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Notation
Throughout this thesis, the following conventions are used:

• The symbol N denotes the set of positive integers so that 0 /∈ N and N0 =
N ∪ {0}.

• The notation A ⊂ B means that each element in the set A is also in the set
B so that A and B may coincide.

• A countable set is a set which admits a bijection onto an infinite subset of
N.

• In the context of continuous or measurable functions, each finite or count-
able set is always assumed to carry the discrete topology and the discrete
σ-algebra.
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Introduction
Interacting particle systems are used to model systems comprising numerous iden-
tical components, typically situated in a spatial relationship to one another. Ex-
amples may include populations of animals or plants, cells within an organism,
or a material composed of molecules. For each such component, an interact-
ing particle system tracks one or more traits, which are updated depending on
the values of the traits at finitely many other components - usually those in its
vicinity. For instance, binary traits are often used to model the presence of an
individual at a given component, with trait updates corresponding to reproduc-
tion and death. Mathematically, an interacting particle system will be defined as
a system of interacting Markov processes. Each such Markov process represents
one component, and its jump rates depend on the values of finitely many other
Markov processes (in its vicinity).

It is customary in the field of interacting particle systems to idealize such
systems. Instead of studying systems of many, but finitely many components, as
one may encounter in the real world, one studies infinite systems. This has several
mathematical advantages. For instance, imagine a population confined to a finite
space that reproduces (in some way) at exponentially distributed times, while the
individuals die independently at exponentially distributed times. Mathematically,
such a population is almost sure to die out at some finite time, even under the
most favorable conditions. In contrast, on an infinite space, this does not have
to be the case. The underlying philosophy of this idealization is that phenomena
observed in the infinite system happen for the finite system with high probability
on appropriate time scales.

The study of interacting particle systems, in the sense of this thesis, originated
with the work of Spitzer [1969, 1970] and Dobrushin [1971a,b], with numerous
other authors subsequently contributing to the field. Its roots lie in the study
of statistical mechanics, a much older field of study. For example, the Ising
model, an interacting particle system describing a ferromagnet, has (without
time evolution) already been studied for more than a century [Lenz, 1920, Ising,
1925]. Over time, the books by Liggett [1985, 1999] have established themselves
as the standard references in the field. The interested reader may consult them
for an in-depth analysis of some of the most frequently studied interacting particle
systems, as well as a detailed introduction to the most important techniques and
tools utilized to study interacting particle systems.

Duality is one of the most powerful and most commonly used of these tools.
It describes a relationship between two Markov processes: one process that is of
primary interest and a dual process that is (hopefully) easier to study. The two
processes are related through a duality function, which can be interpreted as an
observable of the two processes. If an interacting particle system is the process
of primary interest, duality typically yields a relationship to a process with only
finitely many “active” components. Thus, duality (typically) allows one to study
an interacting particle system with infinitely many “active” components through
a process with only finitely many ones. This reduction to a “finite” process is of
considerable help if one tries to study the (time-) invariant laws of an interacting
particle system. Examples of this application of duality are provided in this
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thesis.
Initially, many useful duality relations of Markov processes were discovered

with concrete processes in mind [Lindley, 1952, Lévy, 1954, Karlin and McGregor,
1957]. Over the following decades the theory has been formalized and generalized
[Siegmund, 1976, Holley and Stroock, 1979, Ethier and Kurtz, 1986]. Despite
numerous applications of duality to Markov processes, the question regarding
sufficient and necessary conditions a Markov process has to satisfy in order to
have a dual process has not yet been answered to full satisfaction. The task of
finding a dual process has in [Etheridge, 2006] even been compared to “black art”.

For several concrete interacting particle systems the existence of dual pro-
cesses has been known since the early 1970s, shortly after the field of study was
established as a distinct area of research. By the end of the 1970s a duality the-
ory for two important classes of interacting particle systems had been established
[Harris, 1976, 1978, Griffeath, 1979]. However, a truly systematic treatment of
duality of interacting particle systems remains to be developed.

Over the past three decades, there has been a notable advancement in this
direction. In [Lloyd and Sudbury, 1995, 1997, Sudbury, 2000] a systematic treat-
ment of dualities for nearest-neighbor interacting particle systems is given, where
the duality function is of a special “local” form. Recently, the so called “alge-
braic approach to duality” [Giardinà et al., 2007, 2009], which relies on a deep
connection between duality and representations of Lie algebras, has advanced the
systematic study of dualities considerably.

In addition to the algebraic approach, there also exists the “pathwise approach
to duality” as coined (based on the notion of pathwise duality from [Jansen and
Kurt, 2014]) in [Sturm et al., 2020]. Probably the most important recent publica-
tion following this approach is [Sturm and Swart, 2018]. The pathwise approach
is based on the graphical representation of an interacting particle system, intro-
duced by Harris [1978]. It has the advantage that the construction of a duality is
graphic and easy to comprehend. Moreover, it yields a (slightly) stronger notion
of duality than the algebraic approach. On the other hand, it has the disadvan-
tage that the pathwise approach does not detect all dualities that may be found
by the algebraic one. In [Sturm et al., 2020] more detailed remarks pointing out
differences and similarities between the two approaches can be found.

This thesis uses the pathwise approach to duality in order to identify new
dualities of interacting particle systems and to present previously known dualities
within a unified framework. The reader of this thesis will observe that also the
pathwise approach to duality relies on algebra, but only on elementary algebra.

The present thesis is based on the publications [Latz and Swart, 2023a,b] and
the preprint [Latz and Swart, 2023c], all of which are joint work with Jan M.
Swart. It combines the three articles into a single, coherent work, employing a
unified notation. In comparison with the articles, several parts were reformulated,
restructured or added. The most important changes are highlighted in the outline
below.

Outline
Chapter 1 serves as a mathematically rigorous introduction to the construction
of a pathwise duality of an interacting particle system. To do so, in Chapter 1.1
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the construction of an interacting particle system via a graphical representation
is presented. Chapter 1.2 presents a construction of an interacting particle sys-
tem started in a “finite” configuration as a continuous-time Markov chain on a
countable state space. This construction will be needed for the dual processes
of interacting particle systems. The concept of duality and pathwise duality is
introduced in Chapter 1.3, while in Chapter 1.4 a first “basic” pathwise dual-
ity is considered. This initial duality function will be the starting point of the
construction of the more interesting dualities in the subsequent chapters. Chap-
ter 1.5 introduces the notion of (weak) informativeness of a duality function and
proves a number of key results regarding these notions.

Chapter 1 is mainly based on [Swart, 2022], while the exact formulation of
(pathwise) duality is inspired by [Jansen and Kurt, 2014]. Theorem 1.6 is based
on [Latz and Swart, 2023c, Lemma 1], but the conditions were modified. In
particular, the summability condition (1.18) is newly introduced in this thesis.
The notions of informativeness and weak informativeness were coined in [Latz
and Swart, 2023a], and also Proposition 1.10 and Lemma 1.12 already appeared
there.

Chapter 2 presents a duality theory for interacting particle systems based on
monoids. Chapter 2.1 prepares the reader by studying monoid homomorphisms.
In Chapter 2.2 a duality theory for monoids is presented. This theory is in
Chapter 2.3 extended to monoids that carry a topology. Using the construction
of Chapter 1, this notion of duality between monoids that carry a topology then
induces a pathwise duality of interacting particle systems. Chapter 2.4 shows that
additive and cancellative duality, two of the most used dualities of interacting
particle systems, are of this form. Afterwards, in Chapter 2.5, it is shown how
to identify dualities between monoids using a computer. Tables containing all
dualities between monoids with up to four elements are included. In Chapter 2.6
the identified duality functions are divided into the group of those that are weakly
informative and those that are not. Finally, in Chapter 2.7 an application of
monoid duality is presented. There, monoid duality is used to compute all shift-
and time-invariant measures of a variant of the well-known contact process.

Chapter 2 unifies results from [Latz and Swart, 2023b] and [Latz and Swart,
2023a]. Chapter 2.1, Chapter 2.2 and Chapter 2.5 are based on the content of
[Latz and Swart, 2023b, Section 2 & Section 5]. The content of [Latz and Swart,
2023a, Section 2] is presented in Chapter 2.3. The two last results of Chapter 2.3
are newly added: Lemma 2.12 is inspired by the proof of [Latz and Swart, 2023c,
Proposition 13] and Proposition 2.13 was mentioned in [Latz and Swart, 2023a]
without a proof. The main ideas behind Chapter 2.4 are taken from [Latz and
Swart, 2023b, Section 4]. Chapter 2.6 partially follows [Latz and Swart, 2023a,
Section 3], but most of the computation in its second half were newly added.
Finally, Chapter 2.7 is based on [Latz and Swart, 2023a, Sections 1,4,5 & the
appendix].

Chapter 3 presents a duality theory for interacting particle systems based
on modules over a semirings. As indicated by the titles of its subchapters, its
structure follows the one of Chapter 2 closely.

The idea behind Chapter 3 is based on [Latz and Swart, 2023b, Section 3 &
Section 5.2]. Most results in it are newly added. They are, however, mainly based
on very similar results in Chapter 2.
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Chapter 4 presents a duality theory for interacting particle systems based on
partially ordered sets. In contrast to the two chapters prior, the dual process of
this construction does not have the form of an interacting particle system. In
Chapter 4.1 its state space is defined and equipped with both a topology and
a partial order. The process itself is constructed in Chapter 4.2. Chapter 4.3
compares the construction of Chapter 4.2 to a previously known one [Gray, 1986,
Sturm and Swart, 2018]. In Chapter 4.4 it is shown that the duality function
used in Chapter 4 is (in multiple senses) informative. Chapter 4.5 connects the
notions of the non-triviality of an upper invariant law and the survival of its
dual process by means of monotone duality, the type of duality investigated in
Chapter 4. Finally, Chapter 4.6 shows that additive duality is also a special case
of monotone duality.

Chapter 4 is based on [Latz and Swart, 2023c]. The main result, Theorem 4.9,
uses the new summability condition (1.18) as an assumption. The original result
[Latz and Swart, 2023c, Theorem 5] was assuming both the summability condition
(1.7) and a second one for the dual process. It only gave the second statement of
Theorem 4.9. The usage of (1.18) has also made it possible to weaken the assump-
tions in some of the results presented in Chapter 4.5 and Chapter 4.6.1, compared
to [Latz and Swart, 2023c]. In particular, the assumptions in Chapter 4.6.1 now
better align with those in Chapter 2.

Appendix A collects examples that rule out the weak informativeness of some
of the duality function identified in Chapter 2.5 and Chapter 3.4. The examples
were computed newly for this thesis.
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1. Constructing a pathwise
duality
In this first chapter the general idea of how to construct a pathwise dual process
of an interacting particle system is introduced. Let, throughout this thesis, S
be a finite set with |S| ≥ 2, and let Λ be a countable set. We will call S the
local state space and Λ the grid.1 Let SΛ be the set of functions x : Λ → S,
equipped with the product topology. The space SΛ will serve as the state space
of an interacting particle system. We will call it sometimes the global state space.
For a ∈ S we will denote by a ∈ SΛ the configuration that is constantly a, i.e.,

a(i) := a (i ∈ Λ). (1.1)

By Tychonoff’s theorem (see, e.g., [Bredon, 1993, Theorem I.8.9]) SΛ is com-
pact. The product topology is metrizable. As the grid Λ is countable, we can
find a bijection γ : Λ → N. Using this bijection we define

ai := 1
3γ(i) (i ∈ Λ)

and define a metric d on SΛ as

d(x, y) :=
∑︂
i∈Λ

ai(1 − δx(i)y(i)) (x, y ∈ SΛ), (1.2)

where δab (a, b ∈ S) denotes the Kronecker delta. It is well-known that the metric
d generates the product topology. We are going to use this concrete metric in
Chapter 4.

1.1 Interacting particle systems and graphical
representations

We start by specifying some conventions for Markov processes that we will use
throughout this thesis. Let E be a Polish space, i.e., a separable completely
metrizable topological space, equipped with the Borel σ-algebra B(E). A Markov
semigroup is a collection of probability kernels (Pt)t≥0 on E such that

P0 = 1 and PsPt = Ps+t (s, t ≥ 0),

where PsPt denotes the concatenation of Ps and Pt and 1 denotes the identity
kernel defined as 1(x, · ) := δx, the Dirac measure on x ∈ E. For our purposes a
Markov process with semigroup (Pt)t≥0 is a stochastic process X = (Xt)t≥0 with
values in E such that

P[Xt ∈ · | (Xu)0≤u≤s] = Pt−s(Xs, · ) a.s. (0 ≤ s ≤ t),
1This is often called the lattice but we reserve the latter term for its order-theoretic meaning.
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where, in the left-hand side above, we condition on the σ-algebra generated by
(Xu)0≤u≤s.2 A Markov process with values in a finite or countable state space we
call a continuous-time Markov chain.

Let E now be a compact metrizable space and let M1(E) denote the space of
probability measures on E, equipped with the topology of weak convergence. A
Feller semigroup on E is a Markov semigroup (Pt)t≥0 with the additional property
that

(x, t) ↦→ Pt(x, · ) is a continuous map from E × [0,∞) to M1(E).

A Feller process is a Markov process whose semigroup is a Feller semigroup.
Before we construct an interacting particle system, we first note some prop-

erties of the compact metrizable space SΛ. For each ∆ ⊂ Λ and x ∈ SΛ, we let
x∆ = (x(i))i∈∆ denote the restriction of x to ∆. Let T be a finite set. For any
function f : SΛ → T we call

R(f) :=
{︂
i ∈ Λ : ∃x, x′ ∈ SΛ s.t. f(x) ̸= f(x′) and xΛ\{i} = x′

Λ\{i}

}︂
. (1.3)

the set of f -relevant sites. Thus, changing the value of x(i) for i ∈ R(f) may
change f(x). We cite the following result [Sturm and Swart, 2015, Lemma 24].

Lemma 1.1 (Continuous maps). A map f : SΛ → T is continuous if and only
if the following two conditions hold:

(i) R(f) is finite.

(ii) If x, x′ ∈ SΛ satisfy x(j) = x′(j) for all j ∈ R(f), then f(x) = f(x′).

One can express the content of Lemma 1.1 in words by saying that a function
f : SΛ → T is continuous if and only if it depends on finitely many coordinates
in the sense that there exists a finite set ∆ ⊂ Λ and a function f ′ : S∆ → T such
that f(x) = f ′(x∆) (x ∈ SΛ). The smallest possible set for which one can find a
function f ′ : S∆ → T such that f(x) = f ′(x∆) (x ∈ SΛ) is then ∆ := R(f).

For any map m : SΛ → SΛ and i ∈ Λ we define m[i] : SΛ → S via m[i](x) :=
m(x)(i) (x ∈ SΛ). Note that m is continuous if and only if m[i] is continuous for
all i ∈ Λ. We also define

D(m) :=
{︂
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) ̸= x(i)

}︂
, (1.4)

the set of sites whose local states m may change.
By definition, a local map is a continuous map m : SΛ → SΛ for which D(m) is

finite. It is not hard to prove that, in parallel to Lemma 1.1, a map m : SΛ → SΛ

is local if and only if there exists a finite set ∆ ⊂ Λ and a map m′ : S∆ → S∆

such that

m(x)(i) =
⎧⎨⎩m′(x∆)(i) if i ∈ ∆,
x(i) else,

(x ∈ SΛ, i ∈ Λ). (1.5)

2In the literature it is often required that a Markov process has càdlàg (i.e., right-continuous
with left limits) sample paths. In this thesis, however, we also want to call processes with càglàd
(i.e., left-continuous with right limits) sample paths Markov. The reader that does not like this
convention may replace every “Markov process with càglàd sample paths” that appears in this
thesis by “the left-continuous modification of a Markov process”.
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Indeed, choosing ∆ := D(m) ∪ ⋃︁
i∈D(m) R(m[i]) yields the smallest set satisfying

(1.5). For any map m : SΛ → SΛ we set

R↓
i (m) :=

⎧⎨⎩R(m[i]) if i ∈ D(m),
∅ else,

(i ∈ Λ). (1.6)

Let G be a countable collection of local maps and let (rm)m∈G be non-negative
real constants that satisfy the summability condition

sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m)(i) + |R↓

i (m)|
)︂
< ∞, (1.7)

where 1A denotes the indicator function of a set A. For each continuous real
function f on SΛ that depends on finitely many coordinates, we define

Gf(x) :=
∑︂
m∈G

rm
{︂
f(m(x)) − f(x)

}︂
(x ∈ SΛ). (1.8)

Then it is known [Swart, 2022, Theorem 4.30] that G is closable and its closure
generates a Feller semigroup (Pt)t≥0. General theory [Kallenberg, 1997, Theo-
rem 17.15] then says that for each initial law on SΛ there exists a unique (in law)
Feller process X = (Xt)t≥0 with values in SΛ and càdlàg sample paths such that
the transition probabilities of X are given by (Pt)t≥0. We call X the interacting
particle system with generator G.3

The representation of G in (1.8) is called a random mapping representation.
Random mapping representations are far from unique and different ones may
lead to different dualities. Hence, it is an important question to decide for an
interacting particle system if there exists a “special” random mapping represen-
tation, where G consists only of one class of functions. In this thesis we will
skip this question and assume in our main results that such a special random
mapping representation is given. Additional comments regarding this question of
“representability” can be found throughout [Sturm and Swart, 2018, Section 2].

For any initial distribution ν ∈ M1(SΛ) we denote by Pν the law of X started
in ν. For the special case that X is started in a deterministic state x ∈ SΛ we
write Px as a shorthand for Pδx . Accordingly, we denote expectation with respect
to Pν by Eν (ν ∈ M1(SΛ)) and expectation with respect to Px by Ex (x ∈ SΛ).

It is known that X can be constructed from a graphical representation ω as
follows. Let ρ be the measure on G × R defined by ρ({m} × [s, t]) := rm(t − s)
(m ∈ G, s ≤ t) and let ω be a Poisson point set with intensity measure ρ. For
each s ≤ u, we set

ωs,u :=
{︂
(m, t) ∈ ω : s < t ≤ u

}︂
. (1.9)

Each finite ω̃ ⊂ ωs,u we can (a.s.) write as ω̃ = {(m1, t1), . . . , (mn, tn)} with
t1 < · · · < tn. For each such ω̃, we define

Xω̃
s,u := mn ◦ · · · ◦m1, (1.10)

3Following the general theory for Feller processes, one should say more precisely that the
closure of G is the generator of X. Since the corresponding theory for interacting particle
systems is well-known (compare, e.g., [Liggett, 1985, Chapter I.2], [Swart, 2022, Chapter 4.2]),
we will not distinguish between G and its closure in this thesis and usually write that a generator
of an interacting particle system is “defined by (1.8)” or “given (as) in (1.8)”.
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i.e., Xω̃
s,u is the concatenation of the maps from ω̃ in the time order in which they

occur. The following result follows from [Swart, 2022, Lemma 4.24] and the proof
of [Swart, 2022, Theorem 4.19]. Compare also [Swart, 2022, Theorem 6.16].

Lemma 1.2 (Finitely many relevant local maps). Assume the summability con-
dition (1.7). Then, almost surely, for each s ≤ u and i ∈ Λ, there exists a finite
set ωs,u(i) ⊂ ωs,u such that

Xω̃
s,u[i] = Xωs,u(i)

s,u [i] for all finite ω̃ with ωs,u(i) ⊂ ω̃ ⊂ ωs,u. (1.11)

These finite sets can be chosen such that ωt,u(i) = ωs,u(i) ∩ ωt,u for all s ≤ t ≤ u
and i ∈ Λ.

Lemma 1.2 implies that under (1.7), almost surely, we can define for all s ≤ u
a random map Xs,u : SΛ → SΛ via

Xs,u(x) := lim
ω̃n↑ωs,u

Xω̃n
s,u(x) (s ≤ u, x ∈ SΛ), (1.12)

where (ω̃n)n∈N is an arbitrary sequence of finite subsets of ω increasing to ωs,u.
These random maps form a stochastic flow, in the sense that Xs,s is the identity
map for all s ∈ R, and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

From this stochastic flow we can construct the interacting particle system X
as the following theorem shows. It follows from [Swart, 2022, Theorem 4.20 &
Theorem 4.30].

Theorem 1.3 (Poisson construction). Assume the summability condition (1.7).
If X0 is a random variable with values in SΛ that is independent of the graphical
representation ω, then setting

Xt := Xs,s+t(X0) (t ≥ 0) (1.13)

defines (for fixed s ∈ R) a Feller process X = (Xt)t≥0 with càdlàg sample paths.
The generator of this Feller process is the one given in (1.8).

For later use we note two key properties of the stochastic flow (Xs,u)s≤u,
defined via (1.12). Considering Xs,u[i] for fixed s ≤ u and i ∈ Λ both statements
follow immediately from Lemma 1.2.

Lemma 1.4 (Flow properties). Assume the summability condition (1.7). Then,
almost surely, the maps Xs,u : SΛ → SΛ (s ≤ u), defined in (1.12), are contin-
uous. Moreover, assume that there exists an x ∈ SΛ such that m(x) = x for all
m ∈ G. Then, almost surely, Xs,u(x) = x for all s ≤ u.

The stochastic flow (Xs,u)s≤u can also be characterized via an evolution equa-
tion. Assuming (1.7), for each s ∈ R and x ∈ SΛ, there almost surely exists a
unique càdlàg function [s,∞) ∋ t ↦→ Xt ∈ SΛ that solves the evolution equation

Xs = x and Xt =
⎧⎨⎩m(Xt−) if (m, t) ∈ ω,

Xt− else,
(t > s), (1.14)

where Xt− = limt′↑tXt′ denotes the state of the process just before time t. The
unique function is given via Xt := Xs,t(x) (t ≥ s). This fact follows from [Swart,
2022, Theorem 4.19 and its proof].
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1.2 Staying finite
In the upcoming chapters we will always encounter the situation that there exists
a special element 0 ∈ S that has the property that m(0) = 0 for all m ∈ G, where
0 is defined by (1.1). The element 0 then becomes a trap for the interacting
particle system X defined in Chapter 1.1. If such an element 0 ∈ S exists, we
set supp(x) := {i ∈ Λ : x(i) ̸= 0} (x ∈ SΛ) and call supp(x) the support of x.
Moreover, we set

SΛ
fin :=

{︂
x ∈ SΛ : |supp(x)| < ∞

}︂
. (1.15)

For any a ∈ S and i ∈ Λ we define δai ∈ SΛ
fin as

δai (k) :=
⎧⎨⎩a if k = i,

0 else,
(k ∈ Λ). (1.16)

In the special case that S = {0, 1}, we set δi := δ1
i (i ∈ Λ). The reader is

advised to not confuse the notion from (1.16) with the one of a Dirac measure:
δi ∈ {0, 1}Λ (i ∈ Λ) denotes a single configuration while, e.g., δ0 ∈ M1({0, 1}Λ)
denotes the Dirac measure on the “all 0 configuration”. We will caution the reader
throughout this thesis at points where confusion may arise.

