s theorem, we

obtain immediately that there exists a y ∈ XL such that TL(y) = y. �

6. Open problems

We propose some open problems which are a further generalization of (1.3):

(1) 
∂

∂t
y(x, t) = βy

( x∫
0

y(ξ, t)dξ, t
)
, x ∈ [0, 1], t ∈ [0, 1],

β∫
0

y2(x, t)dt = βg(x),

where 0 < β ≤ 1 and g : [0, 1]→ [0, 1] is smooth function;

(2) 

∂2

∂t2
y(x, t) = βy

( x∫
0

y(ξ, s)dξ, t
)
, x ∈ [0, 1], t ∈ [0, 1],

y(x, 0) = f(x),
β∫
0

[
∂
∂sy(x, s)

]2
ds = βg(x),

where f : [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] suitable smooth functions and 0 < β ≤ 1.
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