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Abstract. The conditional value-at-risk (CVaR) represents a popular
risk measure often exploited e.g. within portfolio optimization. The sit-
uation with a nuisance linear regression is considered here; in other
words, we do not observe directly the loss Z of interest, but only Y =
β0+Xβ+Z, where the covariates are not under our control. We propose
a novel estimator of CVaR(Z) based on the averaged two-step regression
quantile combined with an R-estimate of regression parameters.
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1 Introduction

We follow the variables Zn = (Z1, . . . , Zn)
⊤ measuring the loss Z of an asset or

of a portfolio at times 1, 2, . . . , n. They are assumed to be independent and
identically distributed (i.i.d.) with a distribution function F , satisfying∫

zdF (z) = 0,

∫
z2dF (z) < ∞, (1)

otherwise unknown. We are interested in the possible risk of the loss Z in a given
period and with a particular confidence level α ∈ (0, 1). The popular risk measure
is the Conditional Value-at-Risk (CVaR), equal to

CVaRα(Z) = IE{Z|Z > F−1(α)} = (1−α)−1

∫ 1

α

F−1(t)dt = (1−α)−1

∫ ∞

F−1(α)

zdF(z).

(2)
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It has obtained applications in many areas immediately after its introduction;
let us mention the management of water supplies, risk management of the social
security fund, the cash flow risk measurement for non-life insurance industry, the
financial risk in the industrial areas, operational risk in the banks, and others. In
the finance is CVaR taken as a popular a risk measure in portfolio optimization
or management of extreme risk (cf. [5]). There is a rich bibliography on the
subject, both from theoretical and applications points. Innovative ideas on the
subject and estimation methods were presented e.g. in [1, 20,21].

A review of estimation methods for CVaR, based on data, is collected in [18].
It describes the parametric, nonparametric and semiparametric estimation meth-
ods, supplemented with the computer software, partially available from the
R package (R Development Core Team, 2012). In the parametric setup, [18] ad-
mits the skew and asymmetric probability distributions. The computing methods
based on characteristic functions and Fourier analysis through the empirical data
are studied in [22]. There is also compared the Value-at-Risk (VaR) and CVaR
with the new expectile based risk measure (ERM); the ERM is found as the only
risk measure that is both coherent and elicitable. Recently, [12] exploited the
concept of pseudo-capacities, elaborated in [9] and [3], in estimating the CVaR
in nonparametric and measurement error situations.

The risk of a loss is often affected by a nuisance regression caused by ex-
ogenous market variables as interest rates, overall market sentiment, liquidity
shocks, etc. Effects of nuisance regression in testing predictive models were re-
cently considered either in [17] for assessing value-at-risk or in [4] for combining
two forecasts for assessing CVaR. Joint fitting VaR and CVaR in regression models
by a two-step procedure has been recently considered in [8].

In the present paper, we consider estimating CVaR in the situation that the
loss of interest is unobservable, being affected by the covariates within a nui-
sance linear regression model. Moreover, the situation is nonparameric, with an
unknown probability distribution of the loss. The literature is almost void in esti-
mation of CVaR for models with a nuisance regression. Mathematical solution of
estimating CVaR under a nuisance linear regression was considered by Trindade
et al. [21]; they proposed to estimate the nuisance regression parameters with
an M-estimate, minimizing a convex criterion under the restriction that the re-
sulting CVaR does not exceed a given η > 0. However, the M-estimator and the
resulting CVaR are not scale equivariant, while the scale equivariance is a desir-
able property of measures in applications. Comparing with the proposal in [21],
our novel estimator of CVaR proposed here is equal to the averaged regression
α-quantile of residuals with respect to the R-estimate of the regression param-
eters. As such, the estimate of CVaR is scale-equivariant and its asymptotics
follows from the asymptotics for R-estimators and averaged regression quantile.

Section 2 of this paper overviews regression quantiles together with averaged
two-step regression quantiles, which are exploited in Section 3 to define a novel
CVaR estimate for a nuisance regression.
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2 Regression quantile and its two-step version

2.1 Motivation and notation

The averaged two-step regression α-quantile, introduced in [11], approximates
the quantile function F−1(α) of the errors asymptotically in probability for n →
∞, up to the standardization with the regression parameters (cf. [14]). Because
its number of breakpoints equals exactly to n, while in the case of ordinary
regression quantile it is much larger, and it is nondecreasing in α ∈ (0, 1), the
averaged two-step regression quantile also facilitates joint fitting the VaR and
CVaR in the regression model.

Even if distribution function of Z is unknown, the estimate of CVaRα(Z) in (2)
can be obtained from the empirical quantile function of independent observations
Z1, Z2, . . . , Zn. The resulting estimate would be

ĈVaRα(Z) = ⌊n(1− α)⌋−1
n∑

i=⌊nα⌋

Zn:i = ⌊n(1− α)⌋−1
n∑

i=1

Zi I[Zi ≥ Zn:[nα]].

(3)
However, the financial returns are often regressed on some covariates, and we
can observe only the variables Yn = (Yn1, ..., Ynn)

⊤, what are the Zn affected
by covariates Xn with unknown intensities, measured by regression coefficients
β1, . . . , βn. Taking this into account, we work with the linear regression model

Yn = β01n +Xnβ + Zn (4)

with observations Yn = (Yn1, . . . , Ynn)
⊤, unknown parameters β0 (intercept),

β = (β1, β2, . . . , βp)
⊤ (scales), 1n = (1, . . . , 1)⊤ ∈ IRn and the n× p matrix X =

Xn of covariates. It is a known matrix with the rows x⊤
i = (xi1, . . . , xip), i =

1, . . . , n.
Because Z1, . . . , Zn are not available, every inference on the loss Z and on

F−1, hence also estimating CVaRα(Z), are possible only by means of observations
of Y . Thus we have to look for an alternative explicit estimating of CVaRα(Z).
Pioneering ideas in estimating the CVaR were presented in [1,20,21]. Compared
to them, we take as a main tool for estimating CVaR the two-step α-regression
quantile of the model (4), originated and illustrated by the present authors
in [11,13,14].

2.2 Regression quantile

The model (4) can be rewritten as the model

Yni = β0 + x⊤
niβ + Zni, i = 1, . . . , n (5)

with covariates xn1, . . . ,xnn, each element of IRp. For the sake of brevity, we

also use the notation x∗
ni = (1, xi1, . . . , xip)

⊤, i = 1, . . . , n. Let β̂n(α) ∈ Rp+1
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be the α-regression quantile of model (4), 0 < α < 1, i.e. the solution of the
minimization

n∑
i=1

ρα(Yi − b0 − x⊤
i b) = min, b0 ∈ IR1, b ∈ IRp. (6)

If derivative f of F exists and is positive in a neighborhood of the quantile
F−1(α), and if the matrix

Qn = n−1 (1n,Xn)
⊤
(1n,Xn)

is positively definite starting with some n, then n
1
2 (β̂n(α) − β̌(α)) admits the

asymptotic representation (see e.g. [15])

n
1
2 (β̂n(α)− β̌(α)) = n− 1

2 (f(F−1(α))−1Q−1
n

n∑
i=1

x∗
i (α− I[Zi < F−1(α)]) + op(1)

(7)
as n → ∞, where β̌(α) = (F−1(α) + β0, β1, . . . , βp)

⊤ is the population counter-
part of the regression quantile. The intercept part of the representation (7) is
rewritten as

β̂n0(α)− β0 − F−1(α) = (nf(F−1(α)))−1
n∑

i=1

(α− I[Zi < F−1(α)]) + op(n
− 1

2 )

= Zn:[nα] − F−1(α) + op(n
− 1

2 ) (8)

as n → ∞, where the first equality follows from (7), while the second equality

follows from the Bahadur representation of sample quantile. β̂n1(α), . . . , β̂np(α)
are consistent estimates of the slope parameters β1 . . . , βp. The slope components
of regression quantile are asymptotically independent of the intercept component
β̂n0(α). The solution of (6) minimizes the (α, 1 − α) convex combination of
residuals (Yi − x∗⊤

i b) over b ∈ Rp+1, where the choice of α depends on the
balance between underestimating and overestimating the respective losses Yi.
The increasing α ↗ 1 reflects a greater concern about underestimating losses Y,
comparing to overestimating. A useful functional of the regression quantile is the
averaged regression α-quantile, the weighted mean of components of β̂n(α), 0 ≤
α ≤ 1:

B̄n(α) = x∗⊤
n β̂n(α) = β̂n0(α) +

1

n

n∑
i=1

p∑
j=1

xij β̂j(α), x∗
n =

1

n

n∑
i=1

x∗
i (9)

As shown in [11], the B̄n(α) − β0 − x̄⊤
nβ is asymptotically equivalent to the

[nα]-quantile en:[nα] of the model errors, if they are identically distributed.

2.3 Two-step regression quantile

The two-step regression quantile was introduced in [13] and later studied e.g.
in [14], where it was shown that it is asymptotically equivalent to the ordinary
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α-regression quantile. The two-step regression α-quantile combines the rank-
estimator (R-estimator) β̃nR of the slope components β with the [nα] order

statistics of the residuals Yi − x⊤
i β̃nR, i = 1, . . . , n. The two-step regression

quantile first estimates the slope components β by means of an R-estimate
β̃nR(λ) ∈ IRp, defined as a minimizer of the Jaeckel’s measure of the rank dis-
persion [10] with a fixed λ ∈ (0, 1):

n∑
i=1

(Yi − x⊤
i b)[ai(λ,b)− ān(λ)] = min (10)

with respect to b = (b1, b2, . . . , bp)
⊤ ∈ IRp. The notation in (10) means:

ai(λ,b) =


0 . . . Rni(Yi − x⊤

i b) < nλ

Ri − nλ . . . nλ ≤ Rni(Yi − x⊤
i b) < nλ+ 1

1 . . . nλ+ 1 ≤ Rni(Yi − x⊤
i b),

.

Here Rni(Yi − x⊤
i b), i = 1, . . . , n are the ranks of the residuals, and ai(λ,b) are

known as Hájek’s rank scores (see [7]). Note that ān(λ) = 1
n

∑n
i=1 ai(λ,b) is

constant in b, as an average of the rank scores. The minimization (10) can be
rewritten as

n∑
i=1

(
Yi − Ȳn − (xi − x̄n)

⊤b
)
ai(λ,b) = min . (11)

It implies that the solution of (10) is invariant to the intercept, which is a

nuisance component. The solution of (10) and (11) is the R-estimator β̃nR(λ) of
β = (β1, . . . , βp)

⊤, generated by the following score function φλ : (0, 1) 7→ IR1:

φλ(u) + (1− λ) =

{
0 . . . 0 ≤ u < λ
1 . . . λ ≤ u ≤ 1.

. (12)

Generally, as the score function we can use another nondecreasing square in-
tegrable function on (0, 1). By [15], β̃nR(λ) consistently estimates β under the
following conditions on F and on Xn:

(F1) The distribution function F has a continuous density f with a positive an
finite Fisher information I(f).

(X1) Assume that, as n → ∞,

n−1Vn = Op(1) where Vn =

n∑
i=1

(xni − x̄n)(xni − x̄n)
⊤, (13)

max
1≤i≤n

∥xni − x̄n∥ = o(n1/4), x̄n = n−1
n∑

i=1

xni.

Moreover, we assume that Vn satisfies

lim
n→∞

max
1≤i≤n

(xni − x̄n)
⊤V−1

n (xni − x̄n) = 0. (14)
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Under conditions (F1) and (X1), the R-estimator β̃nR = β̃nR(λ) admits the
following asymptotic representation, as n → ∞ (see e.g. [15] for the proof):

β̃nR−β = (f(F−1(λ))−1V−1
n

n∑
i=1

(xni−x̄n)
(
I[Zni > F−1(λ)]−(1−λ)

)
+op(n

−1/2),

(15)

hence ∥n1/2(β̃nR − β)∥ = Op(1). The intercept component of the two-step re-
gression
α-quantile is defined as the [nα]-quantile of the residuals Yi − x⊤

i β̃nR(λ), i =

1, . . . , n. Denote it as β̃nR,0(α), hence

β̃nR,0(α) =
(
Yi − x⊤

i β̃nR(λ)
)
n:[nα]

and we define the two-step α-regression quantile as the vector in IRp+1

β̃n(α) =
(
β̃nR,0(α), (β̃nR(λ))

⊤
)⊤

. (16)

Hence, the averaged two-step regression α-quantile equals to

B̃nα = β̃nR,0(α) + x̄⊤
n β̃nR(λ) =

(
Yi − (xi − x̄n)

⊤β̃nR(λ)
)
n:[nα]

(17)

It has been introduced in [14], where it is proven that

B̃nα − β0 − x̄⊤
nβ = Zn:[nα] + op(n

−1/2) = F−1(α) + op(n
−1/2) as n → ∞ (18)

uniformly for α ∈ (ε, 1− ε), 0 < ε ≤ 1/2, and for any fixed λ ∈ 0, 1.

3 Estimation of CVaRα

If there are available independent observations Z1, Z2, . . . , Zn, then CVaRα(Z)
in (2) can be estimated with the aid of their empirical quantile function, even
if distribution function of Z is unknown. The corresponding estimate of the
conditional value-at-risk of Z would be

ĈVaRnα(Z) = ⌊n(1− α)⌋−1
n∑

i=⌊nα⌋

Zn:i = ⌊n(1− α)⌋−1
n∑

i=1

Zi I[Zi ≥ Zn:[nα]].

(19)
If the observations Z1, Z2, . . . , Zn, are not at disposal, we can profit from ap-
proximations (17) and (18) and estimate the CVaRα by means of the averaged

two-step regression quantile B̃n(α), which explicitly contains only observations
Y1, . . . , Yn. The resulting estimator is

ĈVaRnα(Y ) = ⌊n(1− α)⌋−1
∑

α≤δ<1

B̃n(δ)− β0 − x̄⊤
nβ. (20)
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Hence, the estimate is determined up to the standardization with nuisance β0 +
x̄⊤
nβ, what can be approximated by means of Yn1, . . . , Ynn under the conditions

(F1) and (X1), namely by x̄⊤
n β̃nR(λ) and by Ȳn. Indeed, by (5) and (1),

Ȳn = β0 + x̄⊤
nβ + Z̄n = β0 + x̄⊤

nβ + op(n
−1/2)

as n → ∞.
Summarizing, our proposed estimate of the CVaRα(Z) in the linear model is

described in the following theorem:

Theorem 1. Assume that the distribution of Z satisfies condition (F1), let∫
zdF (z) = 0, 0 <

∫
z2dF (z) < ∞, and let the matrix Xn satisfy (X1). Then

ĈVaRnα(Y ) = ⌊n(1− α)⌋−1
∑

δ:α≤δ<1

(
Yi − (xi − x̄n)

⊤β̃nR(λ)
)
n:[nδ]

− Ȳn (21)

is a
√
n-consistent estimate of CVaRα(Z) for any fixed λ ∈ (0, 1); more precisely

ĈVaRnα(Y ) = CVaRα(Z) + op(n
−1/2) as n → ∞. (22)

for any α ∈ (0, 1). Moreover,(
Yi − (xi − x̄n)

⊤β̃nR(λ)
)
n:[nα]

− Ȳn = VaRα(Z) + op(n
−1/2) as n → ∞. (23)

Conclusion

A novel nonparametric estimate of the Conditional Value-at-Risk of variable Z
is proposed here in the situation that the observations are the responses under
the presence of nuisance regression. The estimate is based on the averaged two-
step regression α-quantile of the linear model, exploiting an R-estimator of the
slope components. As such, the estimates are

√
n consistent and scale equivariant

estimates of the Conditional Value-at-Risk of variable Z, in spite of the presence
of the nuisance regression.

The novel estimators may find applications not only in finance, but also
in various other (non-financial) models, even in situations under the presence
of nuisance covariates. This can be of interest e.g. in the risk assessment in
metrology [2, 16] or within integrated energy systems for optimal scheduling
the energy supply for large cities [19]). The novel tools come to hand, if the
risk is influenced by a combination of more nuisance effects, including weather
conditions (temperature, humidity, wind speed, precipitation, seasonal trends),
energy price fluctuations, natural events (power outages), or industrial activity.
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