Let X = (Xt)t≥0 be the interacting particle system defined in Chapter 1.1 and
assume that there exists an element 0 ∈ S such that m(0) = 0 for all m ∈ G. We
say that X survives if there exists an x ∈ SΛ

fin such that

Px[∃t ≥ 0 : Xt = 0] < 1.

Otherwise we say that X dies out. Moreover, we say that a probability measure
µ ∈ M1(SΛ) is X-non-trivial if it is concentrated on those x ∈ SΛ that are not
traps for X. Hence, in the setup of this subchapter, any X-non-trivial probability
measure µ has to satisfy µ({0}) = 0. We will discuss the survival of interacting
particle systems shortly in Chapter 2.7.2 and in more detail in Chapter 4.5.
Distributions that are X-non-trivial will play an important role in Chapter 2.7.5.

Note that SΛ
fin is a countable set and that a local map m : SΛ → SΛ maps

SΛ
fin into itself. It is an interesting question under which conditions we can define

a stochastic flow on SΛ
fin as in (1.12). In parallel to (1.6), we set for any map

m : SΛ → SΛ

R↑
i (m) :=

{︂
j ∈ D(m) : i ∈ R(m[j])

}︂
. (1.17)

It will turn out that assuming

sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m)(i) + |R↑

i (m)|
)︂
< ∞ (1.18)

instead of (1.7) will allow us to define a stochastic flow on SΛ
fin as in (1.12). To

see this, we first consider continuous-time Markov chains on general state spaces.
Let X be a countable set and let X∞ := X ∪ {∞} denote the one-point

compactification of X . Recall that a sequence (xn)n∈N ⊂ X then converges to ∞
if for all finite X ′ ⊂ X there exists an N = N(X ′) ∈ N such that xn /∈ X ′ for all
n ≥ N .
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Let G now be a countable collection of maps mapping from X to itself and
extend all m ∈ G to X∞ by setting m(∞) := ∞. Let (rm)m∈G be non-negative
real constants and define a Poisson point set ω as in Chapter 1.1. Then define
ωs,u (s ≤ u) as in (1.9) and Xω̃

s,u for each finite ω̃ ⊂ ωs,u as in (1.10). We are
going to need that ∑︂

m∈G:
m(x)̸=x

rm < ∞ for all x ∈ X . (1.19)

The proof of the following result is inspired by the one of [Swart, 2022, Proposi-
tion 2.8].

Proposition 1.5 (Stochastic flow on countable space). Let X be countable and
assume the summability condition (1.19). Then, almost surely, setting

Xs,u(x) := lim
ω̃n↑ωs,u

Xω̃n
s,u(x) (s ≤ u, x ∈ X∞), (1.20)

where (ω̃n)n∈N is an arbitrary sequence of finite subsets of ω increasing to ωs,u,
yields a well-defined random map Xs,u : X∞ → X∞ for all s ≤ u.

Proof. Since X is countable, it suffices to show that Xs,u(x) is almost surely well-
defined for all s ≤ u but fixed x ∈ X∞. In fact, as by definition ωs,s = ∅ (s ∈ R)
and hence Xs,s(x) = x (s ∈ R), it suffices to show that Xs,u(x) is almost surely
well-defined for all s < u and fixed x ∈ X∞.

Let x ∈ X∞ be fixed. If the sum in (1.19) is 0, then there does not exist a
map m ∈ G with m(x) ̸= x and rm > 0. Hence, almost surely, Xω̃

s,u(x) = x for
any finite subset ω̃ ⊂ ωs,u (s < u), implying that Xs,u(x) is (a.s.) well-defined as
Xs,u(x) = x for all s < u. Note that this is in particular the case for x = ∞.

Otherwise, if the sum in (1.19) equals a positive real number, there almost
surely exists a set {sk : k ∈ Z} ⊂ R with sk−1 < sk < sk+1 (k ∈ Z) such that

I(x) :=
{︂
s ∈ R : ∃(m, s) ∈ ω with m(x) ̸= x

}︂
=

{︂
sk : k ∈ Z

}︂
. (1.21)

We will first show that Xsk,u(x) is almost surely well-defined for all k ∈ Z and
u ∈ (sk,∞). From this it will then follow that Xs,u(x) is almost surely well-
defined for all s < u. As I(x) is (a.s.) countable we may fix k ∈ Z.

For fixed k ∈ Z, due to (1.19), there almost surely exists a sequence (un)n∈N ⊂
(sk,∞] such that u1 = sk+1 and

un = inf
{︂
(un−1,∞) ∩ I(mn−1 ◦ · · · ◦m1(x))

}︂
(n ∈ N \ {1}),

where the infimum over the empty set is ∞. Here, for un < ∞, mn denote the
corresponding map such that (mn, un) ∈ ω. Let τ := limn→∞ un ∈ (sk,∞]. If
τ = ∞, then for all u ∈ (sk,∞) we can find an n ∈ N such that un ≤ u < un+1.
Let ω̃ = {(m1, u1), . . . , (mn, un)} so that Xω̃

sk,u
(x) = mn ◦ · · · ◦m1(x). As ωsk,u is

almost surely at most countable, for any sequence (ω̃n)n∈N that increases to ωsk,u

there (a.s.) has to exist an n0 ∈ N such that ω̃ ⊂ ω̃n for all n ≥ n0. It follows
that Xsk,u(x) is (a.s.) well-defined as

Xsk,u(x) = Xω̃
sk,u

(x) = mn ◦ · · · ◦m1(x).
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On the other hand, if τ < ∞, we claim that Xsk,u(x) is almost surely well-defined
as Xsk,u(x) = ∞ for all u ≥ τ while Xsk,u(x) is defined for u < τ as above.
Indeed, let X ′ ⊂ X be finite. Then, almost surely,

[sk, τ) ∩
⋃︂

x′∈X ′
I(x′)

is finite. It follows that there has to exist an N = N(X ′) ∈ N such that for all
n > N one has mn(x′) = x′ for all x′ ∈ X ′. Let ω̃ := {(m1, u1), . . . , (mN , uN)}.
Then, one has that Xω̃

sk,τ
(x) /∈ X ′. Indeed, Xω̃

sk,τ
(x) = x′ ∈ X ′ would imply that

mN+1(x′) ̸= x′, contradicting the definition of N . As above, for any sequence
(ω̃n)n∈N that increases to ωsk,τ there has to exist an n0 ∈ N such that ω̃ ⊂ ω̃n
for all n ≥ n0. It follows that Xω̃n

sk,τ
(x) /∈ X ′ for all n ≥ n0. As there are only

countably many finite subsets of X , we conclude from the definition of convergence
to ∞ that, almost surely, Xsk,τ (x) is well-defined as Xsk,τ (x) = ∞. It follows from
the way we extended the maps in G to X∞ that (a.s.) also Xsk,u(x) = ∞ for all
u > τ . We conclude that Xsk,u(x) is almost surely well-defined for all sk < u and
k ∈ Z.

Finally, we extend this result to arbitrary s ∈ R. Due to the structure of I(x)
in (1.21), for all s ∈ R we can almost surely find a k ∈ Z such that sk ≤ s < sk+1
and Xs,u(x) = Xsk,u(x) for u ∈ (s,∞). Hence, Xs,u(x) is almost surely well-
defined for all s < u. This implies the statement of the proposition as outlined
at the beginning of the proof.

Let X0 be a X∞-valued random variable, independent of ω. Setting for fixed
s ∈ R

Xt := Xs,s+t(X0) (t ≥ 0)

as in (1.13) yields by [Swart, 2022, Proposition 2.9] a continuous-time Markov
process X = (Xt)t≥0 with state space X∞. We refer to it as the continuous-time
Markov chain with càdlàg sample paths and generator G, defined as in (1.8) but
for x ∈ X and bounded f : X → R.4 We call τ := inft≥0{Xt = ∞} the explosion
time of X and say that X is non-explosive if τ = ∞ almost surely. We now
consider the case that X = SΛ

fin.

Theorem 1.6 (Finite initial states). Assume that there exists an element 0 ∈ S
such that

m(0) = m(0) (m ∈ G), (1.22)

and that instead of (1.7), the rates satisfy (1.18). Then, almost surely, one can
define a random map Xs,u : SΛ

fin → SΛ
fin via (1.20) for all s ≤ u.

Proof. In the first step we want to apply Proposition 1.5. To do so, we verify
that (1.19) holds. Let x ∈ SΛ

fin and m ∈ G. Assume that m(x) ̸= x. Then,
either m changes a value on supp(x), i.e., there exists a j ∈ Λ such that j ∈

4Usually, the generator of a continuous-time Markov chain is viewed as an infinite matrix,
the so called Q-matrix, and not as a linear operator (compare, e.g., [Liggett, 2010]). It is not
hard to confirm that also the the form of the generator G presented here uniquely determines
the transition probabilities of X. Compare the comment below [Swart, 2022, Proposition 2.9].
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D(m) ∩ supp(x), or a value outside of supp(x), i.e., there exists a j ∈ Λ such
that j ∈ D(m) ∩ supp(x)c. But in the latter case, due to the assumption that
m(0) = 0, there has to exist an i ∈ R(m[j]) ∩ supp(x). Hence,∑︂

m∈G:
m(x)̸=x

rm ≤
∑︂

j∈supp(x)

∑︂
m∈G

rm1D(m)(j) +
∑︂

i∈supp(x)

∑︂
m∈G

rm|R↑
i (m)|

and the finiteness of supp(x) implies together with (1.18) that (1.19) holds.
Hence, due to Proposition 1.5, we can almost surely define Xs,u(x) via (1.20)

for all s ≤ u and x ∈ SΛ
fin. We are left to show that (a.s.) Xs,u(x) ∈ SΛ

fin for all
s ≤ u and x ∈ SΛ

fin. To do so, we are going to use a variant of the “paths of
potential influence” defined in [Swart, 2022, Display (4.20)]. The same variant
was also used in the proof of [Swart, 2022, Lemma 4.22].

For i, j ∈ Λ and s ≤ u we write (i, s)⇝ (j, u) if there exists a càdlàg function
ξ : [s, u] → Λ with ξ(s) = i, ξ(u) = j and the property that

• if ξ(t−) ̸= ξ(t) for some t ∈ (s, u], then there exists a map m ∈ G such that
(m, t) ∈ ω, ξ(t) ∈ D(m) and ξ(t−) ∈ R(m[ξ(t)]).

We set

ζs,u(I) :=
{︂
j ∈ Λ : (i, s)⇝ (j, u) for some i ∈ I

}︂
(s ≤ u, I ⊂ Λ).

To show that Xs,u(x) ̸= ∞, the “infinity element” of the one-point compactifica-
tion of SΛ

fin, it suffices to show that |ζs,u(supp(x))| stays finite (x ∈ SΛ
fin, s ≤ u).

Indeed, if, for some x ∈ SΛ
fin and s ≤ u, Xs,u(x) = ∞, then, by definition, for

all finite S ⊂ SΛ
fin there has to exist a t0 ∈ (s, u) such that Xs,t(x) /∈ S for all

t ∈ [t0, u]. This, in particular, holds for

S :=
{︂
x′ ∈ SΛ : supp(x′) ⊂ ∆

}︂
,

where ∆ ⊂ Λ is some finite set. Together with the observation at the beginning of
the proof this implies that if |ζs,u(supp(x))| is finite, then Xs,u(x) ∈ SΛ

fin (x ∈ SΛ
fin,

s ≤ u).
By definition, we just require jumps of the càdlàg function ξ to correspond to

(m, t) ∈ ω, while ξ may ignore some (m, t) ∈ ω “on its way”. Hence, I ⊂ ζs,u(I)
and

ζs,u(I) ⊂ ζ⌊s⌋,⌈u⌉(I) (s ≤ u, I ⊂ Λ),

where ⌊ · ⌋ and ⌈ · ⌉ denote the floor and the ceiling of a real number, respectively.
Recall that SΛ

fin is countable. Hence, in order to show that

|ζs,u(supp(x))|

is almost surely finite for all x ∈ SΛ
fin and s ≤ u, it suffices to show that

|ζs,u(supp(x))|

is almost surely finite for fixed x ∈ SΛ
fin and s ≤ u with s, u ∈ Z. To do so, we use

a standard generator computation. Let (∆n)n∈N be a sequence of finite subsets
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of Λ with ∆n ↗ Λ as n → ∞. Let P(∆n) denote the power set of ∆n (n ∈ N).
We define

ζns,u(I) :=
{︂
j ∈ Λ : (i, s)⇝n (j, u) for some i ∈ I

}︂
(n ∈ N, s ≤ u, I ⊂ ∆n),

where (i, s) ⇝n (j, u) is defined as (i, s) ⇝ (j, u) above, but with the càdlàg
function ξ being required to map to ∆n instead of the whole Λ. We claim that
(ζns,u(supp(x)))u≥s is a Markov process with finite state space P(∆n) and generator
Gn of the form

Gnf(I) :=
∑︂
m∈G

rm
{︂
f(mn(I)) − f(I)

}︂
(n ∈ N, I ⊂ ∆n, f : P(∆n) → P(∆n)),

where for all m ∈ G and n ∈ N we define mn : P(∆n) → P(∆n) by

mn(I) := I ∪
[︂{︂
j ∈ D(m) : ∃i ∈ I ∩ R(m[j])

}︂
∩ ∆n

]︂
(n ∈ N, I ⊂ ∆n).

Indeed, this follows from standard theory (compare [Swart, 2022, Proposition 2.7])
and the fact that ∑︂

m∈G:
mn(I )̸=I

rm ≤
∑︂
i∈∆n

∑︂
m∈G

rm|R↑
i (m)|,

which, due to (1.18), says that the total rate of Poisson events that can change
the state of the process is finite in any state I ∈ P(∆n). Choosing f to be the
function computing the cardinality of a set, i.e., f(I) := |I|, one has that

Gnf(I) ≤
∑︂
i∈I

∑︂
m∈G

rm|R↑
i (m)| ≤ Kf(I) (n ∈ N, I ⊂ ∆n), (1.23)

where K < ∞ is the supremum in (1.18).5 Standard theory (compare the proof
of [Swart, 2022, Lemma 4.21]) then implies that

E
[︂
|ζns,u(supp(x))|

]︂
≤ |supp(x)|eK(u−s) < ∞ (n ∈ N, u ∈ Z : u ≥ s).

Letting n → ∞ and using monotone convergence, it follows that |ζs,u(supp(x))|
is almost surely finite.

Hence, Theorem 1.6 implies that under the summability condition (1.18),
setting Xt := Xs,s+t(X0) (t ≥ 0) for fixed s ∈ R as in (1.13) yields a continuous-
time Markov chain X = (Xt)t≥0 with state space SΛ

fin, càdlàg sample paths and
generator G, defined as in (1.8) but for x ∈ SΛ

fin and bounded f : SΛ
fin → R.

Moreover, following [Swart, 2022, Proposition 2.8], it can be shown that, as-
suming (1.18) instead of (1.7), for each s ∈ R and x ∈ SΛ

fin there almost surely
exists a unique càdlàg function [s,∞) ∋ t ↦→ Xt ∈ SΛ

fin that solves (1.14), given
via Xt := Xs,t(x) (t ≥ s).

To conclude this subchapter, we want to stress that the summability condi-
tions (1.7) and (1.18) do not imply each other. Indeed, let S = {0, 1} and Λ = N.
Let mk : {0, 1}N → {0, 1}N (k ∈ N) be defined by

mk(x)(ℓ) :=
⎧⎨⎩x(1) if ℓ = k,

x(ℓ) else,
(x ∈ {0, 1}N, ℓ ∈ N).

5Any f that satisfies (1.23) is sometimes called Lyapunov function for the Markov process
with generator Gn.
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One has for ℓ ∈ N and k ∈ N \ {1} that

R↓
ℓ(mk) =

⎧⎨⎩{1} if ℓ = k,

∅ else,
and R↑

ℓ(mk) =
⎧⎨⎩{k} if ℓ = 1,

∅ else.

Setting now G := {mk : k ∈ N} and rm := ε > 0 for all m ∈ G yields

sup
k∈N

∑︂
m∈G

rm
(︂
1D(m)(k) + |R↓

k(m)|
)︂

= 2ε,

sup
k∈N

∑︂
m∈G

rm
(︂
1D(m)(k) + |R↑

k(m)|
)︂

=
∞∑︂
n=2

ε = ∞.

Thus, (1.7) holds, but (1.18) does not.
On the other hand, let nk : {0, 1}N → {0, 1}N (k ∈ N) be defined by

nk(x)(ℓ) :=
⎧⎨⎩max

{︂
x

(︂
k(k−1)

2 + 1
)︂
, . . . , x

(︂
k(k+1)

2

)︂}︂
if ℓ = k,

x(ℓ) else,

where x ∈ {0, 1}N and ℓ ∈ N. Thus, n1(x)(1) = x(1), n2(x)(2) = max{x(2), x(3)},
n3(x)(3) = max{x(4), x(5), x(6)}, and so on. One has for ℓ ∈ N and k ∈ N \ {1}
that

R↓
ℓ(nk) =

⎧⎨⎩
{︂
k(k−1)

2 + 1, . . . , k(k+1)
2

}︂
if ℓ = k,

∅ else,

and

R↑
ℓ(nk) =

⎧⎨⎩{k} if k(k−1)
2 + 1 ≤ ℓ ≤ k(k+1)

2 ,

∅ else.

Setting now G := {nk : k ∈ N} and rm := ε > 0 for all m ∈ G yields

sup
k∈N

∑︂
m∈G

rm
(︂
1D(m)(k) + |R↓

k(m)|
)︂

= ε sup
k∈N\{1}

(k + 1) = ∞,

sup
k∈N

∑︂
m∈G

rm
(︂
1D(m)(k) + |R↑

k(m)|
)︂

= 2ε.

Thus, (1.18) holds, but (1.7) does not.

1.3 Duality
Let Y be a Polish space equipped with the Borel σ-algebra and let Y = (Yt)t≥0
be a Markov process on Y . Similar to our conventions for the interacting particle
system X = (Xt)t≥0, for any initial distribution µ ∈ M1(Y) we denote by Pµ the
law of Y started in µ. For the special case that Y is started in a deterministic state
y ∈ Y we write Py as a shorthand for Pδy . Accordingly, we denote expectation
with respect to Pµ by Eµ (µ ∈ M1(Y)) and expectation with respect to Py by Ey
(y ∈ Y).
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Let ψ : SΛ×Y → V be a bounded measurable function, where V is some finite-
dimensional normed vector space. We say that the interacting particle system X,
constructed in Chapter 1.1, is dual to Y with respect to the duality function ψ if

Ex[ψ(Xt, y)] = Ey[ψ(x, Yt)] (x ∈ SΛ, y ∈ Y). (1.24)

We will sometimes call SΛ the primal space and Y the dual space.
The main goal of the present thesis is to identify sufficient conditions for the

existence of a “useful” duality relation. The adjective useful was added to stress
that we are not trying to just find any duality relation - in this case one could
just choose ψ or Y to be constant. In Chapter 1.5 below we will specify what
makes a duality useful.

A slightly stronger notion than duality is pathwise duality. We say that the
interacting particle system X is pathwise dual to Y with respect to ψ if, for each
t ≥ 0, we can construct families {Xx = (Xx

s )s≥0 : x ∈ SΛ} and {Y y = (Y y
s )s≥0 :

y ∈ Y} on one common probability space (Ω,F ,P) such that Xx has law Px, Y y

has law Py and

[0, t] ∋ s ↦→ ψ(Xx
s , Y

y
t−s) is P-a.s. constant (x ∈ SΛ, y ∈ Y). (1.25)

Clearly, considering s = 0 and s = t, pathwise duality implies duality. It has the
additional advantage that the definition still makes sense if we allow V to be a
more general space in which it might not be clear how to compute expectations.
In fact, for now we will replace the finite-dimensional normed vector space V by a
finite set T . The idea is to later identify T with elements of V in order to be able
to take expectation and conclude (1.24) from (1.25). This step is mainly discussed
in Chapter 2.6 and Chapter 3.5. In Chapter 4 we will work with T = {0, 1}, which
we naturally embed in V = R.

Pathwise dualities for interacting particle systems are usually constructed
using their graphical representation. To do so, one has to introduce the concept
of a dual map. We say that the maps m : SΛ → SΛ and m̂ : Y → Y are dual with
respect to ψ : SΛ × Y → T if

ψ(m(x), y) = ψ(x, m̂(y)) (x ∈ SΛ, y ∈ Y). (1.26)

If every map m ∈ G now possesses a unique dual map m̂, the idea is to replace
each m that appears in the graphical representation ω by its dual map m̂ in order
to construct a new graphical representation ω̂ := {(m̂, t) : (m, t) ∈ ω}. Using ω̂
and “changing the direction of time” we wish to define a backward stochastic flow
(Yu,s)u≥s in the sense that Ys,s is the identity for all s ∈ R and Yt,s ◦Yu,t = Yu,s

(u ≥ t ≥ s). Let X0 be a random variable with values in SΛ that is independent
of ω. Recall from Theorem 1.3 that under (1.7), for any fixed s ∈ R, setting
Xt := Xs,s+t(X0) (t ≥ 0) based on (1.12) yields the interacting particle system
X. Let Y0 be a random variable with values in Y that is also independent of
ω. The properties of the backward stochastic flow then should imply that for
any fixed u ∈ R setting Yt := Yu,u−t(Y0) (t ≥ 0) yields Y . As both stochastic
flows were constructed from the same underlying Poisson point set, the duality
between the maps then should imply a duality between the flows in the sense
that, almost surely,

ψ(Xs,u(x), y) = ψ(x,Yu,s(y)) (1.27)
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Ĝ
Yu+t,u = k̂ ◦ l̂ ◦ ĝ ◦ f̂ ◦ k̂

ω̂

f̂ ĝ ĥ k̂ l̂
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u+ t
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u+ t3
u+ t4
u+ t5

Figure 1.1: An illustration how to construct a pathwise duality for an interacting
particle system if G were finite. Time is depicted vertically.

holds almost surely for all s ≤ u, x ∈ SΛ and y ∈ Y simultaneously.
Let t ≥ 0 be fixed and choose an arbitrary u ∈ R. Assume that the con-

struction of the previous paragraph works. Then we define the families {Xx =
(Xx

s )s≥0 : x ∈ SΛ} and {Y y = (Y y
s )s≥0 : y ∈ Y} on the probability space of the

underlying Poisson point process by setting Xx
s := Xu,u+s(x) for x ∈ SΛ and

Y y
s := Yu+t,u+t−s(y) for y ∈ Y (s ≥ 0). The duality between the flows in (1.27)

then implies (1.25). Indeed, let x ∈ SΛ and y ∈ Y . Then, almost surely for all
s1, s2 ∈ [0, t] with s1 ≤ s2,

ψ(Xx
s2 , Y

y
t−s2) = ψ(Xu,u+s2(x),Yu+t,u+s2(y))

= ψ(Xu+s1,u+s2 ◦ Xu,u+s1(x),Yu+t,u+s2(y))
= ψ(Xu,u+s1(x),Yu+s2,u+s1 ◦ Yu+t,u+s2(y))
= ψ(Xu,u+s1(x),Yu+t,u+s1(y))
= ψ(Xx

s1 , Y
y
t−s1),

where we used (1.27) in the third equality and the properties of the two stochas-
tic flows in the second and fourth equality. The construction is illustrated in
Figure 1.1.

To summarize, to construct a pathwise duality in the outlined way, we first
have to identify a Polish space Y , a finite set T and a measurable function ψ :
SΛ × Y → T for which every m ∈ G possesses a unique dual map m̂. Then we
have to confirm that

• using ω̂, almost surely we can construct for every u ≥ s a well-defined
random map Yu,s : Y → Y such that (Yu,s)u≥s forms a backward stochastic
flow,

• for any u ∈ R, setting Yt = Yu,u−t(Y0), where Y0 is a Y-valued random
variable independent of ω, yields the same Markov process Y = (Yt)t≥0 (in
law),
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• (1.27) holds almost surely for all s ≤ u, x ∈ SΛ and y ∈ Y simultaneously.

As outlined above, the first important step is that every m ∈ G possesses a
unique dual map with respect to ψ. We will prove a useful characterization of this
being the case. Let T be again a finite set and let F(SΛ, T ) denote the collection
of all functions from SΛ to T .6 Let H ⊂ F(SΛ, T ). We say that m : SΛ → SΛ

preserves H if

f ◦m ∈ H whenever f ∈ H. (1.28)

Let Y be a Polish space and let ψ : SΛ × Y → T be a measurable function. Let
Hψ ⊂ F(SΛ, T ) be defined as

Hψ :=
{︂
ψ( · , y) : y ∈ Y

}︂
. (1.29)

We have the following characterization.

Lemma 1.7 (Maps with a dual I). A map m : SΛ → SΛ has a dual map
m̂ : Y → Y with respect to ψ if and only if m preserves Hψ. Moreover, if

ψ(x, y) = ψ(x, y′) for all x ∈ SΛ implies y = y′ (y, y′ ∈ Y), (1.30)

the dual map m̂, if it exists, is unique.

Proof. If m preserves Hψ, then one has that ψ(m( · ), y) ∈ Hψ. Hence, by defi-
nition, there exists an element m̂(y) ∈ Y such that ψ(m( · ), y) = ψ( · , m̂(y)). If
(1.30) holds, the element m̂(y) ∈ Y is unique. This implies that m has a unique
dual map if it preserves Hψ. That m preserves Hψ if it has a dual map follows
by reversing the above arguments.

In Chapter 2 and Chapter 3 we are going to work with countable Y . We are
going to show that in this case, under mild assumptions on ψ, the three bullet
points in the list above hold true as long as we assume the summability condition
(1.7).

Let Y be countable and let Y∞ := Y ∪ {∞} denote the one-point compacti-
fication of Y . Assume that ψ : SΛ × Y → T is a measurable function such that
every m ∈ G possesses a unique dual map with respect to ψ. We define

ˆ︁G :=
{︂
m̂ : m ∈ G

}︂
and extend all m̂ ∈ ˆ︁G to Y∞ by setting m̂(∞) := ∞. Recall the definition of ωs,u
(s ≤ u) from (1.9). For each finite ω̃ ⊂ ωs,u given as ω̃ = {(m1, t1), . . . , (mn, tn)}
with t1 < · · · < tn, we define

Yω̃
u,s := m̂1 ◦ · · · ◦ m̂n.

The following assertion can be proved in a similar way as Proposition 1.5, with
trivial modifications to the proof.

6Note that F(SΛ, T ) is nothing else than T (SΛ). However, we are going to reserve the latter
notation for cases where we want to stress the interpretation of the elements of such a space as
vectors or configurations. In all other cases we will use the notation with F .
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Proposition 1.8 (Dual flow on countable spaces). Let Y be countable and assume
that ∑︂

m∈G:
m̂(y)̸=y

rm < ∞ for all y ∈ Y . (1.31)

Then, almost surely, setting

Yu,s(y) := lim
ω̃n↑ωs,u

Yω̃n
u,s(y) (u ≥ s, y ∈ Y∞), (1.32)

where (ω̃n)n∈N is an arbitrary sequence of finite subsets of ω increasing to ωs,u,
yields a well-defined random map Yu,s : Y∞ → Y∞ for all u ≥ s.

It follows readily that (Yu,s)u≥s is a backward stochastic flow. In parallel to
(1.14) it can be characterized by an evolution equation. Almost surely, for each
s ∈ R and y ∈ Y , there exists a unique càdlàg function (−∞, s] ∋ t ↦→ Yt ∈ Y
that solves the evolution equation

Ys = y and Yt− =
⎧⎨⎩m̂(Yt) if (m, t) ∈ ω,

Yt else,
(t ≤ s),

and this function is given via Yt := Ys,t(y) (t ≤ s). This fact is proved in parallel
to [Swart, 2022, Proposition 2.8].

Analogous to the construction in Chapter 1.2, let Y0 be a Y∞-valued random
variable, independent of ω. Setting for fixed u ∈ R

Ys := Yu,u−s(Y0) (s ≥ 0) (1.33)

yields, again by [Swart, 2022, Proposition 2.9], a continuous-time Markov chain
Y = (Ys)s≥0 on Y∞, now with càglàd sample paths and generator ˆ︁G, defined as

ˆ︁Gf(y) =
∑︂
m∈G

rm
{︂
f(m̂(y)) − f(y)

}︂
(y ∈ Y) (1.34)

for bounded f : Y → R. The following result is cited from [Swart, 2022, Theo-
rem 6.20].

Theorem 1.9 (Duality with countable dual space). Let Y be countable and as-
sume the summability condition (1.7). Moreover, assume (1.30), that all m ∈ G
preserve Hψ and that

ψ : SΛ × Y → T is continuous with respect to the product topology on SΛ × Y .
(1.35)

Then also the summability condition (1.31) holds and the continuous-time Markov
chain from (1.33), with initial initial distribution Y0 concentrated on Y, is non-
explosive. Moreover, (1.27) holds almost surely for all s ≤ u, x ∈ SΛ and y ∈ Y
simultaneously.

In Chapter 4 we are going to work with an uncountable dual space Y , so
Proposition 1.8 and Theorem 1.9 are not going to be applicable. We are going to
resolve this issue in Section 4.2.
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1.4 A first pathwise duality
After having defined duality in Chapter 1.3 and having shown how a duality
between maps can induce a pathwise duality between processes, we now aim to
identify useful dualities for the maps in G. The starting point is the following
observation. Let T be again a finite set and recall that F(SΛ, T ) denotes the
collection of all functions from SΛ to T . We define ψbasic : SΛ × F(SΛ, T ) → T
as

ψbasic(x, f) := f(x) (x ∈ SΛ, f ∈ F(SΛ, T )). (1.36)
Then, as Hψbasic = F(SΛ, T ) and (1.30) clearly holds, Lemma 1.7 implies that
every map m : SΛ → SΛ has a unique dual map m̂ : F(SΛ, T ) → F(SΛ, T ) with
respect to ψbasic. The unique dual map of m : SΛ → SΛ is given by

m̂(f) := f ◦m (f ∈ F(SΛ, T )). (1.37)
Indeed, for x ∈ SΛ and f ∈ F(SΛ, T ),

ψbasic(m(x), f) = f(m(x)) = (f ◦m)(x) = ψbasic(x, m̂(f)).
In particular, for T = {0, 1} we can identify F(SΛ, {0, 1}) with P(SΛ), the power
set of SΛ, via the bijection f ↦→ {x ∈ SΛ : f(x) = 1}. In this case we can write
ψbasic : SΛ × P(SΛ) → {0, 1} as

ψbasic(x,A) := 1A(x) (x ∈ SΛ, A ∈ P(SΛ)). (1.38)
Under this identification the dual map m̂ from (1.37) becomes the preimage map
m−1.

The collection F(SΛ, T ), however, is too large to work with. Let C(SΛ, T ) de-
note the collection of all continuous functions from SΛ to T . As, by Lemma 1.1,
any f ∈ C(SΛ, T ) depends only on finitely many coordinates, it is easy to see that
C(SΛ, T ) is countable. We equip C(SΛ, T ) as usual with the discrete topology and
the discrete σ-algebra. We now restrict ψbasic from (1.36) in the second coordi-
nate to C(SΛ, T ). Then (1.30) still holds and (1.35) is also satisfied. Moreover,
now Hψbasic = C(SΛ, T ) and, as each m ∈ G is local and thus, by definition, also
continuous, any m ∈ G preserves C(SΛ, T ) = Hψbasic . Hence, by Proposition 1.8
and Theorem 1.9, for every interacting particle system X = (Xt)t≥0 that sat-
isfies the summability condition (1.7), we can construct a pathwise duality to
a continuous-time Markov chain with state space C(SΛ, T ) and càglàd sample
paths.

Although C(SΛ, T ) is only countable, the resulting dual process is rather ab-
stract and not easy to work with. In Chapter 2 and Chapter 3 we are going to
study dualities based on ψbasic that are associated with preserved subspaces of
C(SΛ, T ). In Chapter 4 we are going to study a duality based on ψbasic in the
formulation of (1.38) that is associated with a preserved subspace of P(SΛ). In
all cases the preserved subspaces are constructed by equipping SΛ with additional
structure (in Chapter 2 SΛ will become a monoid, in Chapter 3 a module over
a semiring, and in Chapter 4 a partially ordered set). The preserved subspaces
of F(SΛ, T ) consist then of those functions, that preserve the structure of either
a monoid, a module, or a partially ordered set (where we equip T = {0, 1} with
the natural partial order 0 ≤ 1). This leaves room for further research to either
generalize this method or to equip SΛ with some other structure in order to find
additional dualities.
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1.5 Informativeness
In this subchapter we specify what kind of dualities are useful. As we use duality
mainly as a tool to study an interacting particle system X = (Xt)t≥0, we would
like the duality to determine the law of Xt for fixed t ≥ 0. As in Section 1.3 let
Y be a Polish space (equipped with the Borel σ-algebra), let T be a finite set
and assume that an interacting particle system X on SΛ and a Markov process
Y = (Yt)t≥0 on Y are pathwise dual with respect to ψ : SΛ ×Y → T . A necessary
condition for the duality function ψ to be able to determine the law of Xt for
fixed t ≥ 0 is that it separates the points in its first coordinate in the sense that

ψ(x, y) = ψ(x′, y) for all y ∈ Y implies x = x′ (x, x′ ∈ SΛ). (1.39)

Since measures on SΛ are characterized by their finite-dimensional marginals,
property (1.39) implies that for x ∈ SΛ and t ≥ 0 the law Px[Xt ∈ · ] is uniquely
determined by all probabilities of the form

P[ψ(Xx
t , y1) = z1, . . . ,ψ(Xx

t , yn) = zn] = P[ψ(x, Y y1
t ) = z1, . . . ,ψ(x, Y yn

t ) = zn]
(n ∈ N, y1, . . . , yn ∈ Y , z1, . . . , zn ∈ T ),

(1.40)

where P denotes the probability measure of the common probability space on
which the families {Xx = (Xx

s )s≥0 : x ∈ SΛ} and {Y y = (Y y
s )s≥0 : y ∈ Y}

are defined. Many duality functions that will appear in this thesis possess a
stronger property regarding the characterization of the law of the interacting
particle system. To introduce it, we first investigate families of functions defined
on SΛ in greater detail.

Let V be a finite-dimensional normed vector space and let V be a measurable
space. For an arbitrary index set I we call a collection (fi)i∈I of bounded measur-
able functions fi : SΛ → V distribution determining if, for two random variables
X and X ′ on SΛ,

E[fi(X)] = E[fi(X ′)] ∀i ∈ I implies X
d= X ′,

where d= denotes equality in distribution. Similarly, we call a collection (gi)i∈I of
measurable functions gi : SΛ → V weakly distribution determining if

gi(X) d= gi(X ′) ∀i ∈ I implies X
d= X ′.

A family (fi)i∈I of functions fi : SΛ → V that is distribution determining is
clearly also weakly distribution determining. The reverse implication is not true
in general, but holds in the following special case. Recall that v1, . . . , vn ∈ V are
called affinely independent if
n∑︂
k=1

λkvk = 0 with scalars λ1, . . . , λn s.t.
n∑︂
k=1

λk = 0 implies λ1 = . . . = λn = 0.

Proposition 1.10 (Equality of notions). Let (fi)i∈I be a family of functions
fi : SΛ → {v1, . . . , vn} ⊂ V. If v1, . . . , vn are affinely independent, then (fi)i∈I is
distribution determining if and only if it is weakly distribution determining.
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Proof. Comparing the definitions, it suffices to show that for fixed i ∈ I, under
the assumption of the proposition, E[fi(X)] = E[fi(X ′)] implies fi(X) d= fi(X ′).
As the set {v1, . . . , vn} is finite, the condition E[fi(X)] = E[fi(X ′)] is equivalent
to writing

n∑︂
k=1

vk
(︂
P[fi(X) = vk] − P[fi(X ′) = vk]

)︂
= 0.

But as v1, . . . , vn are affinely independent, then also
P[fi(X) = vk] − P[fi(X ′) = vk] = 0 (k = 1, . . . , n),

i.e., fi(X) and fi(X ′) are equal in distribution.

We introduce a further notion that highlights the strength of a family of func-
tions that is distribution determining. For an arbitrary index set I we call a family
(fi)i∈I of bounded continuous functions fi : SΛ → V convergence determining if
for probability measures (µn)n∈N, µ on SΛ,∫︂

f(x) dµn(x) −→
n→∞

∫︂
f(x) dµ(x) ∀i ∈ I implies µn =⇒

n→∞
µ,

where ⇒ denotes weak convergence. The following statement follows from [Swart,
2022, Lemma 4.38].7

Lemma 1.11 (Convergence determining family). Let V be a finite-dimensional
normed vector space and let (fi)i∈I be a family of bounded continuous functions
fi : SΛ → V. If (fi)i∈I is distribution determining, then it is also convergence
determining.

We are going to use a Stone-Weierstrass argument in order to identify col-
lections of functions that are distribution determining. We recall a couple of
standard definitions. Let X and Z be arbitrary spaces. Recall that we denote
by F(X ,Z) the collection of functions from X to Z. We say that H ⊂ F(X ,Z)
separates points if for x, x′ ∈ X with x ̸= x′ there exists a function f ∈ H such
that f(x) ̸= f(x′). Moreover, we say that H ⊂ F(X ,C) is self-adjoint if f ∈ H
implies f ∈ H, where f(x) := f(x) (x ∈ X ), the complex conjugate of f(x).
Lemma 1.12 (Application of Stone-Weierstrass). Let E be a compact metrizable
space. Assume that H ⊂ C(E,C) separates points and is closed under products.
Then H is distribution determining.
Proof. The statement with C replaced by R is already proved in [Swart, 2022,
Lemma 4.37]. Note that

E[f(X)] = E[f(X ′)] implies E[f(X)] = E[f(X ′)] (f ∈ H), (1.41)

as E[f(X)] = E[f(X)], where X and X ′ are random variables on E. We can
enlarge H with the constant function 1, take linear combinations and complex
conjugates and receive an algebra A ⊃ H that is closed under products, self-
adjoint and separates points. If E[f(X)] = E[f(X ′)] for all f ∈ H then also
E[f(X)] = E[f(X ′)] for all f ∈ A by the linearity of the integral and (1.41).
We then can apply the complex version of the Stone-Weierstrass theorem and
continue as in the proof of [Swart, 2022, Lemma 4.37].

7[Swart, 2022, Lemma 4.38] is formulated for real-valued function, but the proof does not
change if one also allows more general functions.
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After this excursion we again consider the function ψ : SΛ × Y → T , where
Y is a Polish space and T is a finite set. We say that ψ is weakly informative if

(ψ( · , y))y∈Y (1.42)

is weakly distribution determining. If T is a subset of a finite-dimensional normed
vector space V, we say that ψ is informative if the functions in (1.42) are dis-
tribution determining. Informativeness will be an important property in the
applications of duality in Chapter 2.7.4 and Chapter 4.5.

By Lemma 1.12, if T is a subset of C, then there exists a strategy how to prove
informativeness: It suffices to show that ψ separates points in its first coordinate
in the sense of (1.39) and is closed under products in the second coordinate in
the sense that

ψ(x, y1)ψ(x, y2) = ψ(x, y3) for some y3 ∈ Y (x ∈ SΛ, y1, y2 ∈ Y). (1.43)

If T is not a subset of C, it becomes much harder to say anything. In Chap-
ter 2.6 we will develop an iterative procedure that can detect the absence of weak
informativeness for duality functions that do not map to a subset of C.

Both in Chapter 2 and in Chapter 3 we are going to encounter duality func-
tions that satisfy (1.39) but are not weakly informative. As they still determine
the law Px[Xt ∈ · ] for fixed x ∈ SΛ and t ≥ 0 via (1.40), the question becomes
to which extend they are useful considering we can not work with just the ex-
pectation of the duality function as in Chapter 2.7.4 and Chapter 4.5. Moreover,
we can ask (somewhat vaguely) what is the “minimal” information about the
probabilities in (1.39) that is needed to uniquely determine the law Px[Xt ∈ · ]
for fixed x ∈ SΛ and t ≥ 0. We leave this as an open problem for future research.
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2. Monoid duality
As explained at the end of Chapter 1.4, the idea is to equip SΛ with an additional
structure in order to find new dualities and to explain the existence of known ones.
In this chapter this additional structure will be the one of a monoid. Recall that,
by definition, a semigroup is a pair M = (M,+) where M is a set and + is an
associative binary operator on M , i.e.,

(a1 + a2) + a3 = a1 + (a2 + a3) (a1, a2, a3 ∈ M).

A semigroup is commutative if moreover

a1 + a2 = a2 + a1 (a1, a2 ∈ M).

A neutral element of a semigroup M is an element 0 ∈ M such that

a+ 0 = a = 0 + a (a ∈ M).

It is easy to see that the neutral element, if it exists, is unique. By definition,
a monoid is a semigroup M = (M,+) that is equipped with a neutral element
0. For a subset M ′ ⊂ M that contains 0 and is closed under application of the
operator +, M′ = (M ′,+) is called a submonoid of M. Then M′ is itself a monoid
with neutral element 0.

If we can equip the local state space S from Chapter 1 with an associative
binary operator + so that S = (S,+) is a semigroup, then we can also define an
associative binary operator + on the global state space SΛ by setting

(x+ x′)(i) := x(i) + x′(i) (x, x′ ∈ SΛ, i ∈ Λ). (2.1)

Then SΛ := (SΛ,+) becomes a semigroup as well. If S is commutative, then so
is SΛ, and if S has a neutral element 0, then 0, defined as in (1.1), is the neutral
element of SΛ.

The idea for the construction of the (pathwise) duality of this chapter is the
following. Let T be a finite set. We start with the duality function ψbasic :
SΛ ×C(SΛ, T ) → T from (1.36). If both S and T are equipped with the structure
of a monoid, we can restrict ψbasic in the second coordinate to the collection
of all continuous monoid homomorphisms. By Lemma 1.7, any m : SΛ → SΛ,
that is a local monoid homomorphism, has m̂ from (1.37) as its unique dual map
with respect to this restriction of ψbasic. Consequently, by Proposition 1.8 and
Theorem 1.9, any interacting particle system that has a generator G represented
as in (1.8) with G consisting only of local monoid homomorphisms from SΛ to
itself, has a continuous-time Markov chain taking values in the collection of all
continuous monoid homomorphism from SΛ to T as a pathwise dual process.
While this construction works for any pair of monoids the finite sets S and T
might be equipped with, the resulting dual process is still quite abstract. The
main contribution of this chapter consists of systematically finding cases where
the collection of all continuous monoid homomorphism from SΛ to T can be
identified with a set of the form RΛ

fin, where R is a finite set.
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2.1 Monoid homomorphisms
We begin the just outlined investigation by studying monoid homomorphisms,
with a particular emphasis on product spaces. Recall that if M = (M,+) and
T = (T,⊗) are monoids with neutral elements 0 and 1, respectively, then a
monoid homomorphism from M to T is a function h : M → T such that

(i) h(a+ a′) = h(a) ⊗ h(a′) (a, a′ ∈ M),

(ii) h(0) = 1.

We denote the collection of all monoid homomorphisms from M to T by H(M,T).
If h ∈ H(M,T) is a bijection, then it is easy to see that h−1 ∈ H(T,M). In this
case, h is called a monoid isomorphism. The following simple lemma shows that
if T is commutative, then H(M,T) naturally has the structure of a commutative
monoid. We call (H(M,T),⊗) the T-adjoint of the monoid M.

Lemma 2.1 (Adjoint of a monoid). Let M = (M,+) and T = (T,⊗) be monoids
with neutral elements 0 and 1, respectively, and assume that T is commutative.
Then (H(M,T),⊗) is a submonoid of (F(M,T ),⊗), where ⊗ is defined as in
(2.1).

Proof. The argument that (F(M,T ),⊗) is a monoid with neutral element 1, the
function that is constantly 1 ∈ T , is the same as for SΛ above.

It is easy to see that 1 ∈ H(M,T),⊗), so it remains to show that f ⊗ g ∈
H(M,T) for all f, g ∈ H(M,T). Indeed, for each a, a′ ∈ M and f, g ∈ H(M,T),

(f ⊗ g)(a+ a′) = f(a+ a′) ⊗ g(a+ a′) = (f(a) ⊗ f(a′)) ⊗ (g(a) ⊗ g(a′))
= f(a) ⊗ g(a) ⊗ f(a′) ⊗ g(a′) = (f ⊗ g)(a) ⊗ (f ⊗ g)(a′),

where we have used the commutativity of T in the third step. Since moreover
(f ⊗ g)(0) = f(0) ⊗ g(0) = 1 ⊗ 1 = 1, this shows that f ⊗ g ∈ H(M,T).

Let M and T be monoids and assume that T is commutative. We claim that
there exists a natural monoid homomorphism from M to the T-adjoint of the
T-adjoint of M. To see this, for each a ∈ M , we define La : H(M,T) → T by

La(h) := h(a) (a ∈ M, h ∈ H(M,T)). (2.2)

With this definition, the following lemma holds.

Lemma 2.2 (Adjoint of the adjoint). Let M and T be monoids and assume that
T is commutative. Let M′′ denote the T-adjoint of the T-adjoint of M. Then
the map a ↦→ La is a monoid homomorphism from M to M′′.

Proof. As above assume that M and T can be written as M = (M,+) and
T = (T,⊗), and that their neutral elements are denoted by 0 ∈ M and 1 ∈ T .
Let 1 again denote the function that is constantly 1 ∈ T . Since, for each a ∈ M ,

La(f ⊗ g) = (f ⊗ g)(a) = f(a) ⊗ g(a) = La(f) ⊗ La(g) (f, g ∈ H(M,T)),
La(1) = 1(a) = 1,
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we see that La is a monoid homomorphism from (H(M,T),⊗) to T, i.e., La is
an element of M′′. Since, for each f ∈ H(M,T),

La+a′(f) = f(a+ a′) = f(a) ⊗ f(a′) = La(f) ⊗ La′(f) (a, a′ ∈ M),
L0(f) = f(0) = 1,

it follows that a ↦→ La is a monoid homomorphism from M to M′′.

Due to the idea to equip the global state space SΛ with a monoid structure, we
are especially interested in product monoids. We have already seen that if M =
(M,+) is a monoid with neutral element 0 and Γ is a set, then also MΓ has the
structure of a monoid with operator +, defined as in (2.1), and neutral element 0,
defined analogously to (1.1). Analogously, if M1 = (M1,+1), . . . ,Mn = (Mn,+n)
are monoids, we can equip M1 × · · · ×Mn with the structure of a monoid that we
are going to denote by M1 × · · · × Mn.

We claim that if M1 = (M1,+1), . . . ,Mn = (Mn,+n) and T = (T,⊗) are
monoids and T is commutative, then there exists a natural monoid isomorphism
between H(M1,T) × · · · × H(Mn,T) and H(M1 × · · · × Mn,T). To see this,
for each f = (f1, . . . , fn) ∈ H(M1,T) × · · · × H(Mn,T), we define a function
Ff : M1 × · · · ×Mn → T by

Ff (x) :=
n⨂︂
i=1

fi(x(i)) (x = (x(i))i∈{1,...,n} ∈ M1 × · · · ×Mn). (2.3)

Due to the commutativity of T, the function Ff is invariant under permutations
of the order of M1, . . . ,Mn.

Lemma 2.3 (Adjoints of product spaces). Let M1, . . . ,Mn and T be monoids
and assume that T is commutative. Then the map

H(M1,T) × · · · × H(Mn,T) ∋ f ↦−→ Ff ∈ H(M1 × · · · × Mn,T)

is a monoid isomorphism from the product of the T-adjoints of M1, . . . ,Mn to
the T-adjoint of M1 × · · · × Mn.

Proof. Assume that M1, . . . ,Mn and T are given as M1 = (M1,+1), . . . ,Mn =
(Mn,+n) and T = (T,⊗), and let their neutral elements be given as 01, . . . , 0n
and 1, respectively. Moreover, let 0 := (01, . . . , 0n) denote the neutral element of
M1 × · · · × Mn and let + denote the binary operator of M1 × · · · × Mn, i.e., for
x, x′ ∈ M1 × · · · ×Mn one has

(x+ x′)(i) := x(i) +i x
′(i) (i ∈ {1, . . . , n}).

We first check that Ff ∈ H(M1 × · · · × Mn,T) for all f ∈ H(M1,T) × · · · ×
H(Mn,T). Indeed, using the commutativity of T, we see that

Ff (x+ x′) =
n⨂︂
i=1

fi((x+ x′)(i)) =
n⨂︂
i=1

fi(x(i) +i x
′(i)) =

n⨂︂
i=1

(︂
fi(x(i)) ⊗ fi(x′(i))

)︂
=

(︃ n⨂︂
i=1

fi(x(i))
)︃

⊗
(︃ n⨂︂
i=1

fi(x′(i))
)︃

= Ff (x) ⊗ Ff (x′)

(x, x′ ∈ M1 × · · · ×Mn)
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and

Ff (0) =
n⨂︂
i=1

fi(0(i)) =
n⨂︂
i=1

fi(0i) =
n⨂︂
i=1

1 = 1.

Next we check that f ↦→ Ff is a bijection. We first show that it is injective. For
each i ∈ {1, . . . , n} and a ∈ Mi, let us define ai ∈ M1 × · · · ×Mn by

ai(j) :=
⎧⎨⎩a if j = i,

0j else,
(j ∈ {1, . . . , n}). (2.4)

Then f ̸= g implies that fi ̸= gi for some i ∈ {1, . . . , n} and hence there exists
an a ∈ Mi such that fi(a) ̸= gi(a). Now Ff (ai) = fi(a) ̸= gi(a) = Fg(ai),
which shows that Ff ̸= Fg. It remains to show that f ↦→ Ff is surjective. For
each F ∈ H(M1 × · · · × Mn,T), we define f ∈ H(M1,T) × · · · × H(Mn,T) by
fi(a) := F (ai) (i ∈ {1, . . . , n}, a ∈ Mi). Then, for each x ∈ M1 × · · · × Mn, we
have

F (x) = F
(︃ n∑︂
i=1

(x(i))i
)︃

=
n⨂︂
i=1

F
(︂
(x(i))i

)︂
=

n⨂︂
i=1

fi(x(i)) = Ff (x),

which shows that F = Ff .
To complete the proof, we must show that f ↦→ Ff is a monoid homomorphism.

For each i ∈ {1, . . . , n}, we denote the neutral element of (H(Mi,T),⊗) by oi
and the neutral element of (H(M1,T) × · · · × H(Mn,T),⊗) by o. Then

Ff⊗g(x) =
n⨂︂
i=1

(f ⊗ g)i(x(i)) =
n⨂︂
i=1

(fi ⊗ gi)(x(i)) =
n⨂︂
i=1

(︂
fi(x(i)) ⊗ gi(x(i))

)︂
=

(︃ n⨂︂
i=1

fi(x(i))
)︃

⊗
(︃ n⨂︂
i=1

fi(x(i))
)︃

= Ff (x) ⊗ Fg(x) (x ∈ M1 × · · · ×Mn)

and

Fo(x) =
n⨂︂
i=1

oi(x(i)) =
n⨂︂
i=1

oi(x(i)) =
n⨂︂
i=1

1 = 1 (x ∈ M1 × · · · ×Mn),

i.e., Fo is constantly 1 and thus the neutral element of the T-adjoint of M1 ×
· · · × Mn.

As an application of Lemma 2.3, we obtain a characterization of H(MΓ,MΓ)
for a finite set Γ, or, somewhat more generally, of the set of homomorphisms
between two product monoids MΓ and NΓ′ .1

Lemma 2.4 (Homomorphisms between product spaces). Let M = (M,+), N =
(N,⊕) be monoids and assume that that N is commutative. Let Γ,Γ′ be finite
sets, and let m : MΓ → NΓ′ be a map, with m(x) = (mi(x))i∈Γ′. Then one has
m ∈ H(MΓ,NΓ′) if and only if there exists a matrix (Mij)i∈Γ′,j∈Γ with Mij ∈
H(M,N) for each i ∈ Γ′ and j ∈ Γ, such that

mi(x) =
⨁︂
j∈Γ

Mij(x(j)) (x ∈ MΓ, i ∈ Γ′). (2.5)

1Compared to [Latz and Swart, 2023a] and [Latz and Swart, 2023b] we have changed the
notation slightly so that (2.5) resembles the formula for the usual matrix-vector multiplication.
The same change was made in Lemma 2.10 (leading also to a change in (2.13)).
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Proof. This follows from applying Lemma 2.3 to the maps mi for each i ∈ Γ′.

Of course, the grid Λ is infinite, so the previous two lemmas cannot be applied
directly to SΛ, constructed at the beginning of the chapter. Nevertheless, the
two lemmas above will be important intermediate results used in the upcoming
subchapters.

2.2 Duality of monoids
As explained above Chapter 2.1, the aim is to identify pairs of monoids S and
T such that H(SΛ,T) ∩ C(SΛ,T) can be identified with a less abstract space,
where, as in Chapter 1.4, C(SΛ,T) denotes the collection of continuous function
from SΛ to T . This aim is formalized by defining a notion of duality of monoids.
As we first want to equip S with the structure of a monoid, which then induces
a monoid structure also on SΛ as explained above, it is natural to first consider
the local state space S instead of the global state space SΛ.

Let M = (M,+), N = (N,⊕), and T = (T,⊗) be monoids and let ψ :
M × N → T be a function. We say that M is T-dual to N with respect to ψ if
ψ has the following properties:

(i) ψ(a, b) = ψ(a′, b) for all b ∈ N implies a = a′ (a, a′ ∈ M),

(ii) H(M,T) =
{︂
ψ( · , b) : b ∈ N

}︂
,

(iii) ψ(a, b) = ψ(a, b′) for all a ∈ M implies b = b′ (b, b′ ∈ N),

(iv) H(N,T) =
{︂
ψ(a, · ) : a ∈ M

}︂
.

In words, the four properties above say that fixing for ψ either an a ∈ M or a
b ∈ N yields a monoid homomorphism, and all monoid homomorphisms from M
or N to T are of this form. Moreover, ψ separates the points in both coordinates.
The definition of duality of monoids implies the following result.

Proposition 2.5 (Maps with a dual II). Let M = (M,+), N = (N,⊕), and
T = (T,⊗) be monoids such that M is T-dual to N with respect to ψ : M ×N →
T . Then a map m : M → M has a dual map m̂ : N → N with respect to ψ if
and only if m ∈ H(M,M). The dual map m̂, if it exists, is unique and satisfies
m̂ ∈ H(N,N).

Proof. Recall from (1.28) when a map m preserves a subspace and let Hψ be
defined analogously to (1.29). Due to property (ii) of the definition of duality one
has Hψ = H(M,T). Each m ∈ H(M,M) clearly preserves H(M,T). Hence, as
in the proof of Lemma 1.7, we conclude that each such m has a unique dual map
m̂ : N → N with respect to the duality function ψ. Note that (the analogue of)
(1.30) is satisfied by property (iii) of the definition of duality.

Assume, conversely, that m : M → M has a dual map m̂ : N → N with
respect to ψ. Then ψ(m(a+a′), b) = ψ(a+a′, m̂(b)) = ψ(a, m̂(b))⊗ψ(a′, m̂(b)) =
ψ(m(a), b) ⊗ ψ(m(a′), b) = ψ(m(a) + m(a′), b) for all a, a′ ∈ M and b ∈ N , so
using property (i) of the definition of duality we see that m(a+a′) = m(a)+m(a′)
for all a, a′ ∈ M . Since moreover ψ(m(0), b) = ψ(0, m̂(b)) = 1 for all b ∈ N , this
proves that also m(0) = 0. Hence m ∈ H(M,M).
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This completes the proof that a map m : M → M has a dual map m̂ : N → N
with respect to ψ if and only if m ∈ H(M,M), and moreover shows that such
a dual map is unique. Since m̂ has a dual with respect to the duality function
ψ†(b, a) := ψ(a, b) (b ∈ N , a ∈ M), namely, the map m : S → S, by what we
have already proved, we must have m̂ ∈ H(N,N).

Together with (the proof of) Lemma 1.7 we conclude that m : M → M pre-
serves H(M,T) if and only if m ∈ H(M,M). Note that if M is not commutative,
then properties (i) and (ii) of the definition of duality imply that T cannot be
commutative either. Analogously, if N is not commutative, then properties (iii)
and (iv) of the definition of duality imply that T cannot be commutative. The
commutativity of T, however, will be crucial in the statements to follow. Hence,
we will only consider commutative monoids from now on. The following propo-
sition says that any duality of commutative monoids can be “lifted” to a duality
between product spaces.
Proposition 2.6 (Duality of product monoids). Let M1 = (M1,+1), . . . ,Mn =
(Mn,+n), N1 = (N1,⊕1), . . . ,Nn = (Nn,⊕n), and T = (T,⊗) be commutative
monoids such that Mi is T-dual to Ni with respect to ψi (i ∈ {1, . . . , n}). Then
M1 × · · · × Mn is T-dual to N1 × · · · × Nn with respect to ψ : (M1 × · · · ×Mn) ×
(N1 × · · · ×Nn) → T , defined as

ψ(x, y) :=
n⨂︂
i=1

ψi(x(i), y(i)) (x ∈ M1 × · · · ×Mn, y ∈ N1 × · · · ×Nn). (2.6)

In particular, if Γ is a finite set and M is T-dual to N, then MΓ is T-dual to
NΓ with respect to ψ(x, y) : MΓ ×NΓ → T , defined as

ψ(x, y) :=
⨂︂
i∈Γ

ψ(x(i), y(i)) (x ∈ MΓ, y ∈ NΓ). (2.7)

Proof. We need to check that ψ from (2.6) satisfies properties (i)–(iv) of the
definition of duality. By the symmetry between the Mi’s and Ni’s, it suffices
to check properties (i) and (ii). For each i ∈ {1, . . . , n} and b ∈ Ni, let bi ∈
N1 × · · · × Nn be defined as in (2.4). Then, assuming that ψ(x, y) = ψ(x′, y)
(x, x′ ∈ M1 × · · · × Mn) for all y ∈ N1 × · · · × Nn, in particular implies for
i ∈ {1, . . . , n} that

ψi(x(i), b) = ψ(x, bi) = ψ(x′, bi) = ψi(x′(i), b)

for all b ∈ Ni. Hence, property (i) of the duality of Mi and Ni implies that
x(i) = x′(i) for all i ∈ {1, . . . , n} and thus x = x′.

To prove also property (ii), we must show that

H(M1 × · · · × Mn,T) =
{︂
ψ( · , y) : y ∈ N1 × · · · ×Nn

}︂
. (2.8)

By Lemma 2.3, each F ∈ H(M1×· · ·×Mn,T) is of the form F (x) = ⨂︁n
i=1 fi(x(i))

for some fi ∈ H(Mi,T) (i ∈ {1, . . . , n}). Since, for all i ∈ {1, . . . , n}, the monoid
Mi is T-dual to Ni with respect to ψi, property (ii) of the definition of duality
implies that there exist bi ∈ Ni (i ∈ {1, . . . , n}) such that fi = ψi( · , bi). Defining
y ∈ N1 × · · · ×Nn via y(i) := bi (i ∈ {1, . . . , n}) then yields F = ψ( · , y), proving
the inclusion ⊂ in (2.8).

The inclusion ⊃ in (2.8) follows from property (ii) of the dualities of Mi and
Ni (i ∈ {1, . . . , n}) and the definition of ψ.
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Let M = (M,+) be a commutative monoid and let Γ be a finite set. Then,
by Proposition 2.5, a map m : MΓ → MΓ has a unique dual map with respect to
the function ψ defined in (2.7) if and only if m ∈ H(MΓ,MΓ). By Lemma 2.4,
maps m ∈ H(MΓ,MΓ) are uniquely characterized by a matrix with values in
H(M,M). The next step is to prove a similar statement when the finite set Γ is
replaced by a countable one, so that this statement can then be applied to SΛ.

2.3 Duality of topological monoids
Recall that SΛ is equipped with the product topology. Hence, if we equip S with
a binary operator + so that S = (S,+) becomes a monoid, then SΛ becomes a
monoid that additionally carries a topology. In general, we say that a monoid
M = (M,+) is a topological monoid if it is equipped with a topology so that the
map M×M ∋ (x, x′) ↦→ x+x′ ∈ M is continuous, where M×M is equipped with
the product topology. Before focusing on SΛ, we introduce a notion of duality of
topological monoids.

Let M = (M,+), N = (N,⊕) and T = (T,⊗) be topological monoids. We
say that M is T-dual to N with respect to ψ : M×N → T if ψ has the following
properties:

(i) ψ(x, y) = ψ(x′, y) for all y ∈ N implies x = x′ (x, x′ ∈ M),

(ii) H(M,T) ∩ C(M,T) =
{︂
ψ( · , y) : y ∈ N

}︂
,

(iii) ψ(x, y) = ψ(x, y′) for all x ∈ M implies y = y′ (y, y′ ∈ N),

(iv) H(N,T) ∩ C(N,T) =
{︂
ψ(x, · ) : x ∈ M

}︂
,

where, as in Chapter 1.4, C(M,T) and C(N,T) denote the collection of contin-
uous function from M to T and from N to T , respectively. Thus, duality of
topological monoids is defined as duality of “usual” monoids, with the sole dis-
tinction being that monoid homomorphisms are replaced by continuous monoid
homomorphisms.

Due to our convention to equip all finite and countable sets with the discrete
topology, if M, N and T are finite monoids, then C(M,T) = F(M,T) and
C(N,T) = F(N,T) so that M is T-dual to N in the sense of topological monoids
if and only M is T-dual to N in the sense of “usual” monoids, i.e., in the sense of
Chapter 2.2. The following proposition is the analogue of Proposition 2.5. Recall
the notion of a map preserving a subspace from (1.28).

Proposition 2.7 (Maps with a dual III). Let M = (M,+), N = (N,⊕) and
T = (T,⊗) be commutative topological monoids such that M is T-dual to N with
respect to ψ. Then a map m : M → M has a dual map m̂ : N → N with respect
to ψ if and only if m preserves H(M,T)∩C(M,T). The dual map m̂, if it exists,
is unique and preserves H(N,T) ∩ C(N,T).

Proof. As in the proof of Proposition 2.5, property (ii) of the definition of duality
of topological monoids implies that Hψ = H(M,T) ∩ C(M,T) with Hψ being
defined as in (1.29). Hence, the first assertion follows as in the proof of Lemma 1.7.
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Again, (the analogue of) (1.30) is satisfied by property (iii) of the definition of
duality of (topological) monoids.

For the second assertion, if m̂ exists, then it has m as a dual map with
respect to ψ† : N × M → T defined as ψ†(y, x) := ψ(x, y) (y ∈ N , x ∈ M),
and the previously proved statement implies that m̂ has to preserve H(N,T) ∩
C(N,T).

Clearly, any m ∈ H(M,M) ∩ C(M,M) preserves H(M,T) ∩ C(M,T). Con-
versely, if the assumptions on M, N and T from Proposition 2.7 are satisfied
and m : M → M preserves H(M,T), then the proof of Proposition 2.5 shows
that m has to be a monoid homomorphism. However, while property (ii) of the
definition of duality implies that ψ(m( · ), y) is continuous for all y ∈ N , we do
not know if m itself always has to be continuous. For the duality we are about to
introduce, Proposition 2.13 below implies that there exist no discontinuous maps
that preserve H(M,T) ∩ C(M,T).

We are now ready to study SΛ, the state space of the interacting particle
system X = (Xt)t≥0 if its local state space S is equipped with the structure of a
monoid. Clearly, SΛ equipped with the product topology, is a topological monoid.
Recall from the beginning of this chapter that the aim is to construct a pathwise
duality for an interacting particle system that has a generator G represented as
in (1.8) with G consisting only of local monoid homomorphisms from SΛ to itself.
Moreover, recall that, by definition, any monoid homomorphism m ∈ H(SΛ,SΛ)
satisfies m(0) = 0, where 0 ∈ S denotes the neutral element of S. Hence, we are
in the setup of Chapter 1.2 and can repeat the notions of supp(x), the support of
x ∈ SΛ, SΛ

fin, and δai ∈ SΛ
fin (i ∈ Λ, a ∈ S) based on 0. In particular, SΛ

fin = (SΛ
fin,+)

becomes a countable submonoid of SΛ. We equip it according to our conventions
with the discrete topology to make it a topological monoid as well.

Let S = (S,+), R = (R,⊕) and T = (T,⊗) be finite commutative monoids.
We denote the neutral elements of S, R and T by 0, 0 and 1, respectively. If S
is T-dual to R with respect to ψ : S ×R → T , then we define ψ : SΛ ×RΛ

fin → T
by

ψ(x, y) :=
⨂︂
i∈Λ

ψ(x(i), y(i)) (x ∈ SΛ, y ∈ RΛ
fin). (2.9)

Note that ψ is well-defined as for all but finitely many i ∈ Λ one has y(i) = 0,
and ψ( · ,0) = o due to property (iv) of the definition of duality, where o : S → T
is the function that is constantly 1. Using Lemma 1.1 we can prove the following
analogue of Proposition 2.6.

Proposition 2.8 (Duality of infinite product monoids). Let S, R and T be finite
commutative monoids. If S is T-dual to R with respect to ψ, then the topological
monoid SΛ is T-dual to the topological monoid RΛ

fin with respect to ψ from (2.9).

Proof. The properties (i) and (iii) of the definition of duality of topological mon-
oids follow directly from the corresponding properties of the duality of S and R
exactly in the same way as in the proof of Proposition 2.6.

The fact that ψ( · , y) and ψ(x, · ) are monoid homomorphisms for all y ∈ RΛ
fin

and for all x ∈ SΛ, respectively, are implied by properties (ii) and (iv) of the
duality of S and R and the definition of ψ. Since RΛ

fin is countable, this implies
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that ψ(x, · ) ∈ H(RΛ
fin,T) ∩ C(RΛ

fin,T). Recall the definition of R(f) from (1.3).
For y ∈ RΛ

fin we have that R(ψ( · , y)) = {j ∈ Λ : y(j) ̸= 0}, so ψ( · , y) satisfies
the conditions of Lemma 1.1 and hence also ψ( · , y) ∈ H(SΛ,T)∩C(SΛ,T). Thus,
we have proved the implication ⊃ in properties (ii) and (iv) of the definition of
duality of topological monoids.

To prove the implication ⊂ in property (iv), assume that g ∈ H(RΛ
fin,T) ∩

C(RΛ
fin,T). Then, with δbi ∈ RΛ

fin (i ∈ Λ, b ∈ R) being defined analogously to
(1.16), we define gi : R → T as gi(b) := g(δbi ) (i ∈ Λ, b ∈ R). The fact that
g ∈ H(RΛ

fin,T) implies that gi ∈ H(R,T), and property (iv) of the duality of
S and R implies that there exists an xi ∈ S such that gi = ψ(xi, · ). Defining
x ∈ SΛ by x(i) := xi, one has for y ∈ RΛ

fin that

g(y) = g
(︃⨁︂

i∈supp(y) δ
y(i)
i

)︃
=

⨂︂
i∈supp(y)

g
(︂
δ
y(i)
i

)︂
=

⨂︂
i∈supp(y)

gi(y(i))

=
⨂︂

i∈supp(y)
ψ(xi, y(i)) = ψ(x, y),

which finishes the proof of property (iv) of the definition of duality.
Lastly, we prove the implication ⊂ in property (ii) of the definition of duality

of topological monoids. Assume that f ∈ H(SΛ,T) ∩ C(SΛ,T). Then, as written
below Lemma 1.1, there exists a finite set ∆ ⊂ Λ such that f only depends on
the coordinates in ∆. We define for general Γ ⊂ Λ the element x⇂Γ∈ SΛ as

x⇂Γ (i) :=
⎧⎨⎩x(i) if i ∈ Γ,

0 else,
(i ∈ Λ). (2.10)

Then

f(x) = f(x⇂∆c +x⇂∆) = f(x⇂∆c) ⊗
⨂︂
i∈∆

f
(︂
δ
x(i)
i

)︂
.

But, as f does not depend on ∆c, we conclude that

f(x⇂∆c) = f(0⇂∆c) = f(0) = 1.

Analogously to above, we can now define y ∈ RΛ
fin by y(i) := yi for i ∈ ∆ and

y(i) := 0 for i ∈ ∆c, where yi ∈ R satisfies f(δx(i)
i ) = ψ(x(i), yi) for all values of

x(i). Then f = ψ( · , y), which finishes the proof of property (ii) of the definition
of duality. Thus, the proof is complete.

With this we have completed the objective outlined above Chapter 2.1: By
property (ii) of the definition of duality, if S is T-dual to R, then one can identify
H(SΛ,T) ∩ C(SΛ,T) with RΛ

fin. Similar to how we argued for ψbasic : SΛ ×
C(SΛ,T) → T in Chapter 1.4, we conclude the following.

Theorem 2.9 (Pathwise monoid duality). Let there exist an associative binary
operator + on the local state space S such that S = (S,+) is a commutative
monoid. Assume that R = (R,⊕) and T = (T,⊗) are further finite commutative
monoids so that S is T-dual to R with respect to ψ : S × R → T . Let G and ˆ︁G
be the generators from (1.8) and (1.34) defined via G ⊂ H(SΛ,SΛ), a countable
collection of local monoid homomorphisms. Assuming, as usual, that G satisfies
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(1.7), there exists a continuous-time Markov chain Y = (Yt)t≥0 with generatorˆ︁G, state space RΛ
fin and càglàd sample paths such that X, the interacting particle

system defined in Chapter 1.1, is pathwise dual to Y with respect to ψ, the duality
function defined in (2.9).

Proof. As RΛ
fin is countable the statement follows readily from Proposition 1.8

and Theorem 1.9. In particular, (1.30) is property (iii) of the definition of duality
(of topological monoids). As Hψ = H(SΛ,T) ∩ C(SΛ,T) by property (ii) of
the definition of duality, G ⊂ H(SΛ,SΛ) ∩ C(SΛ,SΛ) implies that every m ∈ G
preserves Hψ. Lastly, (1.35) follows from property (ii) of the definition of duality
and the fact that we have equipped RΛ

fin with the discrete topology.

Apart from the abstract definition in (1.37), the only information about the
dual maps we have obtained until now is their existence and their uniqueness.
For the practical use of the above theorem we need to know how to compute
the dual maps efficiently. The first step is to better understand local monoid
homomorphisms. The following lemma generalizes Lemma 2.4.

Lemma 2.10 (Local monoid homomorphisms). Let S = (S,+) be a finite com-
mutative monoid. Let (Mij)i,j∈Λ be an infinite matrix with values in H(S,S) such
that the set

∆ :=
{︂
(i, j) ∈ Λ2 : i ̸= j, Mij ̸= o

}︂
∪

{︂
(i, i) ∈ Λ2 : Mii ̸= id

}︂
(2.11)

is finite, where o ∈ H(S,S) denotes the function constantly equal to the neutral
element of S and id ∈ H(S,S) denotes the identity. Then setting

m[i](x) :=
∑︂
j∈Λ

Mij(x(j)) (i ∈ Λ, x ∈ SΛ) (2.12)

defines a local map m ∈ H(SΛ,SΛ). Conversely, each local map m ∈ H(SΛ,SΛ)
is of this form.

Proof. First assume that m is of the form (2.12). Then m is well-defined as ∆
from (2.11) is finite. Since (Mij)i,j∈Λ takes values in H(S,S), it follows readily
that m[i] ∈ H(SΛ,S) for all i ∈ Λ, thus m ∈ H(SΛ,SΛ). Let i ∈ Λ. One sees that

R(m[i]) =
⎧⎨⎩{j ∈ Λ \ {i} : (i, j) ∈ ∆} ∪ {i} if Mii ̸= o,

{j ∈ Λ \ {i} : (i, j) ∈ ∆} if Mii = o.

In both cases R(m[i]) satisfies the conditions of Lemma 1.1. Additionally,

D(m) =
{︂
i ∈ Λ : ∃j ∈ Λ : (i, j) ∈ ∆

}︂
is finite and it follows that m is local.

Now assume that m ∈ H(SΛ,SΛ) is local. Then, one has in particular that
m[i] : SΛ → S is continuous for all i ∈ Λ by the properties of the product
topology. Moreover, D(m) ⊂ Λ is finite and, by definition, for i ∈ D(m)c one has
m[j](x) = x(j) for all x ∈ SΛ. Due to Lemma 1.1, for each i ∈ D(m) the set
R(m[i]) is finite and we can identify m[i] with a map m[i]′ : SR(m[i]) → S. By
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Lemma 2.4 there exists a vector M i = (M i
j)j∈R(m[i]) with coordinates in H(S,S)

such that

m[i]′(x) =
∑︂

j∈R(m[i])
M i

j(x(j)) (i ∈ Λ, x ∈ SR(m[i])).

Defining now (Mij)i,j∈Λ as

Mij :=

⎧⎪⎪⎨⎪⎪⎩
M i

j if i ∈ D(m), j ∈ R(m[i]),
id if i /∈ D(m), j = i,

o else,
(i, j ∈ Λ),

gives a representation of m[i] for all i ∈ Λ as in (2.12) with the property that the
set ∆ from (2.11) is finite. This completes the proof.

With the help of the above lemma we can compute the dual map of each local
m ∈ H(SΛ,SΛ) with respect to ψ from (2.9). Let, as in Lemma 2.10, for any
monoid M the elements o, id ∈ H(M,M) denote the function constantly equal
to the neutral element and the identity, respectively.

Proposition 2.11 (Dual local homomorphisms I). Let S = (S,+), R = (R,⊕)
and T = (T,⊗) be finite commutative monoids so that S is T-dual to R with
respect to ψ : S ×R → T . For each local m ∈ H(SΛ,SΛ) there exists a local map
m̂ ∈ H(RΛ,RΛ) so that the restriction of m̂ to RΛ

fin is the unique dual map of m
with respect to ψ from (2.9). If (Mij)i,j∈Λ denotes the matrix from Lemma 2.10
such that (2.12) holds, then m̂ is given via

m̂[i](y) =
⨁︂
j∈Λ

ˆ︂Mji(y(j)) (i ∈ Λ, y ∈ RΛ), (2.13)

where, for i, j ∈ Λ, ˆ︂Mij ∈ H(R,R) is the (unique) dual map of Mij ∈ H(S,S)
with respect to ψ.

Proof. Let x ∈ SΛ, y ∈ RΛ
fin and let m̂ be defined via (2.13). Note that m̂

indeed maps RΛ
fin into itself as ∆ from (2.11) is finite for m and the (unique) dual

maps of o, id ∈ H(S,S) with respect to ψ are o ∈ H(R,R) and id ∈ H(R,R),
respectively. Moreover, Lemma 2.10 implies that m̂ ∈ H(RΛ,RΛ) and that it is
local. We compute that

ψ(m(x), y) =
⨂︂
i∈Λ

ψ
(︃∑︂

j∈Λ Mij(x(j)), y(i)
)︃

=
⨂︂
i,j∈Λ

ψ
(︂
Mij(x(j)), y(i)

)︂
=

⨂︂
i,j∈Λ

ψ
(︂
x(j), ˆ︂Mij(y(i))

)︂
=

⨂︂
j∈Λ

ψ
(︂
x(j),

⨁︂
i∈Λ

ˆ︂Mij(y(i))
)︂

= ψ(x, m̂(y)).

This completes the proof.

We reiterate the previous two results in words: Each local monoid homomor-
phism m : SΛ → SΛ can be characterized by an infinite matrix (Mij)i,j∈Λ via
(2.12). Its unique dual map with respect to ψ from (2.9), that exists due to
Proposition 2.7, is then characterized by transposing the matrix (Mij)i,j∈Λ and
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replacing all its entries by their unique dual maps with respect to ψ. Note that
Proposition 2.11 in particular implies that the dual process from Theorem 2.9
has 0 as a trap (where 0 denotes the neutral element of R).

The dual process found via Theorem 2.9 is basically an “interacting particle
system” with càglàd sample paths started in a finite configuration.2 Applying an
analogue of Theorem 1.3, if ˆ︁G from (1.34) also satisfies (1.7), i.e., if

sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m̂)(i) + |R↓

i (m̂)|
)︂
< ∞, (2.14)

then we can start the dual process Y also in an infinite initial state. More
concretely, Yu,s(y) (u ≥ s), defined as in (1.32), is then almost surely well-defined
for all y ∈ RΛ.

If ˆ︁G satisfies (2.14), then, by symmetry and Theorem 2.9, we can use G to
define a continuous-time Markov chain on SΛ

fin. Recall that, by Theorem 1.6, this
is also implied by (1.18). We note the following.

Lemma 2.12 (Summability conditions). Under the conditions of Theorem 2.9
the summability condition (1.18) implies the summability condition (2.14).

Proof. Let S be a finite commutative monoid, fix a local map m ∈ H(SΛ,SΛ)
and let (Mij)i,j∈Λ be the corresponding infinite matrix from Lemma 2.10. Due to
(2.13) one has that

D(m̂) =
{︂
i ∈ Λ : ˆ︂Mii ̸= id

}︂
∪

{︂
i ∈ Λ : ∃j ∈ Λ \ {i} : ˆ︂Mji ̸= o

}︂
=

{︂
i ∈ Λ : Mii ̸= id

}︂
∪

{︂
i ∈ Λ : ∃j ∈ Λ \ {i} : Mji ̸= o

}︂
,

from which one concludes with (2.12) that

D(m̂) ⊂ D(m) ∪
⋃︂

j∈D(m)
R(m[j]).

Moreover,

R(m̂[i]) =
{︂
j ∈ Λ : ˆ︂Mji ̸= o

}︂
=

{︂
j ∈ Λ : Mji ̸= o

}︂
=

{︂
j ∈ Λ : i ∈ R(m[j])

}︂
(i ∈ Λ).

Hence, recalling the definition of R↑
i (m) from (1.17) and noting that j /∈ D(m)

implies R(m[j]) = {j}, it follows that

|R(m̂[i])| = |R↑
i (m)| + 1D(m)c(i) (i ∈ Λ)

and we conclude that

|R↓
i (m̂)| ≤

⎧⎨⎩|R↑
i (m)| + 1D(m)c(i) if i ∈ D(m) ∪ ⋃︁

j∈Λ R↓
j(m),

0 else,
(i ∈ Λ).

2The quotation marks were added since we have defined an interacting particle system to
have càdlàg sample paths.
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If follows that∑︂
m∈G

rm
(︂
1D(m̂)(i) + |R↓

i (m̂)|
)︂

=
∑︂
m∈G

rm1D(m̂)(i)
(︂
1 + |R↓

i (m̂)|
)︂

≤
∑︂
m∈G

rm1D(m)∪
⋃︁

j∈Λ R↓
j (m)(i)

(︂
1 + |R↑

i (m)| + 1D(m)c(i)
)︂

≤
∑︂
m∈G

rm
(︂
1D(m)(i) + |R↑

i (m)| + |R↑
i (m)| + 1D(m)c∩

⋃︁
j∈Λ R↓

j (m)(i)
)︂

≤
∑︂
m∈G

rm
(︂
1D(m)(i) + 3|R↑

i (m)|
)︂

for i ∈ Λ. Hence,

sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m̂)(i) + |R↓

i (m̂)|
)︂

≤ sup
i∈Λ

∑︂
m∈G

rm1D(m)(i) + 3 sup
i∈Λ

∑︂
m∈G

rm|R↑
i (m)|

≤ 4 sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m)(i) + |R↑

i (m)|
)︂
,

implying the statement of the lemma.

It is important to note that, for the duality function ψ from (2.9), ψ(x, y)
does not have to be defined for all (x, y) ∈ SΛ ×RΛ. Hence, in general one cannot
hope for a pathwise duality between two “interacting particle systems”. However,
there exist exceptions as Proposition 2.16 below shows.

To conclude this subsection, we take a step back from our focus on interacting
particle systems. From the viewpoint of monoid duality, Theorem 2.9 may not be
formulated in its strongest form. As written in the remark below Proposition 2.7,
any m ∈ H(SΛ,SΛ) ∩ C(SΛ,SΛ) preserves H(SΛ,T) ∩ C(SΛ,T) and hence has a
unique dual map with respect to ψ from (2.9). So one could try to construct
a process on SΛ based on a countable collection of general continuous monoid
homomorphisms instead of only local ones. Theorem 2.9 then still applies if one
can guarantee that both processes are well-defined. This, however, is outside the
scope of the present thesis.

A further generalization, which would also allow the use of discontinuous
monoid homomorphisms, is not possible. Using the properties of the product
topology we can show that m : SΛ → SΛ preserves H(SΛ,T) ∩ C(SΛ,T) if and
only if m ∈ H(SΛ,SΛ) ∩ C(SΛ,SΛ).

Proposition 2.13 (No discontinuous maps have duals). Let S, R and T be finite
commutative monoids such that S is T-dual to R with respect to ψ. Let ψ be as
in (2.9). Then a map m : SΛ → SΛ has a dual map m̂ : RΛ

fin → RΛ
fin with respect

to ψ if and only if m ∈ H(SΛ,SΛ) ∩ C(SΛ,SΛ). The dual map m̂, if it exists, is
unique and satisfies m̂ ∈ H(RΛ

fin,RΛ
fin).

Proof. Let x, x1, x2, . . . ∈ SΛ. Assume that m : SΛ → SΛ preserves H(SΛ,T) ∩
C(SΛ,T) and that xn → x in the product topology. Fix an i ∈ Λ. As m preserves
H(SΛ,T) ∩ C(SΛ,T) = {ψ( · , y) : y ∈ RΛ

fin}, one has for all b ∈ R that

ψ(m(xn)(i), b) = ψ(m(xn), δbi ) −→
n→∞

ψ(m(x), δbi ) = ψ(m(x)(i), b)
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in the discrete topology on T , where δbi ∈ RΛ
fin is defined as in (1.16). This implies

that there exists an N = N(i, b) ∈ N such that ψ(m(xn)(i), b) = ψ(m(x)(i), b)
for all n ≥ N . Using the finiteness of R, setting N∗ := max{N(i, b) : b ∈ R},
one has for n ≥ N∗ that ψ(m(xn)(i), b) = ψ(m(x)(i), b) for all b ∈ R. Property
(i) of the definition of duality then implies that m(xn)(i) = m(x)(i) for n ≥ N∗,
hence m(xn) → m(x) in the product topology and m ∈ C(SΛ,SΛ). The claims
now follow from Proposition 2.7 and the remark below it.

2.4 Previously known special cases
While monoid duality was newly introduced in [Latz and Swart, 2023b], some
special cases yield dualities that were already known in the literature.

2.4.1 Additive duality
A lattice is a partially ordered set (L,≤) with the property that for every a, a′ ∈ L
there exist (necessarily unique) elements a ∨ a′ (the join) and a ∧ a′ (the meet)
such that a ∨ a′ is the least upper bound of a and a′, and a ∧ a′ is the greatest
lower bound of a and a′. It is easy to see that each finite lattice (L,≤) has a least
element 0 and a greatest element ⊤, i.e., 0 ≤ a ≤ ⊤ for all a ∈ L. If (L,≤) is a
lattice, then so is (LΛ,≤) equipped with the product order ≤, where x ∨ x′ and
x ∧ x′ are the coordinatewise join and meet of x, x′ ∈ LΛ.

It is easy to see that if (L,≤) is a lattice with least element 0, then L := (L,∨)
is a monoid with neutral element 0. For two lattices (L,≤) and (T,≤) an additive
map is, by definition, a map m : L → T that is a monoid homomorphism between
L and T, with T being defined analogously to L.

Following [Sturm and Swart, 2018, Subsection 2.4], we say that a partially
ordered set ( ˆ︁L,≤) is dual to (L,≤) if there exists a bijection L ∋ a ↦→ â ∈ ˆ︁L such
that

a1 ≤ a2 if and only if â2 ≤ â1 (a1, a2 ∈ L).

Clearly, each partially ordered set has a dual, and all duals of a partially ordered
set are naturally isomorphic. Moreover, (L,≤) is naturally isomorphic to the dual
of ( ˆ︁L,≤) when one sets â̂ := a. Note that if L has a least element 0, then 0̂ is the
greatest element of ˆ︁L and vice versa. If (L,≤) is a finite partially ordered set and
LΛ is equipped with the product order, then we define x̂(i) := ˆ︃x(i) (x ∈ LΛ, i ∈ Λ)
coordinatewise. Then naturally ( ˆ︁LΛ,≤) is dual to (LΛ,≤).

The following lemma says that the monoids (L,∨) and ( ˆ︁L,∨) are dual in the
sense defined in Chapter 2.2. In the definition of T below ∨ denotes the usual
maximum on {0, 1}.

Lemma 2.14 (Lattice duality). Let T := ({0, 1},∨). Let (L,≤) be a finite lattice
and let ( ˆ︁L,≤) be its dual lattice. Then L := (L,∨) is T-dual to ˆ︁L := ( ˆ︁L,∨) with
respect to ψadd : L× ˆ︁L → {0, 1} defined as

ψadd(a, b̂) :=
⎧⎨⎩1 if a ≰ b,

0 else,
(a ∈ L, b̂ ∈ ˆ︁L). (2.15)
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Proof. We write ψadd(a, b̂) = 1{a≰b}, the indicator function of the set {a ≰ b} =
{b̂ ≰ â} ⊂ L × ˆ︁L (a ∈ L, b̂ ∈ ˆ︁L). We check properties (i)–(iv) of the definition
of duality of commutative monoids from Chapter 2.2. By the symmetry of {a ≰
b} = {b̂ ≰ â}, it suffices to check properties (i) and (ii). For property (i) note
that ψadd(a, b̂) = ψadd(a′, b̂) for all b̂ ∈ ˆ︁L implies that a ≤ b if and only if a′ ≤ b
(b ∈ L). Setting first b = a and then b = a′ implies that a ≤ a′ ≤ a and hence
a = a′. To check property (ii), we observe that

ψadd(0, b̂) = 1{0≰b} = 0 (b̂ ∈ ˆ︁L)

and

ψadd(a ∨ a′, b̂) = 1{a∨a′≰b} = 1{a≰b} ∨ 1{a′≰b} = ψadd(a, b̂) ∨ ψadd(a′, b̂)

for all a, a′ ∈ L and b̂ ∈ ˆ︁L. This shows that ψadd( · , b̂) ∈ H(L,T) for all b̂ ∈ ˆ︁L.
Assume, conversely, that h ∈ H(L,T). To complete the proof, we must show

that h(a) = 1{a≰b} (a ∈ L) for some b ∈ L. Since h(0) = 0, the set {a : h(a) = 0}
is non-empty, so using the finiteness of L we can define b := ⋁︁{a : h(a) = 0}. We
observe that h(a) = 0 = h(a′) implies

h(a ∨ a′) = h(a) ∨ h(a′) = 0 ∨ 0 = 0.

It follows that h(b) = 0 and more generally

0 ≤ h(a) ≤ h(a) ∨ h(b) = h(a ∨ b) = h(b) = 0

for all a ∈ S with a ≤ b and hence h(a) = 0. Conversely, h(a) = 0 implies that a
is an element of {a′ : h(a′) = 0} and hence a ≤ b by the definition of b.

Note that setting R := ({0, 1},∧) we could have equivalently proved that L
is R-dual to ˆ︁L with respect to ψ̃add : L× ˆ︁L → {0, 1}, defined as

ψ̃add(a, b̂) :=
⎧⎨⎩1 if a ≤ b,

0 else,
(a ∈ L, b̂ ∈ ˆ︁L). (2.16)

If the local state space S is a lattice, the duality function ψ from (2.9) is, by
Lemma 2.14, given as ψadd : SΛ × ˆ︁SΛ

fin → {0, 1} defined by

ψadd(x, ŷ) :=
⎧⎨⎩1 if x ≰ y,

0 else,
(x ∈ SΛ, ŷ ∈ ˆ︁SΛ

fin). (2.17)

One concludes the following result from Theorem 2.9.

Theorem 2.15 (Additive duality). Let there exist a partial order on the local
state space S such that (S,≤) is a lattice. Let G and ˆ︁G be the generators from
(1.8) and (1.34) defined via G, a countable collection of local additive maps. As-
suming, as usual, that G satisfies (1.7), there exists a continuous-time Markov
chain Y = (Yt)t≥0 with generator ˆ︁G, state space ˆ︁SΛ

fin and càglàd sample paths
such that X = (Xt)t≥0, the interacting particle system defined in Chapter 1.1, is
pathwise dual to Y with respect to ψadd, the duality function defined in (2.17).
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We call an interacting particle system that satisfies the conditions of Theo-
rem 2.15 additive. Thus, we call an interacting particle system additive if it has a
generator from (1.8) defined via G, a countable collection of local additive maps.

Additive duality of interacting particle systems has been much studied and
has found many applications since the foundational work of Harris [1976, 1978]
and Griffeath [1979]. This foundational work has been concerned with the local
state space S = {0, 1}. Some of the most studied interacting particle systems
with local state space {0, 1} are additive, making Theorem 2.15 applicable to
them. Examples include the voter model and the contact process [Liggett, 1999].
Additive duality is one of the most important tools in their study.

To recover Harris and Griffeath’s formulation of additive duality from ours,
we have a closer look at the special case that (S,≤) is totally ordered, i.e., that
(S,≤) = ({0, . . . , n},≤) for some n ∈ N, where ≤ denotes the usual total order on
N0. We set ˆ︁S = {0, . . . , n}, with the corresponding bijection being {0, . . . , n} ∋
b ↦→ n − b ∈ {0, . . . , n}. Then ŷ = n − y for y ∈ {0, . . . , n}Λ, and we can write
ψadd from (2.17) as

ψadd(x, ŷ) :=
⎧⎨⎩1 if ∃i ∈ Λ : x(i) + ŷ(i) > n,

0 else,

for x ∈ {0, . . . , n}Λ and ŷ ∈ {0, . . . , n}Λ
fin. In the special case that n = 1 this

yields

ψadd(x, ŷ) :=
⎧⎨⎩1 if ∃i ∈ Λ : x(i) = ŷ(i) = 1,

0 else,
(x ∈ {0, 1}Λ, ŷ ∈ {0, 1}Λ

fin).

This is the formulation of the additive duality function also found in [Harris,
1976, Formula (1.1)] and [Griffeath, 1979, Formula (II.1.9)].

Pathwise dualities based on general dual lattices were studied in [Sturm and
Swart, 2018]. In particular, [Sturm and Swart, 2018, Theorem 33] gives the
statement of Theorem 2.15.3 In fact, without using the terminology of lattice
theory, additive duality for general finite lattices S was already studied by Foxall
[2016].

The study of general additive duality is able to explain previously found du-
alities. In particular, as discussed in [Sturm and Swart, 2018, Section 3.3], the
duality of the two-stage contact process discovered by Krone [1999] is based on
an additive duality, where the local state space S is of the form {0, 1, 2}.

Additive duality has the advantage that ψadd from (2.17) is always informa-
tive, as we will see in Chapter 2.6. In contrast to many other duality functions
arising from monoid duality, ψadd has the additional advantage that ψadd(x, ŷ)
is well-defined for all (x, ŷ) ∈ SΛ × ˆ︁SΛ. In fact, [Sturm and Swart, 2018, Theo-
rem 33] implies that if, apart from (1.7), also (2.14) holds, then we actually get
a pathwise duality between two “interacting particle systems” in the following
sense.

3In their definition of the duality function ψadd Sturm and Swart [2018] exchange the values
of 0 and 1, see [Sturm and Swart, 2018, Formula (23)], i.e., they use the “local duality function”
ψ̃add from (2.16). This, of course, does not change the assertion.
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Proposition 2.16 (Infinite dual process). Assume that, additionally to the as-
sumptions of Theorem 2.15, also (1.18) holds. Then, ˆ︁G from (1.34) can be de-
fined for function on ˆ︁SΛ as in Chapter 1.1, and there exists a Feller process
Y = (Yt)t≥0 with this generator, state space ˆ︁SΛ and càglàd sample paths such
that X = (Xt)t≥0, the interacting particle system defined in Chapter 1.1, is path-
wise dual to Y with respect to ψadd : SΛ × ˆ︁SΛ → {0, 1}, defined as in (2.17) but
allowing all ŷ ∈ ˆ︁SΛ in its second coordinate.
Proof. This follows readily from Lemma 2.12, the comment below (2.14), [Sturm
and Swart, 2018, Theorem 33] and the first half of Chapter 1.3.

2.4.2 Cancellative duality
Let n ∈ N. Denoting addition modulo n by ⊕, one has that M = ({0, . . . , n −
1},⊕) is a finite commutative monoid. Let multiplication modulo n be denoted
by ⊙. The following lemma says that M is M-dual to itself.
Lemma 2.17 (Modulo duality). Let n ∈ N and M = ({0, . . . , n− 1},⊕). Then
M is M-dual to itself with respect to ψcanc : {0, . . . , n − 1} × {0, . . . , n − 1} →
{0, . . . , n− 1} defined as

ψcanc(a, b) := a⊙ b (a, b ∈ {0, . . . , n− 1}).

Proof. By symmetry, it again suffices to check properties (i) and (ii) of the defi-
nition of duality. If n = 1 the proof is trivial. Hence assume that n ∈ N \ {1}. If
ψcanc(a, b) = ψcanc(a′, b) for all b ∈ {0, . . . , n− 1}, then in particular also

a = ψcanc(a, 1) = ψcanc(a′, 1) = a′ (a, a′ ∈ {0, . . . , n− 1}),

implying property (i).
To prove also property (ii), we note that ψcanc(0, b) = 0 for all b ∈ {0, . . . , n−1}

and

ψcanc(a⊕ a′, b) = (a⊕ a′) ⊙ b = (a⊙ b) ⊕ (a′ ⊙ b)
= ψcanc(a, b) ⊕ ψcanc(a′, b)

for all a, a′, b ∈ {0, . . . , n − 1}. This shows that ψcanc( · , b) ∈ H(M,M) for all
b ∈ {0, . . . , n− 1}.

Assume, conversely, that h ∈ H(M,M). Then, for each k ∈ {0, . . . , n − 1},
one has that

h(k) = h(1 ⊕ · · · ⊕ 1) = h(1) ⊕ · · · ⊕ h(1)
= ψcanc(1, h(1)) ⊕ · · · ⊕ ψcanc(1, h(1)) = ψcanc(k, h(1)),

where, in the three terms with the dots, there are exactly k summands. This
proves property (ii) of the definition of duality and the proof is complete.

For S = {0, . . . , n−1}, equipped with addition modulo n, the duality function
ψ from (2.9) is, by Lemma 2.17, given as ψcanc : {0, . . . , n − 1}Λ × {0, . . . , n −
1}Λ

fin → {0, . . . , n− 1} defined by

ψcanc(x, y) :=
⨁︂
i∈Λ

x(i) ⊙ y(i) (x ∈ {0, . . . , n− 1}Λ, y ∈ {0, . . . , n− 1}Λ
fin).

(2.18)
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In parallel to Chapter 2.4.1, we call a map m : {0, . . . , n − 1}Λ → {0, . . . , n −
1}Λ cancellative if m ∈ H(MΛ,MΛ), where the monoid M is defined as in
Lemma 2.17. One concludes the following result from Theorem 2.9.
Theorem 2.18 (Cancellative duality). Assume that S = {0, . . . , n− 1} for some
n ∈ N. Let G and ˆ︁G be the generators from (1.8) and (1.34) defined via G, a
countable collection of cancellative local maps m : {0, . . . , n− 1}Λ → {0, . . . , n−
1}Λ. Assuming, as usual, that G satisfies (1.7), there exists a continuous-time
Markov chain Y = (Yt)t≥0 with generator ˆ︁G, state space {0, . . . , n − 1}Λ

fin and
càglàd sample paths such that X = (Xt)t≥0, the interacting particle system defined
in Chapter 1.1, is pathwise dual to Y with respect to ψcanc, the duality function
defined in (2.18).

We call an interacting particle system that satisfies the conditions of Theo-
rem 2.18 cancellative. Thus, we call an interacting particle system cancellative
if it has a generator from (1.8) defined via G, a countable collection of local
cancellative maps.

For n = 2 one gets the classical cancellative duality relation from [Griffeath,
1979, Theorem III.1.5]. This classical form of cancellative duality has successfully
been applied in the study of various nonlinear voter models [Cox and Durrett,
1991, Handjani, 1999, Sturm and Swart, 2008a] and annihilating branching pro-
cesses [Bramson et al., 1991]. We will show in Chapter 2.6 that ψcanc is for all
n ∈ N weakly informative.

2.5 Computing monoid dualities
In Chapter 2.4 we saw that two of the most used dualities in the field of in-
teracting particle systems are special cases of monoid dualities. The question
becomes if we can find additional dualities that do not fit into one of the two
classes of Section 2.4. Due to Proposition 2.8 we focus on dualities of finite
commutative monoids that give rise to dualities of the corresponding product
monoids. The aim is to list all such dualities only involving monoids up to a
“reasonable size”. The number of commutative monoids, up to isomorphisms,
with 1, 2, 3, 4, 5, 6, 7, . . . elements is 1, 2, 5, 19, 78, 421, 2637, . . . (sequence A058131
in the OEIS [OEIS Foundation Inc., 2024]), so beyond cardinality four the sort
of brute force approach we are going to apply below quickly becomes impracti-
cal. Therefore, we settled on listing all dualities of finite commutative monoids
of cardinality up to four.

In order to compute all such dualities, the following proposition is crucial. It
links duality in the sense of Chapter 2.2 to the concept of the T-adjoint defined
in Chapter 2.1. For monoids M and T, we say that M is T-reflexive if the map
a ↦→ La defined in (2.2) is a bijection (and hence a monoid isomorphism from M
to M′′, the T-adjoint of the T-adjoint of M).
Proposition 2.19 (Duality and reflexivity). Let M = (M,+), N = (N,⊕), and
T = (T,⊗) be finite commutative monoids and let M′ and N′ be the T-adjoints
of M and N, respectively. Then:

(i) If M is T-dual to N with respect to ψ : M × N → T , then the map b ↦→
ψ( · , b) is a monoid isomorphism from N to M′ and the map a ↦→ ψ(a, · ) is
a monoid isomorphism from M to N′. Moreover, M and N are T-reflexive.
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(ii) If M is T-reflexive, then M is T-dual to M′ with respect to ψ : M ×
H(M,T) → T , defined as

ψ(a, h) := h(x) (a ∈ M, h ∈ H(M,T)). (2.19)

Proof. Let 0, 0 and 1 denote the neutral elements of M, N and T, respectively.
Assume that M is T-dual to N with respect to ψ : M ×N → T . Property (iv) of
the definition of duality implies that ψ(a, b⊗b′) = ψ(a, b)⊗ψ(a, b′) and ψ(a,0) =
1, so the map b ↦→ ψ( · , b) is a monoid homomorphism from N to M′. By
property (ii) of the definition of duality, the map b ↦→ ψ( · , b) is surjective and by
property (i) of the definition of duality it is injective, so we conclude that it is a
monoid isomorphism. Since N is T-dual to M with respect to ψ†(b, a) := ψ(a, b),
the same argument shows that the map a ↦→ ψ(a, · ) is a monoid isomorphism
from M to N′.

If we identify N with M′ using the isomorphism b ↦→ ψ( · , b), then we can
identify the function La : H(M,T) → T defined in (2.2) with the function La :
N → T defined as La(b) := ψ(a, b) (a ∈ M , b ∈ N). This means that the map
a ↦→ La from M to H(M′,T) corresponds to the map a ↦→ ψ(a, · ) from M to
H(N,T), which we have just shown to be a monoid isomorphism. This proves
that M is T-reflexive, and by the symmetry between M and N, the same is true
for N.

Assume, conversely, that M is T-reflexive. To show that M is T-dual to M′

with respect to ψ defined in (2.19), we must show that:

(i) ψ(a, h) = ψ(a, h′) for all a ∈ M implies h = h′,

(ii) H(M,T) =
{︂
ψ( · , h) : h ∈ H(M,T)

}︂
,

(iii) ψ(a, h) = ψ(a′, h) for all h ∈ H(M,T) implies a = a′,

(iv) H(M′,T) =
{︂
ψ(a, · ) : a ∈ M

}︂
.

Properties (i) and (ii) are trivial consequences of the definition of ψ. Anal-
ogously, if we define ψ′ : H(M,T) × H(M′,T) → T by ψ′(h, L) := L(h)
(h ∈ H(M,T), L ∈ H(M′,T)), then

(i) ψ′(h, L) = ψ′(h, L′) for all h ∈ H(M,T) implies L = L′,

(ii) H(M′,T) =
{︂
ψ′( · , L) : L ∈ H(M′,T)

}︂
.

Since by assumption, M is T-reflexive, we may identify M with M′′ via a ↦→ La.
As we have ψ′(h, La) = La(h) = h(a) = ψ(a, h) properties (i) and (ii) of the
duality function ψ′ imply properties (iii) and (iv) of the duality function ψ.

Due to Proposition 2.19, the strategy is to list all 26 commutative monoids
of cardinality between two and four and then compute H(M,T) for each pair
(M,T) = ((M,+), (T,⊗)) of monoids from this list. If H(M,T) has at most four
elements, then M′ = (H(M,T),⊗), the T-adjoint of M, has to be isomorphic to
one of the monoids from the original list, and using the previous computations
we can check whether M′′ is isomorphic to M, i.e., whether there exists a monoid
isomorphism between M and M′′. By definition of reflexivity we then still have
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M0 0
0 0

M1 0 1
0 0 1
1 1 1

M2 0 1
0 0 1
1 1 0

M3 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

M4 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

M5 0 1 2
0 0 1 2
1 1 0 2
2 2 2 2

M6 0 1 2
0 0 1 2
1 1 2 1
2 2 1 2

M7 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 2.1: Cayley tables of the monoids M0, . . . ,M7.

to check if a ↦→ La from (2.2) is indeed one such monoid isomorphism. As M
and M′′ are isomorphic, they have the same cardinality and it suffices to show
that for all a, a′ ∈ M with a ̸= a′ also La ̸= La′ . If M is indeed T-reflexive, then,
by Proposition 2.19 (ii), M is T-dual to M′ with respect to ψ from (2.19). By
Proposition 2.19 (i) all dualities of finite commutative monoids arise in this way.

We start by listing all commutative monoids with at most four elements. For
those with precisely four elements, we have used [Forsythe, 1955] as our source.
For a monoid of cardinality n, we have enumerated its elements 0, . . . , n−1 where
0 always denotes the neutral element. To enumerate the other elements, we have
applied a specific set of rules outlined in [Latz and Swart, 2023b, Section 5.1].4

We have named the monoids M0, . . . ,M26, where M0 is the one monoid with 1
element, M1 and M2 are the commutative monoids with 2 elements, M3, . . . ,M7
are the ones with 3 elements and M8, . . . ,M26 are the ones with 4 elements.
Also for the ordering of the monoids within such a group we have used specific
rules, again outlined in [Latz and Swart, 2023b, Section 5.1]. We list the Cayley
tables (or operation tables) of M0, . . . ,M7 in Table 2.1. The Cayley tables of
M8, . . . ,M26 are given in Table 2.4 (found at the end of Chapter 2).

The above explained strategy how to compute all dualities of commutative
monoids with cardinality at most four was implemented in Mathematica [Wolfram
Research Inc., 2024]. The corresponding programs can be accessed as attachments
to the online version of this thesis, which is available in the online repository
https://dspace.cuni.cz/.5

We add some details regarding the implementation. The list of Cayley tables
of the monoids M1, . . . ,M26 was given as an input. If one were to extend the code
to also handle monoids of cardinality five one would probably have to compute the
(Cayley tables of the) 78 commutative monoids of cardinality five as we are not
aware of a corresponding source. For M = (M,+),T = (T,⊗) ∈ {M1, . . . ,M26}
we compute H(M,T) by brute force, by checking for every function from M

4Since this set of rules also uses notions from the theory of semirings, which we have moved
in this thesis to Chapter 3, we do not repeat the rules in this thesis.

5To locate this thesis, simply type its title or the author’s name in the search bar.
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to T whether it is a monoid homomorphism. In all cases where H(M,T) has
at most four elements, we calculate the Cayley table of (H(M,T),⊗) and find
the commutative monoid from our list that (H(M,T),⊗) is isomorphic to. The
result of this is a table of size 26 × 26 that lists for each pair (M,T) the monoid
N such that (H(M,T),⊗) ∼= N, if N ∈ {M0, . . . ,M26}. Using this table, we find
all triples (M,N,T) of monoids of cardinality between two and four such that
N ∼= (H(M,T),⊗) and M ∼= (H(N,T),⊗).

For each such triple (M,N,T) = ((M,+), (N,⊕), (T,⊗)) there exists a mon-
oid isomorphism N ∋ b ↦→ fb ∈ H(M,T) and we define ψ : M ×N → T as

ψ(a, b) := fb(a) (a ∈ M, b ∈ N). (2.20)

Recall from the outlined strategy above that we are left to check whether for
a, a′ ∈ M with a ̸= a′ also La ̸= La′ . Equivalently, we can check whether the
functions ψ(a, · ) with a ranging through M are all different from each other.6

In this way we identified 110 triples (M,N,T) = ((M,+), (N,⊕), (T,⊗)) of
monoids of cardinality between two and four such that N ∼= (H(M,T),⊗) and
M ∼= (H(N,T),⊗). In all 110 cases the check for reflexivity came back positive,
implying that M is indeed T-dual to N with respect to ψ from (2.20). A lot
of these 110 cases are trivially related to each other. We will use the following
reductions to restrict the number of duality functions and then list only those
that are “essentially” different.

• In many of the 110 examples we have found, it turns out that T contains a
smaller submonoid ˜︁T so that the duality function ψ takes values in ˜︁T. For
this reason, we will only list examples that are “minimal” in the sense that
the function values {ψ(a, b) : a ∈ M, b ∈ N} generate the monoid T.

• If M is T-dual to N with respect to ψ and N ∋ b ↦→ b′ ∈ N is an iso-
morphism, then M is T-dual to N with respect to ψ′ defined as ψ′(a, b) :=
ψ(a, b′) (a ∈ M, b ∈ N). If several duality functions are related in this way,
then we will list only one of them.

• If M is T-dual to N with respect to ψ, then N is T-dual to M with respect
to ψ† defined as ψ†(b, a) := ψ(a, b) (b ∈ N, a ∈ M). If two duality functions
are related in this way, then we will list only one of them.

After these reductions, we end up with 22 dualities that are “essentially” different.
In all examples that are minimal in the sense defined above, we observe that the
cardinalities of M and N are the same and that the cardinality of T is not larger
than the cardinalities of M and N . Table 2.2 lists all dualities of commutative
monoids of cardinality two or three. Each time the duality is stated first. Below,
the corresponding duality function is given in table form, where the upper left
corner indicates the monoids from which the outer elements come. For a T-
duality with T = (T,⊗), the entries in the inner part of the tables are to be
interpreted as elements of T . All dualities of commutative monoids of cardinality
four are listed in Table 2.5 (found at the end of Chapter 2).

6Note that the functions ψ( · , b) with b ranging through N are trivially all different from
each other, since N ∋ b ↦→ fb ∈ H(M,T) is a monoid isomorphism.
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M1 is M1-dual to M1
w.r.t. ψ1:

M1
M1 0 1

0 0 0
1 0 1

M2 is M2-dual to M2
w.r.t. ψ2:

M2
M2 0 1

0 0 0
1 0 1

M3 is M3-dual to M3
w.r.t. ψ3:

M3
M3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

M4 is M1-dual to M4
w.r.t. ψ4:

M4
M4 0 1 2

0 0 0 0
1 0 0 1
2 0 1 1

M5 is M5-dual to M6
w.r.t. ψ5:

M5
M6 0 1 2

0 0 0 0
1 0 1 0
2 0 2 2

M6 is M6-dual to M6
w.r.t. ψ6:

M6
M6 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

M7 is M7-dual to M7
w.r.t. ψ7:

M7
M7 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Table 2.2: Dualities of monoids of cardinality 2 and 3. Green tables indicate cases
where ψk, defined as in (2.9) but with ψ replaced by ψk, is weakly informative,
while red tables indicate cases where ψk is not weakly informative. Compare
Chapter 2.6.

If ψk denotes one of the 22 identified duality functions we denote by ψk the
duality function defined as in (2.9) but with ψ replaced by ψk. Recall that if S
is T-dual to R with respect to ψk, then, by Proposition 2.8, SΛ is dual to RΛ

fin
with respect to ψk.

We note some observations. The monoids corresponding to the four lattices
with 2–4 elements are M1 = ({0, 1},∨), M4 = ({0, 1, 2},∨), M11 ∼= M1 × M1,
and M15 = ({0, 1, 2, 3},∨), where ∨ each time is the usual maximum. Their
corresponding duality functions ψ1, ψ4, ψ11 and ψ15 are hence of the form described
in Lemma 2.14. Note that these are also the only M1-dualities we found.

The operators of the monoids M2,M7 and M26 are addition modulo 2,3 and
4, respectively. The duality functions ψ2, ψ7 and ψ26 correspond to multiplication
modulo n, as we saw in Lemma 2.17.

Since Mk is Mk-dual to Mk (k = 1, 2), Proposition 2.6 tells us that M11 ∼=
M1 ×M1 is M1-dual to M11 ∼= M1 ×M1 and that M25 ∼= M2 ×M2 is M2-dual to
M25 ∼= M2 ×M2. The corresponding duality functions are ψ11 and ψ25. Since M1
and M2 are naturally submonoids of M23 ∼= M1 × M2, using the fact that Mk is
Mk-dual to Mk (k = 1, 2), one can check that Mk is M23-dual to Mk (k = 1, 2)
and hence, by Proposition 2.6, M23 ∼= M1 ×M2 is M23-dual to M23 ∼= M1 ×M2.
It is easy to check that M1 and M2 are also both submonoids of M5, and by the
same argument M23 is also M5-dual to M23. The duality functions in these last
two cases are ψ23 and ψ235.
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2.6 Representations of monoids
Having identified several new dualities, we now aim to study their usefulness
in the sense of Chapter 1.5, i.e., we check whether the corresponding duality
functions are (weakly) informative. Recall that informativeness is only defined
for duality functions that take values in a vector space. As already stated in
Chapter 1.5, there exists a concrete strategy how to prove informativeness for a
duality function that takes values in T ⊂ C.

Proposition 2.20 (Informativeness of monoid dualities). Let S = (S,+), R =
(R,⊕) and T = (T,⊗) be finite commutative monoids and assume that S is T-
dual to R. Then ψ from (2.9) is informative if T is a submonoid of (C, · ), where
· denotes the usual multiplication.

Proof. By definition, we have to prove that the family

H := (ψ( · , y))y∈RΛ
fin

is distribution determining. Both properties from Lemma 1.12 follow directly
from the duality of SΛ and RΛ

fin. Indeed, property (i) of the definition of duality
implies that

ψ(x, y1) ·ψ(x, y2) = ψ(x, y1 ⊕ y2) (x ∈ SΛ, y1, y2 ∈ RΛ
fin),

and the fact that H separates points follows from property (ii) of the definition
of duality. Hence, the claim follows from Lemma 1.12.

It is easy to see that all finite submonoids of (C, · ) (apart from ({0}, · ))
consist of the multiplicative group of n-th roots of unity for some n ∈ N, either
with or without 0 ∈ C added. Those with cardinality up to four are isomorphic
to M0,M1,M2,M5,M7,M18 and M26 from Chapter 2.5. The T-dualities with
T ∈ {M0,M1,M2,M5,M7,M18} identified in Table 2.2 and Table 2.5 are those
with duality function ψk for

k ∈ {1, 2, 4, 5, 7, 11, 15, 16, 17, 18, 21, 235, 25, 26}.

If follows that for the k’s above there exist monoid isomorphisms γk into the
corresponding submonoid of (C, · ) such that γk ◦ψk is informative. This makes
ψk weakly informative. Note that if ψk : MΛ ×NΛ

fin → T , then

γk ◦ψk(x, y) =
∏︂
i∈Λ

γk
(︂
ψk(x(i), y(i))

)︂
(x ∈ MΛ, y ∈ NΛ

fin).

We consider the examples of Chapter 2.4 in more detail. The dualities from
Lemma 2.14 are all M1-dualities and γ1 : {0, 1} → {0, 1} can be written as
γ1(z) = 1 − z, where − denotes the usual subtraction in R. Hence, γ1 ◦ ψadd =
1 − ψadd is informative for ψadd from (2.17). If follows that also ψadd itself is
informative.

The dualities from Lemma 2.17 are ({0, . . . , n−1},⊕)-dualities (n ∈ N), were
⊕ denotes addition modulo n. Let n ∈ N and fix a primitive n-th root of unity
z ∈ C, i.e., zn = 1 but zm ̸= 1 for m ∈ {1, . . . , n− 1}. Then γ : {0, . . . , n− 1} →
{1, z, . . . , zn−1} defined as γ(k) := zk (k ∈ {0, . . . , n−1}) is a monoid isomorphism
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from ({0, . . . , n − 1},⊕) to ({1, z, . . . , zn−1}, · ). Hence, γ ◦ ψcanc is informative
for ψcanc from (2.18). It is natural to ask whether ψcanc itself is also informative,
where one would compute the expectation in [0, n − 1] ⊂ R. For n = 2 this is
clearly the case but for n ≥ 3 it is not clear how to prove or disprove this. For
applications to interacting particle systems, however, this question does not really
matter, as one can always work with the informative duality function γ ◦ψcanc.

To further investigate T-dualities in the case that the monoid T is not iso-
morphic to a submonoid of (C, · ), we provide some additional notions. Let
A = (A,+, · ) be a unital commutative algebra with (multiplicative) unit I.7 A
multiplicative representation of a commutative monoid M = (M,+) with neutral
element 0 is a map γ : M → A so that γ(a+a′) = γ(a) ·γ(a′) and γ(0) = I. Then
(γ(M), · ) is a submonoid of (A, · ) and γ : M → γ(M) is a (surjective) monoid
homomorphism. We say that γ is faithful if this map (with codomain γ(M)) is
injective (and thus a monoid isomorphism).

Let M = (M,+), N = (N,⊕) and T = (T,⊗) be (topological) monoids.
Assume that T is finite and that M is T-dual to N with respect to ψ : M×N → T .
Let γ : T → A be a faithful multiplicative representation of T. It follows from
the definition of duality of (topological) monoids that M is also (γ(T ), · )-dual
to N with duality function γ ◦ ψ. If ψ is weakly informative and if the elements
of γ(T ) are affinely independent, then Proposition 1.10 and the faithfulness of γ
imply that γ ◦ ψ is informative.

We say that γ is a good multiplicative representation of ψ if γ is a faithful
multiplicative representation of T and γ ◦ ψ is informative. Hence, all the γ’s
we have already seen in this subchapters are in fact good multiplicative represen-
tations of the corresponding duality function in the unital commutative algebra
(C,+, · ). The next result shows that for each weakly informative duality func-
tion arising from a duality of (topological) commutative monoids, we can find
a good multiplicative representation, at least if the duality function maps to a
finite monoid.

Proposition 2.21 (Existence of good representations). Let M = (M,+), N =
(N,⊕) and T = (T,⊗) be (topological) commutative monoids, assume that T is
finite and that M is T-dual to N with respect to ψ : M × N → T . Then there
exist a finite-dimensional real unital commutative algebra A = (A,+, · ) and a
faithful representation γ : T → A such that γ ◦ ψ is informative if ψ is weakly
informative.

Proof. Let RT be the collection of all functions mapping from T to R. The space
(RT ,+), where + denotes the usual (pointwise) sum of real-valued functions, is
a finite-dimensional vector space on which we can define the product ∗ as

(g ∗ h)(a) :=
∑︂
b,c∈T

g(b)h(c)1{a}(b⊗ c) (g, h ∈ RT , a ∈ T ),

where the sum is the usual sum in R. One readily checks that this makes
(RT ,+, ∗) a finite-dimensional real unital algebra with unit 1{0}. Defining γ :
T → RT as γ(a) = 1{a} (a ∈ T ) then gives a faithful multiplicative representa-
tion of T, and the elements of γ(T ) are clearly affinely independent. The claim
then follows from Proposition 1.10 and the faithfulness of γ as stated above.

7Recall that an algebra over a field is a vector space equipped with a bilinear product.
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Proposition 2.21 effectively says that weak informativeness is sufficient for
applications to interacting particle systems: For a weakly informative duality
function we can always use the faithful representation given in the proof of Propo-
sition 2.21 in order to work only with expectations.

Proposition 2.21 moreover yields a procedure to systematically check the du-
ality functions from Chapter 2.5 that do not map into a (monoid isomorphic to
a) submonoid of (C, · ) for weak informativeness. Let M = (M,+), N = (N,⊕)
and T = (T,⊗) be finite commutative monoids and assume that M is T-dual
to N with respect to ψ : M × N → T . One can write ψ in matrix form and
then replace all entries by unit column vectors as indicated in the proof above.
Let the resulting zero-one matrix be denoted by B. If the equation Bx = 0 has
a non-trivial solution whose entries sum to zero, then one can conclude that ψ
is not weakly informative and the same must hold for ψ : MΛ × NΛ

fin → T . On
the other hand, if Bx = 0 only has the trivial solution, one can continue with
ψ2 : M2 ×N2 → T defined as

ψ2((a1, a2), (b1, b2)) := ψ(a1, b1) ⊗ ψ(a2, b2) (a1, a2 ∈ M, b1, b2 ∈ N)

and repeat the above procedure. Again, if there is a non-trivial solution of the cor-
responding linear equation, one can conclude that ψ is not weakly informative. In
the opposite case one can continue with ψ3, defined analogously to ψ2. Of course,
one can never conclude weak informativeness from this iterative procedure.

We illustrate the procedure on ψ3 from Table 2.2. As ψ3 written in matrix form
contains a row with three different entries, the above indicated test matrix B has
to contain the rows (1, 0, 0), (0, 1, 0) and (0, 0, 1), so Bx = 0 cannot have a non-
trivial solution. Hence, we continue with ψ2

3. Ordering the elements of {0, 1, 2}2

as (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), the matrix form of ψ2
3

and a test matrix B are given as

ψ2
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 2 0 2 2 0 2 2
0 0 0 1 1 1 2 2 2
0 1 2 1 2 2 2 2 2
0 2 2 1 2 2 2 2 2
0 0 0 2 2 2 2 2 2
0 1 2 2 2 2 2 2 2
0 2 2 2 2 2 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, B was constructed by adding for each row ψ2
3 first a zero-one row indicating

the position of the 0’s, and then a zero-one row indicating the position of the 1’s.
Afterwards, repeating rows were deleted. As B has only 8 rows, the equation
Bx = 0 has to have a non-trivial solution. In fact, the solution set of Bx = 0
(over R9) is given as

L =
{︂
(0, 0, 0, 0, a,−a, 0,−a, a)⊺ : a ∈ R

}︂
.

It follows that ψ3 : {0, 1, 2}Λ × {0, 1, 2}Λ
fin → {0, 1, 2} is not weakly informa-

tive. Indeed, pick some i, j ∈ Λ with i ̸= j and let X ∼ 1/2δx1 + 1/2δx2 and
X ′ ∼ 1/2δx3 + 1/2δx4 be random variables with values in {0, 1, 2}Λ, where δx ∈
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M1({0, 1, 2}Λ) is the Dirac measure on x ∈ {0, 1, 2}Λ and x1, x2, x3, x4 ∈ {0, 1, 2}Λ

are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,
(k ∈ Λ).

Then, the distributions of ψ3(X, y) and ψ3(X ′, y) are identical for all y. Indeed,

ψ3(X, y) d= ψ3(X ′, y) d=

⎧⎪⎪⎨⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (1, 0)},
2 else,

(y ∈ {0, 1, 2}Λ
fin),

where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with values in {1, 2}.
In a very similar way one finds that also ψk for

k ∈ {6, 9, 10, 13, 22, 24}

is not weakly informative, where every time the second step in the iterative pro-
cedure yields the counterexample. We do not have an explanation why this is the
case. Corresponding examples of two random variables X and X ′ are collected
in Appendix A.1.

We are left with ψ23 as the only duality function from Chapter 2.5 for which
we have not yet decided whether it is weakly informative. However, the existence
of the duality function ψ235 helps. By Table 2.5 one has that

ψ23(a, b) = ψ23(a′, b′) implies ψ235(a, b) = ψ(a′, b′)

for a, a′, b, b′ ∈ {0, 1, 2}. It follows that for two random variables X,X ′ with
values in {0, 1, 2}Λ and for y ∈ {0, 1, 2}Λ

fin,

ψ23(X, y) d= ψ23(X ′, y) implies ψ235(X, y) d= ψ235(X ′, y),

and, due to the weak informativeness of ψ235, the duality function ψ23 is also
weakly informative. Hence, we have for all duality functions from Chapter 2.5
checked whether they are weakly informative. The results are summarized in
Table 2.3 and encoded with colors in Table 2.2 and in Table 2.5. We see that the
majority of the identified duality functions are weakly informative. However, the
only weakly informative duality function not mapping into a (monoid isomorphic
to a) submonoid of (C, · ) is ψ23, and its weak informativeness follows from a
duality function mapping into a (monoid isomorphic to a) submonoid of (C, · ).
Thus, judging from the examples we have identified, (weak) informativeness seems
to be closely related to mapping into a submonoid of (C, · ).
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ψk weakly informative not weakly informative

k 1,2,4,5,7,11,15,16,17,18,21,23,235,25,26 3,6,9,10,13,22,24

Table 2.3: Weak informativeness of the duality functions from Chapter 2.5.

2.7 Applying monoid duality
To illustrate the application of monoid duality in the study of interacting particle
systems, we consider an example. In the first two subchapters below we repeat
some (mostly) known statements for contact processes from the point of view of
the present thesis. In Chapter 2.7.3 we introduce a new type of contact process,
whose invariant laws we study by means of monoid duality in Chapter 2.7.4 and
Chapter 2.7.5.

2.7.1 Contact processes
Assume that S = {0, 1} and Λ = Zd for some d ∈ N. Let ∨ and ⊕ denote
the binary operators of M1 and M2, respectively. In words, this says that for
a, a′ ∈ {0, 1} the quantity a ∨ a′ is the maximum of a and a′, and a ⊕ a′ is the
sum of a and a′ modulo 2. For all i, j ∈ Zd, we define “infection maps” inf∗

ij :
{0, 1}Zd → {0, 1}Zd (∗ ∈ {∨,⊕}) and a “death map” dthi : {0, 1}Zd → {0, 1}Zd as

inf∗
ij(x)(k) :=

⎧⎨⎩x(i) ∗ x(j) if k = j,

x(k) else,
, dthi(x)(k) :=

⎧⎨⎩0 if k = i,

x(k) else,

(x ∈ {0, 1}Zd
, k ∈ Zd).

(2.21)

We say that i, j ∈ Zd are nearest neighbors and write i ∼ j if ∥i− j∥1 = 1. As in
Chapter 1.1 we define generators via

G∗f(x) := λ
∑︂

i,j∈Zd:i∼j

{︂
f(inf∗

ij(x)) − f(x)
}︂

+ δ
∑︂
i∈Zd

{︂
f(dthi(x)) − f(x)

}︂
(2.22)

for ∗ ∈ {∨,⊕}, where λ, δ ≥ 0 are model parameters. Note that, independently
of the choice of ∗,

sup
i∈Λ

∑︂
m∈G

rm
(︂
1D(m)(i) + |R↓

i (m)|
)︂

= δ + 6dλ < ∞,

i.e., (1.7) is satisfied. Hence, due to Theorem 1.3, there exist interacting particle
systems with generators G∨ and G⊕. The process C = (Ct)t≥0 with generator
G∨ is the well-known contact process on Zd with infection rate λ and death rate
δ (introduced by Harris [1974]). We denote this process shortly as CP(λ, δ).
The process D = (Dt)t≥0 with generator G⊕ was introduced as the annihilating
branching process in [Bramson et al., 1991]. We refer to it as the cancellative
contact process (cCP(λ, δ)) to stress the similarity of the two processes, which
differ only in the type of operator used in the definition of the infection maps
inf∗

ij (∗ ∈ {∨,⊕}).
In words, we can describe the dynamics of the (cancellative) contact process

as follows:
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• At each site i ∈ Zd sit two “exponential clocks”, one with rate 2dλ for
reproduction and one with rate δ for death.

• If the clock for reproduction at site i ∈ Zd rings, the corresponding in-
dividual reproduces by choosing a neighboring site j uniformly at random
and adding its local state to the local state at j, where addition has to be
interpreted in the sense of the operator ∗ ∈ {∨,⊕}.

• If the “death clock” at site i rings, individual i dies, which means that its
local state is replaced by 0, regardless of its previous value.

As clearly

inf∗
ij(0) = dthi(0) = 0 (i, j ∈ Zd, ∗ ∈ {∨,⊕}),

we may define supp(x) (x ∈ {0, 1}Zd), δi (i ∈ Zd), and {0, 1}Zd

fin as in Chapter 1.2,
now based on 0 ∈ {0, 1}.

It follows from Lemma 2.10 that, for all i, j ∈ Zd, inf∨
ij is additive, that inf⊕

ij

is cancellative, and that dthi is both additive and cancellative. This makes the
CP an additive interacting particle system and the cCP a cancellative interacting
system in the sense of the definitions from Chapter 2.4.

Let ψadd : {0, 1}Zd × {0, 1}Zd

fin → {0, 1} be the additive duality function from
(2.17) and let ψcanc : {0, 1}Zd × {0, 1}Zd

fin → {0, 1} be the cancellative duality
function from (2.18). Then it follows from Proposition 2.11 that dthi is “self-
dual” with respect to both ψadd and ψcanc in the sense that

ψadd(dthi(x), y) = ψadd(x, dthi(y)) and ψcanc(dthi(x), y) = ψcanc(x, dthi(y))

for all i ∈ Zd, x ∈ {0, 1}Zd , y ∈ {0, 1}Zd

fin.8 The same result implies that inf∨
ij is

dual to (the restriction to {0, 1}Zd

fin of) inf∨
ji with respect to ψadd and that inf⊕

ij is
dual to (the restriction to {0, 1}Zd

fin of) inf⊕
ji with respect to ψcanc (i, j ∈ {0, 1}Zd).

One concludes from Theorem 2.15 that the contact process C is (pathwise) “self-
dual” with respect to ψadd and from Theorem 2.18 that the cancellative contact
process D is (pathwise) “self-dual” with respect to ψcanc in the sense that their
dual processes are càglàd versions of the original processes restricted to {0, 1}Zd

fin.

2.7.2 Long-time behavior of contact process
To speak about the long-time behavior of the CP and the cCP, we define shift
operators θi : {0, 1}Zd → {0, 1}Zd by

(θix)(j) := x(j − i) (i, j ∈ Zd, x ∈ {0, 1}Zd). (2.23)

We say that a probability measure µ on {0, 1}Zd is homogeneous if µ = µ ◦ θ−1
i

(i ∈ Zd).9 We denote the CP again by C = (Ct)t≥0 and the cCP by D = (Dt)t≥0.
8More precisely, dthi : {0, 1}Zd → {0, 1}Zd (i ∈ Zd) is dual to its restriction to {0, 1}Zd

fin with
respect to both ψadd and ψcanc.

9The property to be homogeneous was call “shift-invariant” in [Latz and Swart, 2023a]. As
we investigate (time-) invariant distribution, we decided to avoid this double use of the word
“invariant” in this thesis.
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As 0 is the only trap for both the CP and the cCP, a probability measure µ ∈
M1({0, 1}Zd) is C-non-trivial in the sense of the definition in Chapter 1.2 if and
only if it is D-non-trivial if and only if µ({0}) = 0. Moreover, the notion of
survival from Chapter 1.2 applies to both the CP and the cCP.

It is well-known [Swart, 2022, Theorem 6.35] that the CP(λ, δ) with λ+ δ > 0
started in a C-non-trivial homogeneous distribution converges weakly to a (time-)
invariant distribution ν̄ called the upper invariant law of the contact process
(compare Chapter 4.5). Similarly, it is known [Bramson et al., 1991, Theorem 1.2
& Theorem 1.3] that the cCP(λ, δ) with λ + δ > 0 started in a D-non-trivial
homogeneous distribution converges weakly to an invariant distribution ν̇, which
we call, in accordance with [Sturm and Swart, 2008a], the odd upper invariant
law of the cancellative contact process.

Letting δ0 denote the Dirac measure concentrated on the “all 0” configuration
0, ν̄ and ν̇ may or may not differ from δ0 depending on the choice of the model
parameters λ and δ. For a CP(λ, δ) (λ + δ > 0) there exists a critical value
λCP = λCP(d) ∈ (0,∞) (dependent on the dimension d) such that ν̄ ̸= δ0 if and
only if λ/δ > λCP [Liggett, 1985, Chapter IV.1], [Bezuidenhout and Grimmett,
1990]. Here and in the following we set x/0 = ∞ for x ∈ (0,∞). For the cCP we
can define λ±

cCP = λ±
cCP(d) as

λ−
cCP := inf{λ ≥ 0 : the odd upper inv. law of the cCP(λ, 1) does not equal δ0},
λ+

cCP := sup{λ ≥ 0 : the odd upper inv. law of the cCP(λ, 1) equals δ0}.

It is known that λ+
cCP < ∞ ([Bramson et al., 1991, Theorem 1.1] & Proposi-

tion 2.23 below). By coupling the CP and the cCP in such a way that infections
and deaths only occur in both processes simultaneously (see below) one shows
that λCP ≤ λ−

cCP. Thus, it is established that

0 < λCP ≤ λ−
cCP ≤ λ+

cCP < ∞.

Simulations suggest that λ−
cCP = λ+

cCP and λCP < λ−
cCP in all dimensions. The first

assertion is a long-standing open problem that due to the non-monotone nature of
the cancellative contact process seems very difficult. Using the bound λCP(1) ≤
1.942, proved by Liggett [1995], and the following result, we can conclude the
latter assertion at least in dimension one.

Proposition 2.22 (Lower bound for λ−
cCP(1)). One has λ−

cCP(1) ≥ 2.

To prove Proposition 2.22, we use the following characterization for the sur-
vival of the cCP. Such characterization are known to hold for several processes. In
particular, the result below is stated as [Sturm and Swart, 2008a, Lemma 1] for an
important class of cancellative processes. However, the cCP does not fit into this
class, so we provide a short proof below. We will study similar characterization
of survival also in Chapter 4.5.

Proposition 2.23 (Survival of the cCP). One has ν̇ ̸= δ0 if and only if the cCP
survives.

Proof. Let γ : {0, 1} → {−1, 1} be the faithful representation of M2 as a sub-
monoid of (C, · ) from Chapter 2.6, i.e., γ(0) = 1 and γ(1) = −1. We prove this
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statement using γ ◦ψcanc, a good multiplicative representation of the cancellative
duality function ψcanc defined in (2.18). Let D = (Dt)t≥0 be a cCP(λ, δ) (λ, δ ≥ 0,
λ + δ > 0) and let y ∈ {0, 1}Zd

fin. Moreover, let ν1/2 denote the product measure
with density 1/2, i.e., ν1/2({x : x(i) = 1}) = 1/2 independently for all i ∈ Zd, let
νt denote the law of a D started in ν1/2 and let µt denote the law of D started
deterministically in y. The (pathwise) “self-duality” of the cCP and the fact that
if X ∼ Bin(n, 1/2) is binomially distributed, then

P[X is odd] = 1
2

independently of n ∈ N, imply that

ν̇
(︂{︂
x ∈ {0, 1}Zd : |x ∧ y| is odd

}︂)︂
=

∫︂
ψcanc(x, y) dν̇(x)

= lim
t→∞

∫︂
ψcanc(x, y) dνt(x)

= lim
t→∞

∫︂ ∫︂
ψcanc(x, y′) dµt(y′) dν1/2(x)

= lim
t→∞

1
2P

y[Dt ̸= 0]

= 1
2P

y[Dt ̸= 0 ∀t ≥ 0],

(2.24)

where ∧ denotes the pointwise minimum on {0, 1}Zd (compare [Bramson et al.,
1991, Equation (1.4)]). Hence,∫︂

γ ◦ψcanc(x, y) dν̇(x) = 1 − 2ν̇
(︂{︂
x ∈ {0, 1}Zd : |x ∧ y| is odd

}︂)︂
= Py[∃t ≥ 0 : Dt = 0] (y ∈ {0, 1}Zd

fin).

If ν̇ = δ0, then Py[∃t ≥ 0 : Dt = 0] = 1 for all y ∈ {0, 1}Zd

fin, thus D does not
survive. On the other hand, if D does not survive and Ẏ is a random variable with
law ν̇, then (2.24) with y = δi, defined via (1.16), implies that P[Ẏ (i) = 0] = 1
(i ∈ Zd). Hence ν̇ = δ0 as measures on {0, 1}Zd are characterized by their finite-
dimensional marginals.

By Proposition 2.23, to prove Proposition 2.22, it suffices to show that the
cCP(λ, δ) does not survive when λ ≤ 2δ. Let now d = 1. Following [Sudbury,
1998] (compare the definition of L in [Sudbury, 1998, Section 2]), the idea for
the proof of Proposition 2.22 is to construct a supermartingale applying Dynkin’s
formula to the function g : {0, 1}Z

fin \ {0} → N0 defined as

g(x) := max{i ∈ Z : x(i) = 1} − min{i ∈ Z : x(i) = 1} (x ∈ {0, 1}Z
fin).

(2.25)
To be able to apply Dynkin’s formula, one can “reduce” the cCP to a finite state
space similarly as in [Sturm and Swart, 2008b, Proof of Lemma 3]. A full proof
including the technical details is given below.

Proof of Proposition 2.22. Let d = 1 and assume that D = (Dt)t≥0 is a cCP(λ, δ)
with λ ≤ 2δ. Using the g from (2.25) we define f : {0, 1}Z

fin → N0 as

f(x) =
⎧⎨⎩g(x) + 4 if x ̸= 0,

0 else,
(x ∈ {0, 1}Z

fin).
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One then has that G⊕f(x) ≤ 0 for all x ∈ {0, 1}Z
fin, where G⊕ denotes the

generator of the cCP from (2.22). To see this, we first look at x101, x11 ∈ {0, 1}Z
fin

defined as

x101(k) =
⎧⎨⎩1 if k ∈ {0, 2},

0 else,
x11(k) =

⎧⎨⎩1 if k ∈ {0, 1},
0 else,

(k ∈ Z).

In the configuration x101 the one at the origin reproduces with rate λ to the
left, increasing the function f by one and it dies with rate δ, decreasing f by
two. A reproduction to the right has no effect on f . By symmetry, an analogous
statement holds for the one at 2 ∈ Z so that G⊕f(x101) = 2λ − 4δ. For x11
on the other hand, both a death of the one at the origin and a reproduction of
the one at the origin to the right reduce f by one, while a reproduction to the
left again increases f by one. Hence G⊕f(x11) = −2δ. Let now x ∈ {0, 1}Z

fin be
an arbitrary configuration with at least two ones. As f is shift-invariant, i.e.,
f = f ◦ θ−1

i for all i ∈ Z, one has that G⊕f(x) ≤ G⊕f(x101) if x has the form
010 . . . 010, G⊕f(x) = G⊕f(x11) if x has the form 011 . . . 110 and G⊕f(x) ≤
(G⊕f(x11) +G⊕f(x101))/2 if x has the form 010 . . . 110 or 011 . . . 010. Note that
we had to use inequalities above as a death event of a one at the edge of a
configuration reduces f by the number of zeros “to the inside” of this one, hence
by at least two if there is a zero directly to the inside of the one. Finally, we
consider the special case x = δ0 (defined by (1.16)) in which with rate 2λ the
lone individual reproduces (either to the left or to the right) and with rate δ it
dies. Hence G⊕f(δ0) = G⊕f(x101) = 2λ − 4δ, which was the reason to add the
4 in the definition of f . This completes the argument that λ ≤ 2δ implies that
G⊕f(x) ≤ 0 for all x ∈ {0, 1}Z

fin.
The rest of the proof is a standard argument from the theory of continuous-

time Markov chains, but, for the sake of completeness, we state it in detail. Let
N ∈ N be arbitrary and set τN := inf{t ≥ 0 : f(Dt) ≥ N + 4}. We claim that
MN = (MN

t )t≥0 defined as

MN
t := f(Dt∧τN

) −
∫︂ t∧τN

0
G⊕f(Ds) ds (t ≥ 0)

is a martingale. Let

{0, 1}Z
N :=

{︂
x ∈ {0, 1}Z

fin : x(i) = 0 if i /∈ {0, . . . , N − 1}
}︂

∪ {xN},

where

xN(i) :=
⎧⎨⎩1 if i ∈ {0, N},

0 else,
(i ∈ Z).

By shifting every x ∈ {0, 1}Z
fin so that its leftmost 1 lies at the origin, we can

construct a continuous-time Markov chain Y = (Yt)t≥0 on the finite state space
{0, 1}Z

N so that

MN
t = f(Yt) −

∫︂ t

0
G⊕f(Ys) ds (t ≥ 0).

As a continuous-time Markov chain on a finite state space, the process Y is a
Feller process, and Dynkin’s formula implies that MN is indeed a martingale.
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As G⊕f(x) ≤ 0 for all x ∈ {0, 1}Z
fin, we conclude that M s = (f(Dt∧τN

))t≥0 is
a uniformly integrable supermartingale, and the martingale convergence theorem
implies that M s converges almost surely and in L1 to a random variable M∞.
The random variable M∞ is supported on {0, N + 4}, as M∞ ∈ {1, . . . , N + 3}
would imply that there exists a t0 ≥ 0 such that M s

t = M s
t0 ∈ {1, . . . , N + 3} for

all t ≥ t0, which has probability zero. Hence,

4 = Eδ0 [f(D0)] ≥ E[M∞] = (N + 4)(1 − P[M∞ = 0]),

and we conclude that

Pδ0 [∃t ≥ 0 : Dt = 0] ≥ Pδ0 [∃t ≤ τN : Dt = 0] = P[M∞ = 0] ≥ N

N + 4 .

As N was arbitrary, it follows that Pδ0 [∃t ≥ 0 : Dt = 0] = 1 and Proposition 2.23
implies that ν̇ = δ0. This establishes that λcCP ≥ 2.

As the methods in the proof of Proposition 2.22 are essentially one-dimensional
in nature, it is not clear how to generalize the result to higher dimensions.

2.7.3 The double contact processes
Let, for the rest of this chapter, S := {0, 1} × {0, 1} and let ⊻ denote the product
operator of ∨ and ⊕, i.e., its Cayley table is given as

⊻ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (1, 0) (1, 1)
(1, 1) (1, 1) (1, 0) (1, 1) (1, 0)

.

Thus, (S,⊻) ∼= M23 from Table 2.4.
We will be interested in a joint process, consisting of a CP and a cCP, that

are coupled in such a way that some of the infections and deaths happen for
both processes at the same times. Our motivation to study this coupled process
comes primarily from the theoretical side of view and further couplings of “classic”
interacting particle systems can be studied in a similar way. However, in order to
prevent the reader from getting lost in abstract statements, we stick to this one
process.

Informally, the coupled process of interest will behave in the following way.
With rates λ, δ ≥ 0 infections and deaths, respectively, happen simultaneously
for the CP and the cCP. With rates λ∨, δ∨ ≥ 0 they only happen for the CP and
with rates λ⊕, δ⊕ ≥ 0 only for the cCP.

It will be helpful to write the generator of the coupled process in a form similar
to (2.22). We define infection maps INFij, inf1

ij, inf2
ij : SZd → SZd and death

maps DTHi, dth1
i, dth2

i : SZd → SZd as

INFij(x) := (inf∨
ij(x1), inf⊕

ij(x2)), DTHi(x) := (dthi(x1), dthi(x2)),
inf1

ij(x) := (inf∨
ij(x1), x2), dth1

i(x) := (dthi(x1), x2),
inf2

ij(x) := (x1, inf⊕
ij(x2)), dth2

i(x) := (x1, dthi(x2)),
(2.26)
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for x = (x1, x2) ∈ SZd , where the maps on the right hand sides are the maps
from (2.21). By Lemma 2.10, all these maps are monoid homomorphisms from
(SZd

,⊻) to itself. In particular, they map (0, 0) to itself, so we may define SZd

fin in
parallel to (1.15). We define the generator G⊻ as

G⊻f(x) := λ
∑︂

i,j∈Zd:i∼j

{︂
f(INFij(x)) − f(x)

}︂
+ δ

∑︂
i∈Zd

{︂
f(DTHi(x)) − f(x)

}︂
+ λ∨

∑︂
i,j∈Zd:i∼j

{︂
f(inf1

ij(x)) − f(x)
}︂

+ δ∨
∑︂
i∈Zd

{︂
f(dth1

i(x)) − f(x)
}︂

+ λ⊕
∑︂

i,j∈Zd:i∼j

{︂
f(inf2

ij(x)) − f(x)
}︂

+ δ⊕
∑︂
i∈Zd

{︂
f(dth2

i(x)) − f(x)
}︂
,

(2.27)
where λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 are model parameters. It is easy to see that (1.7)
is again satisfied. Hence, by Theorem 1.3, there exists an interacting particle
system X = (X1, X2) = (X1

t , X
2
t )t≥0 with generator G⊻. We call X the dou-

ble contact process and denote it shortly as 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕). If X is a
2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕), then X1 is a CP(λ + λ∨, δ + δ∨) and X2 is a cCP(λ +
λ⊕, δ + δ⊕).

In particular, if λ = δ = 0, then X1 and X2 are independent processes.
On the other extreme, if δ∨ = λ∨ = δ⊕ = λ⊕ = 0, then X1 and X2 are fully
coordinated in the sense that their infections and deaths happen at the same
times. An interesting consequence of this choice of parameters is that the CP
stochastically dominates the cCP. The following lemma says that this holds a bit
more generally.
Lemma 2.24 (Special parameters). Assume that X = (X1, X2) = (X1

t , X
2
t )t≥0

is a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕) with δ∨ = λ⊕ = 0. Then
X1

0 (k) ≥ X2
0 (k) (k ∈ Zd) implies X1

t (k) ≥ X2
t (k) (k ∈ Zd, t ≥ 0). (2.28)

Proof. This follows directly from the definition of the maps in (2.26).

We are going to use the fact that M23 is M5-dual to itself with respect to ψ235
from Table 2.5. Let γ : {0, 1, 2} → {−1, 0, 1} denote the faithful representation
of M5 as a submonoid of (C, · ) from Chapter 2.6, i.e., γ(0) = 1, γ(1) = −1,
γ(2) = 0. It follows that (S,⊻) is ({−1, 0, 1}, · )-dual to itself with respect to
γ ◦ ψ235 : S × S → {−1, 0, 1}, given in matrix form as

γ ◦ ψ235 :=

⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 0 0
1 −1 0 0

⎞⎟⎟⎟⎠ (2.29)

when the elements of S are ordered as (0, 0), (0, 1), (1, 0), (1, 1). Let Ψ : SZd ×
SZd

fin → {−1, 0, 1} denote the “global duality function” based on γ ◦ ψ235, i.e.,

Ψ(x, y) :=
∏︂
k∈Zd

γ ◦ ψ235(x(k), y(k)) (x ∈ SZd

, y ∈ SZd

fin ). (2.30)

Using the duality of the maps identified at the end of Chapter 2.7.1 one
concludes from Theorem 2.9 that the 2CP is (pathwise) “self-dual” with respect
to Ψ in the same sense as the CP and the cCP are (pathwise) self-dual (compare
the end of Chapter 2.7.1). Recall that Ψ is, due to Proposition 2.20, informative.
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2.7.4 Invariant laws of the double contact process
We are interested in the long-time behavior of the 2CP started in a homogeneous
distribution. Let the 2CP again be denoted by X = (Xt)t≥0 = (X1

t , X
2
t )t≥0.

With a slight abuse of notation we define shift operators θi : SZd → SZd by
applying the operators from (2.23) in both coordinates of S = {0, 1} × {0, 1}.
As for distributions on {0, 1}Zd , we say that a probability measure µ on SZd is
homogeneous if µ = µ ◦ θ−1

i (i ∈ Zd). Since (0, 0) is the only trap for the 2CP, a
probability measure µ ∈ M1(SZd) is X-non-trivial in the sense of the definition
in Chapter 1.2 if and only if

µ
(︂
{(0, 0)}

)︂
= 0.

We set

S(0,∗) :=
{︂
x = (x1, x2) ∈ SZd : x1 = 0

}︂
,

S(∗,0) :=
{︂
x = (x1, x2) ∈ SZd : x2 = 0

}︂
,

Smix := SZd \ (S(0,∗) ∪ S(∗,0)).

The known results for the CP and the cCP imply that the 2CP X started in
an X-non-trivial homogeneous distribution on S(∗,0) converges weakly to ν̄ ⊗ δ0.
Analogously, the 2CP started in an X-non-trivial homogeneous distribution on
S(0,∗) converges weakly to δ0 ⊗ ν̇. If X is started in an X-non-trivial homogeneous
distribution on Smix, then the laws of X1

t and X2
t individually converge weakly

to ν̄ and ν̇, respectively. However, as a measure on a product space is in general
not determined by its marginals, the long-time behavior of the joint law of Xt =
(X1

t , X
2
t ) is less straightforward. We will prove the following result.

Theorem 2.25 (Joint invariant law). Let X = (X1, X2) = (X1
t , X

2
t )t≥0 be a

2CP with parameters λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 so that λ + λ∨ + δ + δ∨ > 0 and
λ+λ⊕ +δ+δ⊕ > 0. Then X has an invariant law ν that is uniquely characterized
by the relation∫︂

Ψ(x, y) dν(x) = Py
[︂
∃t ≥ 0 : Xt = (0, 0)

]︂
(y ∈ SZd

fin ). (2.31)

If X is started in a homogeneous initial law that is concentrated on Smix, then

P[Xt ∈ · ] =⇒
t→∞

ν, (2.32)

i.e., the law of X converges weakly to ν.

Note that (2.32) implies that ν is (as ν̄ and ν̇) homogeneous. In the special
case that δ∨ = λ⊕ = 0, corresponding to the monotone coupling of CP and cCP,
one has that

ν
(︂{︂
x ∈ SZd : ∃k ∈ Zd : x(k) = (0, 1)

}︂)︂
= 0,

as we can chose a homogeneous initial law that is concentrated on Smix with the
above property. This property is then preserved by the dynamics. One example
of such an initial law would be the Dirac measure concentrated on (1, 1). Thus,
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as long as the initial distribution of this special 2CP is homogeneous and concen-
trated on Smix, the law of this 2CP converges weakly to a monotonically coupled
law, no matter how high the density of (0, 1)’s was in the initial distribution.

Taking into account our earlier remarks about initial laws on S(0,∗) and S(∗,0),
one can conclude (compare [Swart, 2022, Corollary 6.39]) that all homogeneous
invariant laws of the 2CP are convex combinations of δ0 ⊗ δ0, ν̄ ⊗ δ0, δ0 ⊗ ν̇ and
ν.

2.7.5 The main convergence result
We devote this subchapter to the proof of Theorem 2.25. We are going to use
several auxiliary lemmas. The first one is [Swart, 2022, Lemma 6.37]. As already
indicated in Chapter 2.7.1, we set supp(z) := {i ∈ Zd : z(i) = 1} for z ∈ {0, 1}Zd .
Throughout this subsection we will use |z| as a shorthand for |supp(z)|. Moreover,
as in the proof of Proposition 2.23, the symbol ∧ below denotes the pointwise
minimum, i.e., (z1 ∧ z2)(i) = min{z1(i), z2(i)} for i ∈ Zd, z1, z2 ∈ {0, 1}Zd .

Lemma 2.26 (Non-zero intersection: CP). Let C = (Ct)t≥0 be a CP(λ, δ) (λ > 0,
δ ≥ 0) with C-non-trivial homogeneous initial distribution. Given ε > 0, for each
time s > 0 there exists an NCP ∈ N such that for any z ∈ {0, 1}Zd with |z| ≥ NCP
one has

P[Cs ∧ z = 0] ≤ ε.

Additionally, we are going to use the following application of [Sturm and
Swart, 2008a, Corollary 9].

Lemma 2.27 (Parity indeterminacy). Let D = (Dt)t≥0 be a cCP(λ, δ) (λ > 0,
δ ≥ 0) with D-non-trivial homogeneous initial distribution. Given ε > 0, for
each time s > 0 there exists an NcCP ∈ N such that for any z ∈ {0, 1}Zd

fin with
|z| ≥ NcCP one has ⃓⃓⃓⃓

P[|Ds ∧ z| is odd ] − 1
2

⃓⃓⃓⃓
≤ ε.

As [Sturm and Swart, 2008a, Corollary 9] is not stated in the most ac-
cessible form, we elaborate. Let M2 = ({0, 1},⊕) be the monoid from Ta-
ble 2.1, where ⊕ denotes addition modulo 2. Lemma 2.10 implies that each
local m ∈ H(MZd

2 ,MZd

2 ) can be identified with an infinite matrix (Mij)i,j∈Zd with
values in H(M2,M2) = {o, id}, where o : {0, 1} → {0, 1} denotes the function
constantly 0 and id : {0, 1} → {0, 1} denotes the identity. Then, by (2.12),

m(z)(i) =
⨁︂
j∈Zd

Mij(z(j)) (i ∈ Zd, z ∈ {0, 1}Zd).

As H(M2,M2) is of this simple form, we can equivalently define an infinite matrix
(Aij)i,j∈Zd with values in {0, 1} such that

m(z)(i) =
⨁︂
j∈Zd

(Aij · z(j)) (i ∈ Zd, z ∈ {0, 1}Zd), (2.33)
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where · denotes the usual product in R. Corresponding to the usual matrix-vector
multiplication, we denote the right hand side of (2.33) shortly as Az(i) (i ∈ Zd).
Hence, with this notation, m(z) = Az (z ∈ {0, 1}Zd).

As M2 is M2-dual to itself, m̂, the dual map of a local map m ∈ H(MZd

2 ,MZd

2 )
with respect to ψcanc : {0, 1}Zd × {0, 1}Zd

fin → {0, 1} from (2.18) is, due to (2.13)
and the self-duality of o and id, given as

m̂(y)(i) =
⨁︂
j∈Zd

Mji(y(j)) (i ∈ Zd, y ∈ {0, 1}Zd

fin).

Hence, m̂(y) = A†y (y ∈ {0, 1}Zd), where A† denotes the adjoint of A, i.e.,
A†
ij := Aji (i, j ∈ Zd).

Let A be the collection of all (infinite) matrices of the form A = (Aij)i,j∈Zd

with Aij ∈ {0, 1} for all i, j ∈ Zd and ∑︁
i,j Aij < ∞. In Sturm and Swart [2008a]

the authors are interested in an interacting particle system Z = (Zt)t≥0 with state
space {0, 1}Zd , that jumps from its current state z ∈ {0, 1}Zd as

z ↦→ z ⊕ Az with rate a(A), (2.34)

where (a(A))A∈A are non-negative rates and the operator ⊕ has to be interpreted
in a pointwise sense, as well as an interacting particle system Y = (Yt)t≥0 that
jumps as

y ↦→ y ⊕ A†y with rate a(A).

In order for these interacting particle systems to be well-defined, Sturm and Swart
[2008a] assume (compare [Sturm and Swart, 2008a, Condition (3.1)]) that

sup
i∈Zd

∑︂
A∈A

a(A) |{j : Aij = 1}| < ∞ and sup
i∈Zd

∑︂
A∈A

a(A)
⃓⃓⃓
{j : A†

ij = 1}
⃓⃓⃓
< ∞.

(2.35)

Evidently, there is a one-to-one correspondence between a map acting as in
(2.34) and a map defined as in (2.33). Thus, the interacting particle systems
studied by Sturm and Swart [2008a] are cancellative interacting particle systems
in the sense of Chapter 2.4.2. Moreover, the summability conditions in (2.35)
imply the summability condition (1.7) for both Z and Y . Indeed, denoting the
map acting as in (2.34) by mA : {0, 1}Zd → {0, 1}Zd one has

D(mA) =
{︂
i ∈ Zd : ∃j ∈ Zd : Aij ̸= 0

}︂
and

R(mA[i]) =
{︂
j ∈ Zd : Aij ̸= 0

}︂
(i ∈ Zd).

We will restate [Sturm and Swart, 2008a, Corollary 9]. By definition, we say
that the rates (a(A))A∈A are translation-invariant if

a(θiA) = a(A) (i ∈ Zd, A ∈ A), (2.36)

where the “translated” matrix θiA ∈ A is defined as (θiA)jk := Aj−i,k−i (j, k ∈
Zd). Moreover, we say that a state z ∈ {0, 1}Zd is Z-non-trivial if

Pz[(Zt(i))i∈∆ = (x(i))i∈∆] > 0 ∀t > 0, finite ∆ ⊂ Zd, and (x(i))i∈∆ ∈ {0, 1}∆,
(2.37)
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i.e., if Z started in z reaches at any positive time any configuration on any finite
subset of Zd with positive probability. For any finite subset B ⊂ A such that
a(B) > 0 for all B ∈ B, we define, for z ∈ {0, 1}Zd ,

∥z∥B :=
⃓⃓⃓{︂
i ∈ Zd : ∃y ∈ {0, 1}Zd and B ∈ B s.t. ψcanc(z, (θiB)y) = 1

}︂⃓⃓⃓
.

With these definitions, [Sturm and Swart, 2008a, Corollary 9] can be restated as
follows.

Proposition 2.28 (General parity indeterminacy). Let Z = (Zt)t≥0 satisfying
(2.34) be given via non-negative translation invariant rates (a(A))A∈A that satisfy
(2.35). Assume that Z is started in a homogeneous initial law that is concentrated
on Z-non-trivial configurations. Then, for any finite subset B ⊂ A such that
a(B) > 0 for all B ∈ B, any ε > 0 and t > 0, there exists an N ∈ N such that⃓⃓⃓⃓

P[|Zt ∧ y| is odd ] − 1
2

⃓⃓⃓⃓
≤ ε (2.38)

for all y ∈ {0, 1}Zd

fin with ∥y∥B ≥ N .

Proof. This is a simple reformulation of [Sturm and Swart, 2008a, Corollary 9].
There it is proved that if (yn)n∈N ⊂ {0, 1}Zd

fin satisfy ∥yn∥B → ∞, then

P[|Zt ∧ yn| is odd] −→
n→∞

1
2 . (2.39)

To see that this implies the claim of Proposition 2.28, note that if the claim
would be false, then there exists an ε > 0 such that for all n ∈ N one can find
yn ∈ {0, 1}Zd

fin with ∥yn∥B ≥ n such that the left-hand side of (2.38) is greater than
ε, contradicting (2.39).

We show that applying Proposition 2.28 to the cCP yields Lemma 2.27.

Proof of Lemma 2.27. We first show that the jump rates of the cancellative con-
tact process D = (Dt)t≥0 can be cast in the form (2.34). Let e1, . . . , ed ∈ Zd
denote the unit vectors and let 0 ∈ Zd denote the origin. For 1 ≤ k ≤ d, we
define A±

k ∈ A by (A±
k )ij := 1 if (i, j) = (±ek, 0) and (A±

k )ij := 0 otherwise.
Also, we define A0 ∈ A by (A0)ij := 1 if (i, j) = (0, 0) and (A0)ij := 0 otherwise.
Finally, we define rates (a(A))A∈A by

a(θiA±
k ) := λ and a(θiA0) := δ (i ