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Abstract We consider the linear regression model, along with the process induced 
by its .α-regression quantile, .0 < α < 1. While only the intercept component 
of the .α-regression quantile estimates the quantile .F−1(α) of the model errors, 
the . α also affects the slope components, whose dispersion infinitely increases as 
.α → 0, 1, in the same rate as the variance of the sample .α-quantile. The process of 
the slope components of .α-regression quantile over .α ∈ (0, 1) is asymptotically 
equivalent to the process of R-estimates of the slope parameters in the linear 
model, generated by the Hájek rank scores. Both processes converge to the vector 
of independent Brownian bridges under exponentially tailed parent distribution F , 
after standardization by . f (F−1(α)).

1 Introduction 

We consider the linear regression model: 

.Yni = β0 + xT
niβ + eni, i = 1, . . . , n (1.1) 

with observations .Yn1, . . . , Ynn, independent errors .en1, . . . , enn, identically dis-
tributed according to an unknown distribution function . F. The parameter . β =
(β1, . . . , βp)T is of interest, . β0 is a nuisance intercept parameter, and . xni =
(xi1, . . . , xin)

T, i = 1, . . . , n, is the vector of covariates. 
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The regression .α-quantiles, .0 ≤ α ≤ 1, introduced in [12], are an important 
research tool, mainly in economics, where the quantile regression became almost a 
technical term. Remind that the regression .α-quantile of model (1.1) is defined as 
the solution of the minimization: 

. (β̂0(α),^β(α))T = arg min
{

α

n
⎲

i=1

(Yi − b0 − xT
i b)+ + (1 − α)

n
⎲

i=1

(Yi − b0 − xT
i b)−,

b0 ∈ R1, b ∈ Rp, 0 < α < 1
}

. (1.2) 

The population counterpart of (1.2) is 

. 

⎛

β0 + F−1(α), β1, β2, . . . , βp

⎞T
, 0 < α < 1.

Hence, only the intercept component of the .α-regression quantile reflects the 
quantile .F−1(α) of the probability distribution . F, while .^β(α) only reflects the 
slopes. If . α runs over the interval .(0, 1), we get the regression quantile process. 
Its trajectories are step functions, whose number of breakpoints increases with 
the number n of observations. There is a rich literature devoted to the concepts 
connected with regression quantile, its processes, and applications. We recommend 
Koenker’s book [11] as well  Handbook of Quantile Regression [13] as excellent 
reviews. 

The choice of index .α ∈ (0, 1) is an important decision, e.g., in the situation 
when . Yi measures the loss and . α reflects the balance between underestimating and 
overestimating the risk of the loss. Moreover, important in the applications are also 
the shape of trajectories of the limiting process and the shape of various functionals 
of the regression quantile, which can characterize the economic market. Alterna-
tively, the two-step regression .α-quantile, proposed in [8], estimates separately the 
slope components . β with the aid of rank estimator .~βnR , and then estimates the 
intercept . β0 as the .α-quantile of the residuals .Yi − xT

i
~βnR, i = 1, . . . , n. The 

resulting two-step regression quantile process is asymptotically equivalent to the 
ordinary regression quantile process (see Theorem 2 in [8], also Theorem 4.1 in 
[9]). Only the number of breakpoints of its trajectories is different, being exactly 
equal to . n. The empirical processes corresponding to the regression quantiles and to 
their inversions are numerically illustrated in [9]. 

The R-estimate of slope components . β is defined as the minimizer .~βnR of the 
Jaeckel [5] measure of the rank dispersion: 

.Dn(b) =
n

⎲

i=1

(Yni − xT
nib)

⎛

an(Rni(Yi − xT
nib) − ān

⎞

(1.3)

=
n

⎲

i=1

⎾

(Yni − Ȳn) − (xni − x̄n)
Tb)

⏋

an(Rni(Yi − xT
nib))F
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with respect to .b ∈ Rp, where .Rni(Yni − xT
nib) is the rank of residual . Yni − xT

nib
among .Yn1 −xT

n1b, . . . , Ynn −xT
nnb. Moreover, .Ȳn = 1

n

∑n
i=1 Yni , . ̄xn = 1

n

∑n
i=1 xni

and .an(i) are the rank scores, .ān = 1
n

∑n
i=1 an(i). Notice that .~βnR is invariant to 

the shift in location; hence, it is independent of . β0.

The scores .an(i), i = 1, . . . , n are typically generated by a function . ϕ(u) :
(0, 1) |→ R1, nondecreasing and square integrable on (0,1), such that 

. lim
n→∞

⎰ 1

0

⎛

an(1 + [nu]) − ϕ(u)
⎞2

du = 0.

For instance, . an(i) = ϕ
⎛

i
n+1

⎞

, i = 1, . . . , n.

Particularly, we shall consider the family of score functions . 
{

ϕα(u), 0 ≤ α ≤
1, 0 ≤ u ≤ 1

}

:

. ϕα(u) =
⎧

0 . . . 0 ≤ u ≤ α ≤ 1
1 . . . 1 ≥ u > α ≥ 0.

As .n → ∞, the function .ϕα(u) generates the following scores: 

.an(i, α) =
⎧

⎨

⎩

0 . . . i ≤ nα

i − nα . . . nα ≤ i ≤ nα + 1
1 . . . i ≥ nα + 1

(1.4) 

.i = 1, . . . , n. Notice that .an(i, α) is continuous in .α ∈ (0, 1). The scores 

.an(i, α), i = 1, . . . , n are known as Hájek’s rank scores (see Hájek [3] and Hájek 
and Šidák [4]). 

More precisely, if .Rn1, . . . , Rnn are the ranks of random variables . Z1, . . . , Zn,

then the vector .(a(Rn1, α), . . . , a(Rnn, α)) is a solution of the linear programming: 

. 

n
⎲

i=1

Zi an(Rni, α) = max

under
n

⎲

i=1

an(Rni, α) = n(1 − α) (1.5)

0 ≤ an(Rni, α) ≤ 1, i = 1, . . . , n

(cf. also [1, 2]). As .n → ∞, the Jaeckel criterion (1.3) asymptotically simplifies to 

. Dnα(b) =

=
n

⎲

i=1

⎾

(Yni − Ȳn) − (xni − x̄n)
Tb)

⏋ ⎛

I [Rni(Yi − xT
nib) ≥ nα]
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+(Rni(Yi − xT
nib) − nα)I [nα ≤ Rni(Yi − xT

nib) ≤ nα + 1]
⎞

(1.6) 

≈ 
n

⎲

i=1

⎾

(Yni − Ȳn) − (xni − x̄n)
Tb)

⏋

I [Rni(Yi − xT
nib) ≥ nα]. 

Jaeckel [5] proves that .Dnα(b) is continuous, convex, and piecewise linear function 
of .b ∈ Rp, thus differentiable with gradient 

.
∂Dnα(b)

∂b

|

|

|

b0
= −

n
⎲

i=1

(xni − x̄n)I
⎾

Rni(Yi − xT
nib0) ≥ nα

⏋

(1.7) 

at any point .b0 ∈ Rp of differentiability. Notice that the gradients of the Jaeckel 
measure coincide with the Hájek rank scores. Using the uniform asymptotic linearity 
of the Hájek scores (see Proposition 1), we can approximate the Jaeckel measure by 
a quadratic function. 

Our aim is to investigate the limiting behavior of the process of R-estimators 
.{~βnα, 0 < α < 1}, generated by the Hájek scores (1.4). It coincides with the 
limiting behavior of the process of the slope components of the regression quantile. 
Indeed, notice that, because of the asymptotic equivalence of the regression quantile 
and of the two-step regression quantile, the R-estimator of the slope components is 
asymptotically equivalent to the slope component vector of the regression quantile. 
The relation of the extreme regression quantile and of an R-estimator is studied 
in [7]. 

The intercept component of the .α-regression quantile explicitly reflects the 
population quantile .F−1(α). However, . α affects also the process of slopes; namely 
its dispersion depends on . α similarly as the variance of the .α-quantile. 

Hájek and Šidák [4] proved the weak convergence of the process of Hájek’s 
rank scores (1.4), (1.5) to the Brownian bridge, under the i.i.d. observations as 
well as under contiguous (Pitman) alternatives. Under the conditions on the tails of 
distribution of model errors, following those imposed in [2], we can prove the weak 
convergence of the process .{f (F−1(α))(~βnα − β)} to the vector of independent 
Brownian bridges over the compact subsets of . [0, 1].

2 Process of R-Estimates of Slopes and Its Asymptotics 

Let .~βnα be the R-estimator of . β, based on the Hájek rank scores, i.e., the minimizer 
of (1.6). Following the steps of [2], we shall first study the order of .~βnα over . (α∗

n, 1−
α∗

n) and show that the process of R-estimators converges to the vector of independent 
Brownian bridges for some .α∗

n ↓ 0 as .n → ∞. This, in turn, will lead to the 
convergence over .α ∈ (α0, 1 − α0) with any .0 < α0 < 1/2 fixed.
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Consider the process of the Hájek rank scores: 

. 

⎧

Anα(n−1/2b) = n−1/2
n

⎲

i=1

(xni − x̄n)anα(Rni(Yi − n−1/2xT
nib), α) : 0 ≤ α ≤ 1

⎫

(2.1) 

for .b ∈ Rp. The R-estimator .~βnα is the minimizer of .Dnα(n−1/2b) with respect to 
.b ∈ Rp, and .Anα(n−1/2b) is its gradient, due to (1.6) and (1.7). It follows from [2] 
and [6] that the process (2.1) is uniformly asymptotically linear in . b, what enables 
to approximate .Dnα(n−1/2b) by a quadratic function and then to approximate . ~βnα

by its minimizer. 
In order to realize these approximations, we impose the following conditions 

on the distribution of the model errors and on the triangular array of covariates 
.xn1, . . . , xnn. These conditions are only sufficient and apparently can be weak-
ened. 

(F1) The density .f (x) = F '(x) is absolutely continuous and bounded with 
bounded derivative . f ' for .A < x < B, where . −∞ ≤ A = sup{x : F(x) = 0}
and . +∞ ≥ B = inf{x : F(x) = 1}.

(F2) The density .f (x) = F '(x) is increasing (decreasing) on an interval to the right 
of A (to the left of B), and .|f '(x)/f (x)| ≤ c|x| for . x ≥ K(≥ 0), c > 0.

(F3) .|F−1(α)| ≤ c(α(1−α))−a and similarly, .1/f (F−1(α)) ≤ c(α(1−α))−a−1 for 
.0 < α ≤ α0 and .1−α0 ≤ α < 1 where .0 < a < 1

4 −ε, . ε > 0, 0 < α0 ≤ 1/2.

(X1) The matrix 

. Qn =
n

⎲

i=1

(xni − x̄n)(xni − x̄n)
T, x̄n = 1

n

n
⎲

i=1

xni

has the rank p and .n−1Qn → C as .n → ∞, where . C is a positively definite 
.p × p matrix. Moreover, we assume: 

. lim
n→∞ max

1≤i≤n
(xni − x̄n)

TQ−1
n (xni − x̄n) = 0 (Noether condition). (2.2) 

(X2) .n−1 ∑n
i=1 ‖xni‖4 = O(1) as .n → ∞, and 

.max1≤i≤n ‖xni‖ = O
(

n(2(b−a)−δ)/(1+4b)
)

as .n → ∞ for some . b > 0, δ > 0
such that .0 < b − a < ε

2 (hence .0 < b < 1
4 − ε

2 ). 

As a consequence of Section V.3.5 in [4], we get the following weak convergence 
in the Prokhorov topology under .b = 0: 

.

{

n1/2Q−1/2
n Anα(0) : 0 ≤ α ≤ 1

} D→ W∗
p (2.3)
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as .n → ∞, where .W∗
p is the vector of p independent Brownian bridges (see [4] 

and [1]). Furthermore, under a sequence of contiguous alternatives, when . Yni =
Y 0

ni + n−1/2xT
nib, .i = 1, . . . , n with .Y 0

ni i.i.d. with distribution function . F, there 
also takes place the following convergence to the vector of p independent Brownian 
bridges: 

. 

{

n1/2Q−1/2
n An(α, n−1/2b) − n−1/2Q1/2

n bf (F−1(α)) : 0 ≤ α ≤ 1
} D→ W∗

p

(2.4) 
as .n → ∞ (see [4], Theorem VI.3.2). The first important property is the uniform 

asymptotic linearity of .An(α, n−1/2b) in . b, proven in [6]. 
Denote: 

. σα = (α(1 − α))1/2

f (F−1(α))
, 0 < α < 1 and α∗

n = 1/n1+4b with b given in (X2).

(2.5) 

Proposition 1 Assume that F and . Xn satisfy (F1)–(F3) and (X1)–(X2). Then 

. sup
‖b‖≤K, α∗

n≤α≤1−α∗
n

⎧

⎨

⎩

|

|

|An(α, n−1/2σαb) −An(α, 0) + n−1Qnb
|

|

|

(α(1 − α))1/2

⎫

⎬

⎭

p→ 0 (2.6) 

and 

. sup
‖b‖≤K, 0≤α≤1

{|

|

|An(α, n−1/2b) −An(α, 0) + f (F−1(α))n−1Qnb
|

|

|

}

p→ 0

(2.7) 
as .n → ∞, for any fixed . K, 0 < K < ∞.

Proof The proposition is proven in [6]. 

The following theorem describes the asymptotic behavior of the R-estimator of 
slope parameter over the interval .[α∗

n, 1 − α∗
n]. The convergence of the process over 

interval .(α∗
n, 1 − α∗

n) means the convergence of this process over every compact 
subinterval of .(α∗

n, 1 − α∗
n). 

Theorem 1 Under the conditions of Proposition 1, as . n → ∞

. sup
α∗

n≤α≤1−α∗
n

{

n1/2σ−1
α ‖~βnα − β‖

}

= Op(1) (2.8) 

and 

. sup
α∗

n≤α≤1−α∗
n

{

‖n1/2σ−1
α [~βnα − β] − (α(1 − α))−1/2 nQ−1

n Anα(0)‖
}

= op(1).

(2.9)
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Moreover, the process 

.

{

f (F−1(α))Q1/2
n (~βnα − β) : α∗

n ≤ α ≤ 1 − α∗
n

}

(2.10) 

converges to the vector of independent Brownian bridges. 

Proof The theorem is proven in Sect. 3. ⨅⨆
Corollary Under the conditions of Theorem 1, the process of R-estimators of the 
slope components 

.

{

f (F−1(α))Q1/2
n (~βnα − β) : 0 < α < 1

}

(2.11) 

and the process of the slope components of the regression quantile of model (1.1) 

.

{

f (F−1(α))Q1/2
n (^βnα − β) : 0 < α < 1

}

(2.12) 

converge to the vector of independent Brownian bridges in .D(0, 1)p. The conver-
gence over .0 < α < 1 is in the sense that the process converges over the interval 
.[α0, 1 − α0] for any fixed .0 < α0 < 1/2, i.e., converges over the compact subsets of 
(0,1). ⨅⨆

3 Proofs 

3.1 Proof of Theorem 1 

Notice that 

.tnα = n1/2σ−1
α (~βnα − β) (3.1) 

minimizes .[Dnα(n−1/2σαb) − Dnα(0)]. Proposition 1 leads to the following 
quadratic approximation of .Dnα(b): 

. sup
{|

|

|(α(1 − α))−1/2
⎛

σ−1
α [Dnα(n−1/2σαb) −Dn(0)] + bTAnα(0)

⎞

− 1

2
n−1bTQnb

|

|

| :

‖b‖ ≤ K, α∗
n ≤ α ≤ 1 − α∗

n

}

p→ 0 as n → ∞ for any fixed K > 0. (3.2) 

This further implies that as . n → ∞

. min‖b‖≤K

⎾

(α(1 − α))−1/2σ−1
α [Dnα(n−1/2σαb) −Dnα(0)]

⏋

(3.3)

= min‖b‖≤K

⎾1

2
n−1bTQnb − (α(1 − α))−1/2bTAnα(0)

⏋

+ op(1)
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for any .K, 0 < K < ∞, uniformly for every compact subinterval of . (α∗
n, 1 − α∗

n).

Moreover, 

. min
b∈Rp

⎾1

2
n−1bTQnb − (α(1 − α))−1/2bTAnα(0)

⏋

= −1

2
(α(1 − α))−1AT

nα(0) nQ−1
n Anα(0) (3.4) 

and 

. arg min
b∈Rp

⎾1

2
n−1bTQnb − (α(1 − α))−1/2bTAnα(0)

⏋

= (α(1 − α))−1/2 nQ−1
n Anα(0) (3.5)

= unα (SAY) .

Notice that .‖unα‖ = Op(1) uniformly in .α∗
n ≤ α ≤ 1 − α∗

n by (2.1). Inserting 
.b = unα in (3.2), we obtain: 

. sup
{|

|

|(α(1 − α))−1/2σ−1
α [Dnα(n−1/2σαunα) −Dn(0)] (3.6)

+1

2
(α(1 − α))−1AT

nα(0) nQ−1
n Anα(0)

|

|

| : α∗
n ≤ α ≤ 1 − α∗

n

}

= op(1)

Hence, using the convexity of .Dn, we apply the approach of Pollard in [14] and in 
[10] and conclude: 

. sup
{‖tnα − unα‖ : α∗

n ≤ α ≤ 1 − α∗
n

} = op(1) (3.7) 

and remind the convergence (2.3) of . unα . 
Moreover, if .1 − α ≥ 1 − α∗

n, then .Rni(Yi − xT
i b) ≥ n(1 − α) only for the 

maximal residual .Yi − xT
i b, hence .Rni(Yi − xT

i b) = n for .α ≤ α∗
n. Hence the 

estimator .~βn(1−α) minimizes the maximal residual over .b ∈ Rp. More precisely, 

.~βn(1−α) = arg min
b∈Rp

{

[Yni − Ȳn − (xni − x̄n)
Tb]n:n

}

. (3.8) 

Moreover, notice that .~βn(1−α) is then constant for .0 < α ≤ α∗
n, i.e., 

. ~βn(1−α) = ~βn(1−α∗
n) for 0 < α ≤ α∗

n.

Denote as .Dn the antirank of the maximal residual. Then 

.

⎾

YnDn − Ȳn − (xnDn − x̄n)
T
~βn(1−α)

⏋

≤ [YnDn − Ȳn − (xnDn − x̄n)
Tb],
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hence 

.(xnDn − x̄n)
T
~βn(1−α) ≥ (xnDn − x̄n)

Tb (3.9) 

for .0 < α ≤ α∗
n, any .b ∈ Rp, including . 0 and any other estimator of . β. Analogously, 

.~βnα0
= ~βnα∗

n
for .0 < α0 ≤ α∗

n; hence, the convergence holds over .[α0, 1 − α0] for 
any .0 < α0 < 1/2 and thus for the compact subintervals of .(0, 1). As a consequence, 
we conclude that the process .{f (F−1(α))Q1/2

n (~βnα − β)} converges to the vector 
of Brownian bridges over the interval .[α0, 1 − α0] for any fixed .0 < α0 < 1/2, i.e., 
over the compact subsets of (0,1). . □

4 Concluding Remarks 

We observe that the process of the slope components of the regression quantile 
converges to the vector of the independent Brownian bridges, standardized with 
the density quantile function .f (F−1(α)), .0 < α < 1. This important function 
and its derivative typically appear in relations with the tails and shape of the 
probability distribution. Properties of the density quantile function, and their impact, 
are intensively studied by Staudte and Xia [15], among others. 
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