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ABSTRACT
Building on recent measure-transportation-based concepts of multivariate quantiles, we are considering the
problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional
center-outward quantile regression contours and regions with given conditional probability content, the
graphs of which constitute nested center-outward quantile regression tubes with given unconditional prob-
ability content; these (conditional and unconditional) probability contents do not depend on the underlying
distribution—an essential property of quantile concepts. Empirical counterparts of these concepts are
constructed, yielding interpretable empirical contours, regions, and tubes which are shown to consistently
reconstruct (in the Pompeiu-Hausdorff topology) their population versions. Our method is entirely non-
parametric and performs well in simulations—with possible heteroscedasticity and nonlinear trends. Its
potential as a data-analytic tool is illustrated on some real datasets. Supplementary materials for this article
are available online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

1.1. Quantile Regression, Single- and Multiple-Output

Forty-five years after its introduction by Koenker and Bassett
(1978), quantile regression—arguably the most powerful tool in
the statistical study of the dependence of a variable of interest Y
on covariates X = (X1, . . . , Xm)—has become part of statistical
daily practice, with countless applications in all domains of sci-
entific research, from economics and social sciences to astron-
omy, biostatistics, and medicine. Unlike classical regression
which, somewhat narrowly, is focused on the conditional means
E[Y|X = x], quantile regression indeed is dealing with the com-
plete conditional distributions PY|X=x of Y conditional on X =
x. Building on that pioneering contribution, a number of quan-
tile regression methods, parametric, semiparametric, and non-
parametric, have been developed for an extremely broad range of
statistical topics, including time series, survival analysis, instru-
mental variables, measurement errors, and functional data—to
quote only a few. Sometimes, a simple parameterized regression
model allows for a parametric approach, yielding, for instance,
linear quantile regression. In most situations, however, paramet-
ric models are too rigid and a more agnostic nonparametric
approach is in order. We refer to Koenker (2005) for an introduc-
tory text, to Koenker et al. (2018) for a comprehensive survey.

In single-output models (univariate variable of interest Y),
this nonparametric approach is well understood and well stud-
ied, and the history of nonparametric estimation of conditional
quantile functions goes back, at least, to the seminal paper
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Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

by Stone (1977). The results are much scarcer, however, in
the ubiquitous multiple-output case (d-dimensional variable of
interest Y, with d > 1), and sometimes less convincing—the
simple reason for this being the problem of defining a fully
satisfactory concept of multivariate quantiles. A major difficulty
with quantiles in dimension d > 1, indeed, is the fact that Rd,
contrary to R, is not canonically ordered. A number of attempts
have been made to overcome that issue, the most remarkable
of which are the theory of statistical depth and the concept of
geometric or spatial quantiles.

The theory of statistical depth has generated an abundant
literature which we cannot summarize here—we refer to
(Serfling and Zuo 2000) or (Serfling 2002, 2019) for general
expositions and surveys. Several depth concepts coexist. The
most popular of them is Tukey’s halfspace depth (Tukey 1975),
but all depth concepts (including the most recent ones: see,
e.g., Konen and Paindaveine (2022)) are sharing the same
basic properties. Tukey’s halfspace depth characterizes, for each
distribution P over Rd (for simplicity, assume P to be Lebesgue-
absolutely continuous) depth regions DP(δ) (resp., depth
contoursDP(δ)) as collections of points with depth (relative to P)
larger than or equal to δ (resp., equal to δ), δ ∈ (0, 1/2]. Depth
regions, moreover, are convex (even for distributions with highly
nonconvex shapes), closed, connected, and nested as δ increases.
Depth regions were proposed as notions of quantile regions—an
interpretation that is supported, for example, by the L1 nature
of Tukey depth (Hallin, Paindaveine, and Šiman 2010). Among
the merits of this interpretation of depth regions as quantile
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regions is the fact that it has imposed the idea that quantiles,
in dimension d ≥ 2, should rely on some center-outward
ordering (with central region the deepest points) rather than a
southwest-northeast extension of the classical univariate “left-
to-right” linear ordering of the real line.

Unfortunately, depth regions do not characterize the under-
lying distribution (see, e.g., Nagy 2021) and fail to satisfy the
quintessential property of quantile regions: the P-probability
content P

[
DP(δ)

]
of the quantile region DP(δ) indeed very

much depends on P.1 None of the depth concepts in the lit-
erature is enjoying the essential property of a P-probability
content P

[
DP(δ)

]
independent of P, though, and depth regions,

therefore, cannot be considered as bona fide quantile regions.
A remedy that is often proposed to that problem consists in
reindexing depth regions DP(δ) and contours DP(δ) with their
P-probability contents P(DP(δ)). Such reindexation, however,
can be performed with any collection of nested regions, turning
into quantile regions an arbitrary collection of sets bearing no
quantile-type relation,2 or even no relation at all, to P.

A more attractive concept of multivariate quantiles,
which does (Koltchinski 1997; Konen 2023) characterize
the underlying distribution P, is provided by the L1 definition
of geometric or spatial quantiles introduced by Chaudhuri
(1996) (see Koltchinski (1996) for a generalization and, for
extensions to functional variables, Chakraborty and Chaudhuri
2014; Chowdhury and Chaudhuri 2019). The same reindexing
procedure as for depth-based quantiles is required, however,
if the probability of geometric quantile regions are to be
independent of P and, even so, the inverse of the reindexed
geometric quantile function of P (in principle, a distribution
function for P), unlike the measure-transportation-based
one to be considered below, fails to be distribution-free
when computed at a random variable with distribution
P—while such distribution-freeness is a typical feature of
distribution functions, which by nature are probability integral
transformations; Girard and Stupfler (2017), moreover, stress a
few unpleasant properties of extreme geometric quantiles (see
also Hallin and Konen 2024). Projection methods also have been
used to define multivariate quantile regions based on univariate
directional ones (Kong and Mizera 2012; Paindaveine and
Šiman 2012), mostly leading to depth-based quantile contours
yielding the same weaknesses as described above.

In the presence of covariates, each multivariate quantile
concept quite naturally yields a conditional version which in
turn suggests a multiple-output quantile regression model. A
review of various existing multiple-output quantile regression
models (linear and nonparametric, depth-based, and others) can
be found in Hallin and Šiman (2018). Nonparametric quantile
regression models based on Tukey depth are developed in Hallin
et al. (2015) but suffer from the same lack of control over

1This is not a minor weakness: the univariate median YP
1/2 of an abso-

lutely continuous distribution P, for instance, is characterized by the
fact that P

[
(−∞, YP

1/2]] = 1/2 irrespective of P—who would call

median a quantity YP
med such that P1

[
(−∞, YP1

med]] = 0.4 for some P1,

while P2
[
(−∞, YP2

med]] = 0.6 for some P2?
2Reindexation by probability content is used, for example, by Camehl, Fok,

and Gruber (2022) for density level contours, which are not necessarily con-
nected hence do not enjoy the essential monotonicity features of quantiles.

the probability contents of the resulting (conditional) quantile
regions as the depth-based quantile regions themselves. So do
the directional concepts of M-quantiles (Breckling and Cham-
bers 1988; Paindaveine and Šiman 2011; Merlo et al. 2022) and
the projection-based one in Wei (2008). The reindexed geo-
metric quantile regression approach (Chaudhuri 1996, sec. 2.2;
Chakraborty 2003; Chowdhury and Chaudhuri 2019 for func-
tional versions) offers such a control but suffer from the same
major drawback (Girard and Stupfler 2017) as their uncondi-
tional version.

1.2. Measure-Transportation-based Quantile Regression

Recently, based on measure transportation ideas, new concepts
of depth and quantiles in dimension d > 1 have been intro-
duced under the names of Monge-Kantorovich depth and center-
outward quantile function by Chernozhukov et al. (2017) and
Hallin et al. (2021). The idea consists in defining the quantile
function of P as the a.s. unique gradient of convex function
pushing some uniform reference distribution forward 3 to P. In
R

d, the reference distribution usually is chosen as the uniform
U[0,1]d over the unit cube [0, 1]d or the spherical uniform Ud over
the unit ball Sd. The advantage of the latter is that, due to spher-
ical symmetry, the collection {τSd, τ ∈ [0, 1)} of closed nested
balls constitutes for Ud a natural collection of central quantile
regions (note that Ud(τS

d = τ)). This is the choice we tacitly
adopt throughout this article, calling center-outward quantile
function the a.s. unique gradient of convex function Q± such
that P = Q±#Ud: see Hallin et al. (2021) for details and Hallin
(2022) for a survey of measure-transportation-based center-
outward quantiles, the dual concepts of center-outward distribu-
tion functions, and their empirical counterparts—multivariate
ranks and signs—along with a list of applications in inference
(Shi et al. 2021; Ghosal and Sen 2022; Hallin, La Vecchia, and Liu
2022; Deb and Sen 2023; Hallin and Liu 2023; Hallin, Hlubinka,
and Hudecová 2023; Hallin, La Vecchia, and Liu 2023; Hallin
and Mordant 2023; Shi et al. 2024, etc.).

Center-outward quantile functions characterize nested,
closed, and connected quantile regions CP(τ ):=Q±(τS

d
) and

continuous contours CP(τ ):=Q±(τSd
) indexed by τ ∈ ([0, 1)

such that, for any absolutely continuous P, P
[
CP(τ )

] = τ

irrespective of P. These measure-transportation-based quantiles
thus do satisfy the essential property that the P-probability
contents of the resulting quantile regions do not depend on
P. Moreover, these regions are not necessarily convex and,
as shown in Figure 1, they are able to capture the “shape” of
the underlying distribution. Finally, the inverse F± of Q± is a
probability integral transformation, that is, pushes P forward to
a uniform distribution.

The notion of quantile region is less clear for U[0,1]d ; one
could consider the centered cube [ 1

2 ± 1
2τ−d]d (with U[0,1]d -

probability content τ ) as a central quantile region of order τ

for U[0,1]d , and transport it to R
d via the a.s. unique gradient of

3Recall that a mapping T is pushing P1 forward to P2 (notation: T#P1 = P2) if
T(X) ∼ P2 when X ∼ P1. For Lebesgue-absolutely continuous distributions
on R

d , a famous theorem by McCann (1995) establishes the existence and
a.s. uniqueness of a gradient of convex function T such that T#P1 = P2.
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Figure 1. Quantile contours C±(τ ) (left panel) and regions C±(τ ) (right panel) for the Gaussian mixture of Section 4.1.2 and quantile orders τ = 0.1, 0.2, . . . , 0.9.

convex function Q� pushing U[0,1]d forward to P, thus, yielding
quantile regions of the form Q�([ 1

2 ± 1
2τ−d]d). Another choice

is the image by Q� of region of the unit cube lying under the
hyperboloid

∏d
i=1 ui = τd where τd is such that the region has

volume τ . None of these choices is preserving the symmetry
features of P: in particular, the resulting quantile regions of a
spherical distribution fail to be spherically symmetric. Based on
the conditional version of Q� , Carlier, Chernozhukov, and Gali-
chon (2016) are proposing a quantile regression model focused
on linear regression which does not yield any obvious (con-
ditional) quantile regions and contours, though. A functional
extension of the same approach is developed in Agarwal et al.
(2022).

Motivated by the long list of successful applications of center-
outward quantiles, ranks, and signs, we are proposing in this
article a novel and meaningful solution, based on the con-
cept of center-outward quantiles, to the problem of nonpara-
metric multiple-output quantile regression. Namely, for a pair
of multidimensional random variables (X, Y) with values in
R

m × R
d (Y the variable of interest, X the vector of covariates)

and joint distribution4
P, we define (Section 2.2) the center-

outward quantile function of the conditional distribution of Y
conditional on X = x as

Q±( | x) : u ∈ Sd �→ Q±(u| x) ∈ R
d (1.1)

(Sd the open unit ball in R
d), with the essential property that,

letting

C±(τ |x):=Q±(τ Sd|x) τ ∈ (0, 1), x ∈ R
m, (1.2)

we have, irrespective of P,

P
[
Y ∈ C±(τ | x)

∣∣ X = x
] = τ for all x ∈ R

m, and τ ∈ (0, 1),
(1.3)

4For simplicity, we tacitly assume all distributions to be Lebesgue-absolutely
continous.

justifying the interpretation of x �→ C±(τ | x) as the value at x of
a regression quantile region of order τ of Y conditional on X = x.
For τ = 0,

C±(0 | x):=
⋂

τ∈(0,1)

C±(τ | x) (1.4)

yields the value at X = x of the regression median x �→ C±(0 | x)

of Y conditional on X = x. The same conditional quantile
map characterizes nested (no “quantile crossing” phenomenon)
regression quantile tubes of order τ (in R

m+d)

T±(τ ):=
{(

x, Q±(τ Sd
∣∣ x)

) ∣∣x ∈ R
m
}

, τ ∈ (0, 1) (1.5)

which are such that

P [(X, Y) ∈ T±(τ )] = τ irrespective of P, τ ∈ (0, 1). (1.6)

For τ = 0, define

T±(0):= {(
x, y)

) ∣∣x ∈ R
m, y ∈ C±(0 | x)

} =
⋂

τ∈(0,1)

T±(τ )

(the graph of x �→ C±(τ | x)); with a slight abuse of language,
also call T±(0) the regression median of Y with respect to X.

Except for the reindexed ones,5 none of the earlier attempts
to define multiple-output regression quantiles is characteriz-
ing quantile regions that satisfy requirements (1.3) and (1.6).
As the first attempt to break with directional and depth-
based approaches to multiple-output quantile regression by
means of innovative measure transportation ideas, Carlier,
Chernozhukov, and Galichon (2016) deserves special atten-
tion. While providing (under linear regression assumptions) a
consistent reconstruction of the distributions of Y conditional
on X = x, however, they do not propose any definition of

5A typical case is the approach proposed by Camehl, Fok, and Gruber (2022)
which, however, qualifies as a density level regression method rather than
a quantile regression one.
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quantile regions with given probability content τ similar to the
quantile regions C±(τ | x) ⊂ R

d or the quantile regression
tubes T±(τ ) ⊂ R

m+d. The validity of the estimation method
they are proposing, and their derivation of asymptotic results,
moreover, is limited to linear quantile regression and focused on
a concept of quantile function defined over the unit cube [0, 1]d

rather than the unit ball Sd.

1.3. Motivating Examples

Figure 2 provides, for m = 1 and d = 2, a visualization of the
regression median and quantile tubes of orders τ = 0.2, 0.4, and
0.8, along with some of the corresponding conditional regres-
sion quantile contours C±(τ |x):= {(

x, Q±(τ Sd−1
∣∣ x)

)}
(Sd−1

the unit sphere in R
d), for two models. In the first example (left

panel), (X, Y) are of the form

Y =
( Y1

Y2

)
=

( sin( 2π
3 X) + 0.575σ(X) e1

cos( 2π
3 X) + X2 + 2.65 X4 + σ(X)e2

2.3 + 1
4 e3

1

)
(1.7)

where X ∼ U[−1,1], σ(X) = (
1 + 3

2 sin(πX/2)2)1/2, and e =
(e1, e2)

T ∼ N (0, Id), with X and e mutually independent. In
the second example (right panel),

Y =
( Y1

Y2

)
=

( X
X2

)
+

(
1 + 3

2
sin

(π

2
X

)2 )
R(X)e, (1.8)

where X ∼ U[−2,2] and e are mutually independent, 10e is a

mixture (equal mixing probabilities 0.25) of N
(( 0

0

)
, Id

)
,

N
(( 8.66

−5.00

)
, Id

)
, N

(( −8.66
−5.00

)
, Id

)
, andN

(( 0
10

)
, Id

)
,

and R(x) is the rotation matrix of angle π
2 x.

Actually, since explicit values cannot be obtained for these
population concepts, very large samples of n = 100,000 obser-
vations were generated from (1.7) and (1.8), respectively, and
the consistent estimation procedure described in Section 3 was
performed to obtain the pictures in Figure 2. Note the non-
convexity of the conditional contours, the non-linearity of the

regression median, and the marked heteroscedasticity of the
regression. Also note that our method is numerically imple-
mentable for very large n.

1.4. Outline of the Article

The article is organized as follows. Section 2 is dealing with the
population concept of conditional center-outward quantile map
and the resulting center-outward regression quantile contours and
regions, Section 3 with their estimation. In Section 3.1, we show
how to construct empirical quantile contours and regions, the
consistency of which is established in Section 3.2. Numerical
results are provided in Section 4. Monte Carlo experiments in
Section 4.1 show the ability of our method to handle very large
sample sizes and to pick heteroscedasticity, nonlinear trends,
and the shape of conditional distributions; comparisons also
are made with the results of Hallin et al. (2015) and Carlier,
Chernozhukov, and Galichon (2016). Real datasets are analyzed
in Section 4.3, illustrating the power of our method as a data-
analytic tool. Section 5 concludes with some recent references
on the numerical aspects of optimal transports and perspectives
for future developments. An online supplement provides math-
ematical proofs, further discussion of computational issues, and
further numerical results.

2. Nonparametric Center-Outward Quantile
Regression

2.1. Notation

For convenience, we are listing here the main notation to be
used throughout the article. Unless otherwise stated, we denote
by (�,A,P) the triple defining the underlying probability space.
Let �d denote the d-dimensional Lebesgue measure, Bd the
Borel σ -field, andP(Rd) the space of Borel probability measures
on R

d. The support of P ∈ P(Rd) is denoted as supp(P).
Throughout, (X, Y) denotes an R

m+d-valued random vector

Figure 2. Two examples ((1.7), (1.8)) of multiple-output quantile regression tubes (bivariate variable of interest Y = (Y1, Y2); univariate regressor X), showing the conditional
center-outward medians (red) and the conditional quantile contours (x,C±(τ | x)) of order τ = 0.2 (black), τ = 0.4 (dark green), and τ = 0.8 (light green). Numerical
approximations based on n = 100,000 points.
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with distribution P = PX,Y ∈ P(Rm+d), m-dimensional X-
marginal PX and d-dimensional Y-marginal PY. The distribu-
tion of Y conditional on X = x is denoted as PY |X=x.6 The open
and closed unit ball and the unit hypersphere in R

d are denoted
by Sd, Sd, and Sd−1, respectively. We denote by Ud the spherical
uniform over Sd—that is, the product of a uniform distribu-
tion Vd over the unit hypersphere Sd−1 (for the directions) and
a uniform distribution over [0, 1] (for the distance to the center).

2.2. Conditional Center-Outward Quantiles, Regions, and
Contours

Let us provide precise definitions for the concepts we briefly
presented in the Introduction and properly introduce center-
outward quantiles, regions, and contours.

For any P ∈ P(Rd), denote by Q± = ∇ϕ and call
center-outward quantile map the (Lebesgue-a.e.) unique gradi-
ent of a convex function ϕ : Sd → R such that Q±(U) ∼ P for
any U ∼ Ud—in the measure transportation convenient ter-
minology, Q± is pushing P forward to Ud, which we denote as
Q±#P = Ud. This only defines Q± at ϕ’s points of differentiabil-
ity (recall that convex functions are differentiable at almost every
point in the interior of their domain: see Theorems 26.1 and 25.5
in Rockafellar 1970). At ϕ’s points of non-differentiability u, let
us define Q±(u) as the subdifferential ∂ϕ(u) of ϕ, namely,

Q±(u):=∂ϕ(u):=
{

y ∈ R
d| for all z ∈ R

d,

ϕ(z) − ϕ(u) ≥ 〈y, z − u〉
}

, u ∈ Sd;

then, Q± is an everywhere-defined set-valued function. Slightly
abusing notation, we also write Q± and ∂ϕ for the set of all
points (u, y) ∈ R

m+d such that y ∈ ∂ϕ(u). We then can
introduce the concepts of conditional center-outward quantiles,
contours, and regions.

Definition 2.1. Call conditional center-outward quantile map of
Y given X = x the center-outward quantile map

u �→ Q±(u|X = x), u ∈ Sd

of PY |X=x, x ∈ R
m. The corresponding conditional

center-outward quantile regions and contours of order
τ ∈ (0, 1) are the sets C±

(
τ

∣∣x)
:=Q±(τ Sd|X = x)

and C±
(
τ

∣∣x)
:=Q±

(
τSd−1 |X = x

)
, respectively. The

conditional center-outward quantile maps also characterize
(see Definitions (1.4), (1.5), and (1.6)) conditional medians
C±(0 | x) and regression quantile tubes T±(τ ).

When no confusion is possible, we also write Q±(u|x) for
Q±(u|X = x). The terminology center-outward regression
quantile region, contour, and median is used for the map-
pings x �→ C±(τ

∣∣x), x �→ C±(τ
∣∣x), and x �→ C±(0 | x),

respectively, x ∈ R
m.

Recall, however, that, in the absence of any assumptions
on the conditional probabilities PY |X=x, the mappings u �→
Q±(u |X = x) typically are set-valued, see Rockafellar and Wets

6The existence of the regular conditional probability is a direct consequence
of the so-called disintegration theorem (see, e.g., Theorem 2.5.1 in Lehmann
and Romano 2005).

(1998). Whenever continuous, single-valued functions (typi-
cally, on the punctured unit ball Sd \ {0}) are needed, we will
make the following assumption.
Assumption (R). The conditional distribution PY |X=x admits,
PX-a.e. x ∈ R

m, a convexely supported density pY |X=x with
respect to the Lebesgue measure. Moreover, that density pY |X=x
is such that, for every R > 0 and x, there exist constants
0 < λx

R ≤ �x
R < ∞ such that λx

R ≤ pY |X=x(y) ≤
�x

R for all y ∈ supp(PY |X=x) ∩ R Sd.
In the classical single-output case (d = 1), consistent esti-

mation of conditional quantiles similarly requires the conti-
nuity of the conditional quantile maps (see Stone 1977). In
dimension d > 1, the continuity of center-outward quantile
maps follows from assumptions similar to Assumption (R)—see
Figalli (2018) and del Barrio, González-Sanz, and Hallin (2020).

3. Empirical Center-Outward Quantile Regression

We now proceed with the construction of empirical versions
of the conditional center-outward quantile concepts defined in
Section 2.2 and their consistency properties.

3.1. Empirical Conditional Center-Outward Quantiles

Let (X, Y)(n):=(
(X1, Y1), . . . , (Xn, Yn)

)
be a sample of n iid

copies of (X, Y) ∼ =PPXY. In this section, we develop an
estimator of the conditional center-outward quantile maps
u �→ Q±(u|X = x), x ∈ R

m. Our estimator is obtained
in two steps: in Step 1, we construct an empirical distribution
of Y conditional on X = x and, in Step 2, we compute the
corresponding empirical center-outward quantile map.

Step 1. For each value of x ∈ R
m, our estimation of the

distribution of Y conditional on X = x involves a sequence of
weight functions w(n) : Rm(n+1) → R

n of the form

(x, X(n)) �→ w(n)
(

x, X(n)
)

:=
(

w1(x; X(n)), . . . , wn(x; X(n))
)

where w(n)
j : Rm(n+1) → R is measurable with respect to x and

the sample X(n):=(X1, . . . , Xn) and satisfies

w(n)
j (x; X(n)) ≥ 0 and

n∑
j=1

w(n)
j (x; X(n)) = 1 a.s. for all n, j = 1, . . . , n. (3.1)

We refer to a function w(n) satisfying (3.1) as a probability weight
function and define the empirical conditional distribution of Y
given X = x as P(n)

w(x):=
∑n

j=1 w(n)
j (x; X(n))δYj where δYj is

the Dirac function computed at Yj. Following Stone (1977), we
say that the sequence w(n) is a consistent weight function if,
whenever (X, Y), (X1, Y1), . . . , (Xn, Yn) are iid, where Y is real-
valued and such that E|Y|r < ∞ for some r > 1,

E

∣∣∣∣∣∣
n∑

j=1
w(n)

j (X; X(n))Yj − E(Y|X)

∣∣∣∣∣∣
r

−→ 0 as n → ∞. (3.2)

Step 2. To estimate the conditional quantiles, consider a
regular grid G

(N) of Sd consisting of N gridpoints denoted as



6 E. DEL BARRIO, A. G. SANZ, AND M. HALLIN

G
(N)
1 , . . . , G(N)

N . The number N here is arbitrarily chosen as
factorizing into a product of integers of the form N = NRNS+N0
with N0 = 0 or 1. That regular grid is created as the intersection
between

– the rays generated by an NS-tuple u1, . . . , uNS ∈ Sd−1 of
unit vectors such that NS−1 ∑NS

j=1 δuj converges weakly to the
uniform over Sd−1 as NS → ∞, and

– the NR hyperspheres with center 0 and radii j/(NR + 1),
j = 1, . . . , NR,

along with the origin if N0 = 1. Based on this grid, we define the
sequence of discrete uniform measures

U(N)

d := 1
N

N∑
j=1

δ
G

(N)
j

∈ P(Rd), N ∈ N

over G
(N) and require that both NR → ∞ and NS → +∞

N → ∞. By construction, U(N)

d converges weakly to Ud as N →
∞. Note that imposing N0 = 0 or 1 is not a problem, since N,
unlike n, is chosen by the practitioner; it yields the fundamental
advantage that all points of G

(N) have multiplicity one so that
Corollary 3.1 in Hallin et al. (2021), to be used below, applies.

Our estimation of the conditional center-outward quantile
maps relies on the optimal transport pushing U(N)

d forward to
P(n)

w(x)—more precisely, adopting (since typically N �= n) the Kan-
torovich formulation of the optimal transport problem, on the
solution of the linear program (solvable using efficient numerical
methods such as the auction or Hungarian algorithms—see Peyré
and Cuturi (2019) and references therein)7

minπ :={πi,j}
∑N

i=1
∑n

j=1
1
2

∣∣Yj − Gi
∣∣2

πi,j
s.t.

∑n
j=1 πi,j = N−1, i ∈ {1, 2, . . . , N},∑N

i=1 πi,j = w(n)
j (x; X(n)), j ∈ {1, 2, . . . , n},

πi,j ≥ 0, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , n}.

(3.3)

Here, any Nn-tuple π :={πi,j|i = 1, . . . , N, j = 1, . . . , n}
satisfying the constraints in (3.3) represents a transport plan
from U(N)

d to P(n)
w(x)—that is, a discrete distribution overRd ×R

d

with marginals U(N)

d and P(n)
w(x). Let

π∗(x) = {π∗
i,j(x)|i = 1, . . . , N, j = 1, . . . , n}

be a solution of (3.3) (an optimal transport plan).
Theorem 2.12(i) in Villani (2003) implies that its support
supp(π∗(x)):={(Gi, Yj)|π∗

i,j(x) > 0} is cyclically monotone,8
hence, is contained in the graph of the subdifferential of a
convex function. Therefore, the idea is to construct a smooth
interpolation of π∗(x) that maintains this property.

Note that, for any gridpoint Gi, i ∈ {1, . . . , N}, the constraints
in (3.3) imply that there exists at least one j ∈ {1, . . . , n} such
that (Gi, Yj) ∈ supp(π∗(x)). Since more than one such j may

7We are dropping the superscripts (N) and (n) when no confusion is possible.
8Recall from Rockafellar (1970) that a set S ⊂ R

d × R
d is cyclically

monotone if any finite subset {(xk1 , yk1 ), . . . , (xkν
, ykν

)} ⊂ S, ν ∈ N

is such that
∑ν−1

�=1 〈yk�
, xk�+1 − xk�

〉 + 〈ykν
, xk1 − xkν

〉 ≤ 0, where 〈·, ·〉
stands for the scalar product in R

d .

exist, we choose the one which gets the highest mass from Gi and,
in case of ties, the smallest one. Namely, let

T∗(Gi| x):= arg inf
{
‖y ‖ :

y ∈ conv({YJ : J ∈ arg max
j

π∗
i,j(x)})

}
, (3.4)

where conv(A) denotes the convex hull of a set A ⊂ Rd.
Since conv

(
{YJ : J ∈ arg maxj π

∗
i,j(x)}

)
is closed and convex

in R
d, (3.4) defines a unique T∗(Gi| x). Due to the cyclical

monotonicity of supp(π∗(x)), there exists a convex function
ϕ∗(· |x) : Rd → R with subdifferential ∂ϕ∗(· |x) such that, for
all

1 ≤ i ≤ N, ∅ �= {Yj : (Gi, Yj) ∈ supp(π∗(x))} ⊂ ∂ϕ∗(Gi |x).

Sub-differentials being convex, this entails

conv{Yj : (Gi, Yj) ∈ supp(π∗(x))} ⊂ ∂ϕ∗(Gi |x).

Consequently, {(Gi, T∗(Gi| x)) : i = 1, . . . , N} is cyclically
monotone and satisfies the assumptions of Corollary 3.1 in
Hallin et al. (2021). This implies the existence, for all x, of a con-
tinuous cyclically monotone map u �→ Q(n)

w,±(u |x), say, interpo-
lating the N-tuple (G1, T∗(G1| x)) , . . . , (GN , T∗(GN | x)), that
is, such that Q(n)

w,±(Gi| x) = T∗(Gi| x) for i = 1, . . . , N.
In particular, we proceed as in Hallin et al. (2021) by choosing

the smooth cyclically monotone interpolation u �→ Q(n)
w,±(u|x)

with largest Lipschitz constant. Call empirical conditional center-
outward quantile function of Y given X = x this continuous map
from Sd to R

d. It defines the empirical center-outward regression
quantile regions and contours

C
(n)
w,±(τ |x):=Q(n)

w,±
(
τ Sd |x

)

and C(n)
w,±(τ |x):=Q(n)

w,±
(
τSd−1 |x)

, τ ∈ (0, 1) (3.5)

which we are proposing as estimators of C±(τ |x) and C±(τ |x),
respectively. The intersection

⋂
τ∈(0,1) C

(n)
w,±(τ |x) yields the

empirical conditional center-outward regression median region.
The definition

T
(n)
w,±(τ ):=

{(
x, Q(n)

± (τ Sd| x)
)

|x ∈ R
m
}

, τ ∈ (0, 1)

of empirical regression quantile tubes naturally follows.

Remark 3.1. Note that the results of this section and the next
one still hold for any continuous map with cyclically monotone
graph satisfying

(
ui, Q(n)

w,±(ui |x)
)

∈ conv
(
{Yj : (ui, Yj) ∈ supp(π∗(x))}

)
for all i = 1, . . . , N.

The reason for choosing the “smallest” y in (3.4) is to have a
“universal criterion.”
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3.2. Consistency

The objective of this section is to justify the definitions of
Section 3.1 by showing the consistency of the empirical quantile
regions and contours defined in (3.5). The asymptotic behavior
of these regions and contours, quite naturally, depends on the
regularity of the conditional distributions involved. In fact, as
discussed before, when Assumption (R) does not hold, the pop-
ulation conditional quantile maps are not necessarily defined
for every u ∈ Sd, but only for a subset of Ud-probability
one. Consistency results can be obtained despite this a.s. defini-
tion provided that population quantile maps are extended into
set-valued maps. The following theorem shows,9 under mild
assumptions, that any possible limit of Q(n)

w,±( · |x) asymptotically
belongs to the set Q±( · |X = x).

Theorem 3.2. Let (X, Y), (X1, Y1), . . . , (Xn, Yn) be pairs of iid
random vectors with values in R

m × R
d and let w(n) be a

consistent sequence of weight functions. Then,
(i) for every u ∈ Sd and ε > 0,
P

(
Q(n)

w,±(u |X) �∈ Q±(u |X) + εSd
)

→ 0
as n and N → ∞,
(ii) for every τ ∈ (0, 1), P

(
C

(n)
± (τ |X) �⊂ C±(τ |X) + εSd

)
→

0 as n and N → ∞, and
(iii) for every τ ∈ (0, 1),P

(
C(n)

± (τ |X) �⊂ C(n)
± (τ |X) + εSd

)
→ 0

as n and N → ∞.

Neater convergence results—avoiding the notion of set-
valued maps— are obtained if it can be assumed that Assump-
tion (R) holds, which implies that, for any X = x and
any u ∈ Sd \ {0}, the set Q±(u |X = x) is a singleton. Then,
the map u �→ Q±(u |X = x) can be seen as continuous on
Sd \ {0}, see Theorem 25.5 in Rockafellar (1970), hence, single-
valued on Sd \ {0} since the gradient of a convex function is
single-valued at a point if and only if it is continuous at this point.
We then can state the following theorem (see Appendix A for the
proof), the second part of which describes the convergence of
contours in terms of the Pompeiu-Hausdorff distance d∞. Recall
(Rockafellar and Wets 1998) that for two sets A and B in R

d,
d∞(A, B):= inf{ν ≥ 0 : A ⊂ B + νSd and B ⊂ A + νSd}.

Theorem 3.3. Let (X, Y), (X1, Y1), . . . , (Xn, Yn) be pairs of iid
random vectors with values in R

m × R
d and let w(n) be a

consistent sequence of weight functions. Suppose moreover that
Assumption (R) holds. Then, for every compact K ⊂ Sd \ {0},
as n and N → ∞,

sup
u∈K

∣∣Q(n)
w,±(u |X) − Q±(u |X)

∣∣ P−→ 0 (3.6)

and, for every τ ∈ (0, 1) and ε > 0,

P

(
d∞

(
C(n)

± (τ |X), C±(τ |X)
)

> ε
)

→ 0. (3.7)

Under the assumptions of Theorem 3.3, consistency in
Pompeiu-Hausdorff distance of the quantile contours holds in
case the median is a single point10—the continuity of quantile

9Note that, although N does not appear in the notation, Q(n)
w,± depends on

both N and n.
10This is always the case for d = 2 and d = 3: see Figalli (2018).

maps then extends to the whole open unit ball. This, however, is
not necessarily the case for d > 3 (Figalli 2018), and Pompeiu-
Hausdorff consistency may fail due to the fact that our empirical
version is continuous overSd while Q±(0|x) could be a set rather
than a single point: convergence then holds along subsequences
of Q(n)

w,±( · |x) to an element of Q±(0|x). This has an impact
on convergence in terms of the Pompeiu-Hausdorff distance—
although it does not affect the control over the asymptotic prob-
ability contents of quantile regions. More precisely, the following
corollary holds (see Appendix A for the proof).

Corollary 3.4. Under the conditions of Theorem 3.3,

P

(
Y ∈ C

(n)
± (τ |X)

∣∣X)
P−→ τ for all τ ∈ (0, 1)

as n and N → ∞.

Under the weaker conditions of Theorem 3.2, in view
of (A.12), some asymptotic control of the probability content
of empirical regions is achieved. More precisely, letting N =
N(n) with N(n) → ∞ as n → ∞, for all τ ∈ (0, 1) and
every subsequence nk → ∞, there exist further subsequences

nkj→∞ such that lim supj→∞ P

(
C

(nkj )

± (τ |x)
∣∣X = x

)
≤ τ

Lebesgue-a.e. in R
m.

The above results, as well as the proposed regularization,
are valid for any consistent sequence of weight functions. This,
with adequate additional assumptions, includes most of the
classical cases, such as the kernel and classical nearest-neighbors
weight functions: see Appendix C. The classical k-nearest neigh-
bors (C.2) are understood in the classical sense of the Euclidean
distance in R

m, which does not take into account the dis-
tribution PX of X. An alternative k-nearest neighbors weight
function can be derived from a notion of nearness based on
the ordering induced by empirical center-outward distribution
functions.

This alternative weight function is obtained as follows.
Fixing x ∈ R

m, first compute, as in Hallin et al. (2021), the
empirical center-outward distribution function associated with

1
n + 1

n∑
j=1

δXj + 1
n + 1

δx ∈ P(Rm).

That distribution function is the solution T∗
x of the min-

imization problem minT∈�n+1

∑n
k=0 |Xk − T(Xk)|2 where

X0 = x, �n+1 is the set of all bijections T between
{x, X1, . . . , Xn} and a regular grid G

(n+1) of Sm, of the form
described in Section 3.1, consisting of (n + 1) gridpoints,
denoted as G0, G1, . . . , Gn, obtained via a factorization of the
form n + 1 = nRnS + n0 with nR, nS, n0 ∈ N and
n0 < min(nR, nS). That grid then consists in the intersection of

– the nS rays generated by an nS-tuple u1, . . . , unS ∈ Sm−1
of unit vectors such that nS−1 ∑nS

j=1 δuj converges weakly,
as nS → ∞, to the uniform over Sm−1 and

– the nR hyperspheres with center 0 and radii j/(nR + 1),
j = 1, . . . , nR,
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along with n0 copies of the origin whenever n0 > 0. Based on
this grid, we define the sequence of discrete uniform measures

U(n+1)

d := 1
n + 1

n+1∑
j=1

δGj ∈ P(Rm), N ∈ N.

The resulting map T∗
x is defined only at the (n + 1)

points x, X1, . . . , Xn, but, as in the previous section, it can be
continuously extended (see also Hallin et al. 2021) to the whole
space R

m—call F(n)
x;± : R

m → Sm this extension—with the
properties that F(n)

x;± coincides with T∗
x on {x, X1, . . . , Xn}, is the

gradient of a differentiable convex function with domain R
m,

and satisfies F(n)
x;±(Rm) ⊂ Sm. We then define the set of k-nearest

center-outward neighbors of x as
K(n)

k (x):={
Xj : F(n)

± (Xj) ∈ Nk(F(n)
x;±(x))

}
where, for each a ∈ Bm and k ∈ N, Nk(a) denotes the set of
k-nearest neighbors (in the sense of Euclidean distance) of a.
Define the center-outward nearest neighbor weight function as

w(n)
j (x; X(n)):=1

k
1Xj∈K(n)

k (x)
, j = 1, . . . , k. (3.8)

For a suitable choice of k = k(n), center-outward nearest neigh-
bors weight functions form a consistent sequence of weights (see
Lemma 3.5, and Appendix A for a proof). Finally, proceed as
in Section 3.1 with the estimation (3.3) of conditional quan-
tile functions.

Lemma 3.5. If k = k(n) is such that k(n) → ∞ and k(n)/n → 0
as n → ∞, the sequence of weight functions defined in (3.8) is
consistent in the sense of (3.2).

This means, in particular, that Theorem 3.2 applies when
the weight function (3.8) is used under the assumptions of
Lemma 3.5, and that the resulting estimators are consistent.

Theorems 3.2 and 3.3 provide weak (in probability) con-
sistency results under minimal assumptions. For sequences of
weights satisfying, as n → ∞,

n∑
j=1

w(n)
j (X; X(n))Yj −→ E[Y|X] a.s. (3.9)

(strongly consistent sequences), the conclusion in Theorem 3.2
can be upgraded to strong (a.s.) consistency. For the particular
case of k-nearest neighbors, (3.9) and a.s. consistency hold with
(C.1) replaced by k

log(n)
→ ∞ and k/n → 0, (Devroye 1982;

Devroye et al. 1994).

4. Numerical Results

This section is devoted to a numerical assessment of the per-
formance of the estimation procedures described in Section 3.
We focus on the classical case of k-nearest neighbor weights.
Numerical results about kernel weights can be found in
Appendix D. We first analyze (Section 4.1) some simulated
datasets—including the motivating example of Hallin et al.
(2015)—then turn (Section 4.3) to real data. These examples
showcase three important features of our estimators: their abil-
ity to capture heteroscedasticity, to deal (non-parametrically)
with highly nonlinear regression, and to adapt to non-
convex distributions and noise with x-dependent distribution
shapes.

4.1. Simulated Examples

4.1.1. Parabolic Trend, Periodic Heteroscedasticity, Spherical
Densities

We start with the motivating example (m = 1, d = 2)
considered in Hallin et al. (2015)

Y =
( Y1

Y2

)
=

( X
X2

)
+

(
1 + 3

2
sin

(π

2
X

)2 )
e, X ∼ U[−2,2]

and e ∼ N (0, Id) (4.1)

where X and e are mutually independent. The population con-
ditional (on X = x) quantile contours are circles with radii
depending on x and can be computed exactly; trend is parabolic,
heteroscedasticity periodic.

Figures 3 and 4 illustrate the convergence of our estimated
contours to their population counterparts. We show the condi-
tional quantiles at eight different equispaced x-locations. Com-
pared to Figure 1 in Hallin et al. (2015), our method produces
slightly less smooth versions of the same contours, at least for
smaller sample sizes. On the other hand, our method is able to
capture non-convex contour shapes—something the method in
Hallin et al. (2015) cannot, see Section 4.1.2. We also stress that
our method is able to handle much larger datasets (the R package
modQR used there cannot handle sample sizes over 10,000, as
explained in the documentation). As shown in Figure 4, for
sample sizes (n = 500,000) that can be handled with our
method, empirical and population contours essentially coincide.

Model (4.1), as pointed out in Hallin et al. (2015), allows
for testing the capacity of a method to estimate the trend while
catching potential heteroscedasticity. A comparison with Fig-
ure 1 in Hallin et al. (2015) shows that both methods estimate
the parabolic trend quite well, but that our method performs
much better at capturing heteroscedasticity. Estimations are
based on the classical k-nearest neighbors weights (see (C.2)),
with N = k selected by the cross-validation procedure described
in Section E2 in the Appendix.

4.1.2. Nonlinear Trend, Periodic Heteroscedasticity,
Nonspherical Densities

We now consider two models exhibiting the same nonlinear
trend and heteroscedasticity as in Model (4.1), but with non-
convex quantile contours. The first one is
(Y1

Y2

)
=

( sin( 2
3πX)

cos( 2
3πX) + X2 + 2.645X4

)
+

( .575σ(X)e1
.25e3

1 + σ(X)
2.3 e2

)
,

(4.2)
where X ∼ U[−1,1], e = (e1, e2)

T ∼ N (0, Id) independent of X
and σ(X) =

√
1 + 3

2 sin(π
2 X)2. The second one is model (1.8),

see Figure 2 in the Introduction.
Estimated medians and center-outward quantile contours

are displayed in Figures 5 and 6, respectively, from simulated
datasets of various sizes (top left, n = 10,000; top right, n =
50,000; bottom left, n = 100,000; bottom right, n = 500,000).
For sample sizes n = 10,000, 50,000 and 100,000, the num-
ber k of neighbors has been selected by the cross-validation
procedure described in Section E.2 in the Appendix, while
for n = 500,000 we chose k = 14,400). As before, we computed
conditional quantiles at eight different equispaced x-locations.
Conditional quantiles cannot be computed explicitly. However,
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Figure 3. Estimated (sample sizes 10,000 in the upper left panel, 50,000 in the upper right panel, 100,000 in the lower left panel, and 500,000 in the lower right panel)
quantile contours of order τ = 0.2 (black), 0.4 (dark green), and 0.8 (light green) for Model (4.1); the (estimated) conditional center-outward medians are shown in red.
Estimations are based on the classical k-nearest neighbors weights (see (C.2)) with N = k selected by cross-validation.

Figure 4. Estimated (sample size 500,000, left) versus population (right) quantile contours of order τ = 0.2 (black), 0.4 (dark green), and 0.8 (light green) for Model (4.1).

as for model (4.1), we observe stabilization of the empirical
contours to their population counterparts, which are quite accu-
rately approximated. We also observe that the estimated medians

and contours provide a very good insight into the dependence of
Y on X, while the conditional center-outward quantile regions
not only adapt to the nonlinear trend and heteroscedasticity
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Figure 5. Empirical medians and empirical conditional center-outward quantile contours of order τ = 0.2, 0.4, and 0.8 for model (4.2) and different sample sizes
(top left, n = 10,000; top right, n = 50,000; bottom left, n = 100,000; bottom right, n = 500,000).

but also to the non-convexity of the conditional quantile
regions.

4.1.3. Computational Issues
Computational costs and a cross-validation method for the
selection of the number k of nearest neighbors are discussed in
the online supplement (Sections E.1 and E.2).

4.2. Comparisons with Other Methods

Comparisons with existing methods are not easy and, to some
extent, not entirely meaningful since the quantile concepts to be
estimated differ. A comparison with the local bilinear halfspace-
depth-based method of Hallin et al. (2015) is provided in
Section 4.1. Below, we concentrate on the methods proposed by
Carlier, Chernozhukov, and Galichon (2016) and Chakraborty
(2003).

4.2.1. Comparison with Carlier, Chernozhukov, and Galichon
(2016)

Carlier, Chernozhukov, and Galichon (2016)11 introduced a
linear multiple-output measure-trasportation-based quantile
regression model along with a numerical estimation procedure

11We thank Guillaume Carlier and his coauthors for kindly providing their
codes.

for its practical computation, which we briefly outline. In our
notation, their model takes the form

Q±(u|x) = β(u) · x (4.3)

where the value at fixed u of the conditional quantile function
is a linear function of x (with a suitable choice of x, (4.3)
includes an intercept). Rather than the construction of con-
ditional quantile regions, their objective is the estimation of
β(u); their estimation method is based on a dual formulation of
the original transportation problem (see (3.2)), the solution of
which yields a potential function u �→ B(u) whose Jacobian is
the function β to be estimated. In practice, this method yields
an estimation of B over some grid of points from which an
estimation of β follows via numerical differentiation. This works
smoothly with uniformly equispaced grids over [0, 1]d providing
good discretizations of the Lebesgue uniform over [0, 1]d, but
runs into difficulties with the spherical uniform over the unit
ball. As a consequence, the method fails when center-outward
quantiles are considered in (4.3).

As the objectives (estimation of β( · ) on the one hand,
of C±( · |x) on the other) are distinct, a full comparison between
this approach and ours is not entirely meaningful—all the more
so that their method does not apply under model (4.3). Denoting
by Q�( · |x) the conditional quantile function associated with a
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Figure 6. Empirical medians and empirical conditional center-outward quantile contours of order τ = 0.2, 0.4, and 0.8 for model (1.8) and different sample sizes (top
left, n = 10,000; top right, n = 50,000; bottom left, n = 100,000; bottom right, n = 500,000).

transport from the Lebesgue uniform over [0, 1]d, a limited com-
parison is possible, though, between the estimators of the con-
ditional medians β((1/2, . . . , 1/2)|x) · x obtained from running
the Carlier, Chernozhukov, and Galichon (2016) algorithm and
our conditional center-outward median C±(0|x), respectively.

Such a comparison has to be based on simulations from some
data-generating process; we chose the model (under spherical e,
the population regression medians coincide)

(Y1 Y2)
� = (X X)� + σ(X)e�, (4.4)

with X ∼ U(−2, 2), and σ(X) = 1 + 3
2 sin(π

2 X)2,
where e ∼ N (0, Id) is independent of X and model (4.1);
the only difference between these two models is that (4.4) has
a linear trend and satisfies (4.3) while (4.1), with its parabolic
trend, does not. The linear Carlier, Chernozhukov, and Gali-
chon (2016) estimation method and our nonparametric method
were applied to samples from these two models (n = 1000
and 10,000) to obtain estimates of β((1/2, . . . , 1/2)|x)) · x
and C±(0|x), respectively. The results are displayed in Figure 7.
Not surprisingly, the linear estimator performs very well (essen-
tially, it cannot be distinguished from the actual trend) when
assumption (4.3) holds and rather badly in (4.1), where it com-
pletely fails to detect the parabolic trend. Our nonparametric

center-outward median estimator, on the contrary, performs
quite well in both case (and extremely well for n = 10,000).

4.2.2. Comparison with Chakraborty (2003)
A totally different approach (Chakraborty 2003) to multiple-
output quantile regression can be based on the geometric or
spatial quantile concept introduced in Chaudhuri (1996). We
refer to Konen and Paindaveine (2022) for a recent discussion of
this and related approaches. The value at u ∈ Sd of the geometric
quantile function of Y ∼ P is defined as the minimizer of the loss
function q �→ ∫

Rd{‖y−q‖−‖y‖−u ·y}dP(y). When reindexed
by their probability content τ , say, geometric quantile contours
are interpreted as quantile contours of order τ . Chakraborty
(2003) then defines the quantile function of P conditional on
X = x as the geometric quantile function of Y conditional on
X = x.

While the geometric quantile concept nicely extends the clas-
sical univariate L1 definition of quantiles, it also presents some
limitations: geometric quantiles are unbounded as ‖u‖ → 1
even for a compactly supported P and they fail (Hallin and
Konen 2024) to adapt even to elliptical contours. These draw-
backs carry over to the conditional quantiles of Chakraborty
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Figure 7. Linear (red) versus nonparametric (black) multiple-output conditional medians for models (4.4) (top) and (4.1) (bottom) for sample sizes n = 1000 (left) and
n = 10,000 (right).

Figure 8. Conditional center-outward quantile contours (green) versus conditional geometric quantiles contours (orange) from a simulated sample (n = 10,000) of
model (4.2); orders τ = 0.2, 0.4, and 0.8.

(2003). For the sake of comparison, we show in Figure 8 the
conditional center-outward quantile contours (green) versus the
conditional geometric quantiles (orange) of orders τ = 0.2, 0.4,

and 0.8 evaluated from a simulated sample (n = 10,000) from
model (4.2) (we thank Dimitri Konen for kindly providing his
codes for the geometric quantiles). While the center-outward
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Figure 9. CalCOFI dataset. Left: the original dataset (depth, temperature, salinity) for depth ≤ 200 (sample size n = 505, 829). Right: the empirical conditional center-
outward quantile contours of orders τ = 0.2 (black), τ = 0.4 (green), and τ = 0.8 (yellow) and the empirical conditional center-outward median (red) for the multiple-
output regression of (Y1, Y2) = (temperature, salinity) with respect to X = depth. Estimation based on a k-nearest neighbors weight function with k = 6401.

contours nicely adapt to the shape of the data cloud, geometric
quantile contours do not, and include large regions with very few
observations.

4.3. Two Real-Data Examples

4.3.1. The CalCOFI Oceanographic Dataset
The dataset “CalCOFI Over 60 Years of Oceanographic Data,”
available at https://www.kaggle.com/sohier/calcofi, contains the
longest (1949-present) and most complete (more than 50,000
sampling stations; n = 814,247) time series of oceano-
graphic data worldwide. Data collected at depths down to 500
meters include temperature, salinity, oxygen, phosphate, sili-
cate, nitrate, and nitrite, chlorophyll, transmissometer, PAR, C14
primary productivity, phytoplankton biodiversity, zooplankton
biomass, and zooplankton biodiversity. We are focusing here
on the influence of X = depth (meters) on the pair Y =
(Y1, Y2)

T = (temperature, salinity)T (degrees and grams of salt
per kilogram, respectively).

Figure 9 shows the corresponding 3D observations, the esti-
mated conditional center-outward quantile contours obtained
from the same method as in Section 4.1 (nearest neighbors weight
function with k = 6401) Figure F.1 in Appendix F (supplemen-
tary materials) shows the projections of the same contours on
the (depth, salinity) and (depth, temperature) axes, respectively.
Inspection of these figures reveals a nonlinear center-outward
conditional median; heteroscedasticity also appears as the area of
the conditional quantile regions clearly decreases as a function of
depth, while a positive dependence between temperatures and
salinity, which is present at the surface, gradually disappears
as depth increases. The projection plots also provide clearer
views on marginal dependencies. For example, the decrease of
temperature as a function of depth is monotone and almost linear,
while the dependence on depth of salinity is more complex, high
at shallow depths, lower at medium depths, and higher again

at greater depths. However, these marginal analyses, to some
degree, are hiding the heteroscedasticity effects (in particular,
the dependence on depth of the relation between salinity and
temperature) which are clearly visible in Figure 9. Since the
dataset isquite large,weusedanearestneighborsweight function,
see the comments in Section 4.1.1.

4.3.2. The Female ANSUR 2 Dataset
Our second example involves a smaller sample size n. The
Female Anthropometric Survey of US Army Personnel (Female
ANSUR 2 or Female ANSUR II) featured in this section consists
in 93 direct measures and 41 derived ones, as well as three-
dimensional head, foot, and whole-body scans of n = 1986
women of the U.S. army. These measurements were collected
between October 4, 2010 and April 5, 2012, in May 2014 and
May 2015; they are available online at https://www.openlab.psu.
edu/ansur2/.

We want to analyze the relation between the covariate
X =stature (in centimeters) and the variable of interest Y=(foot
length, tibial height) (both in centimeters). Figure 10 provides
a 3D view of the center-outward quantile contours/tubes for
levels τ = 0.2, 0.4, and 0.7) along with the center-outward
regression median (red) Figure F.2 in Appendix F (supplemen-
tary materials) provides the projections on the axes of the same
contours. Inspecting these two figures reveals the absence of het-
eroscedasticity, the spherical shape of conditional distributions,
and a roughly linear regression. Since the size of the model is
not too large, a Gaussian kernel is convenient. The bandwidth
was chosen as h = 15, which, up to scale changes, corresponds
to h = 0.2 in Figure D.4.

5. Conclusions and Perspectives

Building on the concepts of center-outward quantiles recently
developed in Hallin et al. (2021), we are proposing here a

https://www.kaggle.com/sohier/calcofi
https://www.openlab.psu.edu/ansur2/
https://www.openlab.psu.edu/ansur2/
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Figure 10. ANSUR 2 dataset (sample size 1986). Left: the original dataset of X=stature and (Y1, Y2)=(foot length, tibial height). Right: the empirical conditional center-
outward quantile contours for quantile orders τ = 0.2 (black), 0.4 (green), and 0.7 (yellow) and the empirical conditional center-outward median (red) for the multiple-
output regression of (Y1, Y2) with respect to X ; estimation based on a Gaussian kernel weight function with bandwidth h = 15.

fully nonparametric solution to the problem of multiple-output
quantile regression. Contrary to earlier attempts, our solution
is enjoying the quintessential property that the (conditional)
probability content of its quantile regions is under control irre-
spective of the underlying distribution. This is only a first step
into the multifarious applications of multiple-output quantile
regression, though. Due to the minimality of the assumptions it
requires, a completely agnostic nonparametric approach indeed
is attractive, but also comes at a cost: linear or polynomial
quantile regression remain justified whenever a priori knowl-
edge of the analytical form of the regression is available and
can be taken advantage of. A center-outward version of the
results of Carlier, Chernozhukov, and Galichon (2016), thus, is
highly desirable. Single-output quantile regression has been con-
sidered in a variety of contexts: survival analysis, longitudinal
data, instrumental variable regression, directional, functional,
and high-dimensional data, . . . Quantile regression versions of
time-series models such as the quantile autoregressive model
also have been investigated (Koenker and Xiao 2006). All these
applications call for multiple-output extensions with important
real-life consequences and should be based on the concept of
center-outward quantile, regions, and contours. They are the
subject of our ongoing research.

Supplementary Materials

Supplementary materials include seven appendices labeled A, B, …, G.
Appendix A collects the proofs for Section 3. Appendix B provides
the proofs for three lemmas (A.1–A.3) used in Appendix A. Appendix
C describes the classical kernel and nearest-neighbors weight functions
and Appendix D analyzes their respective performances. Appendix E
discusses some of the computational issues of our estimation method:
computation costs (E.1) and (E.2) a cross-validation approach to the
choice of the number k of neighbors. Appendix F provides additional
empirical results on the CalCOFI and ANSUR datasets. Finally Appendix
G relates our approach to the current literature on optimal transport
estimation.
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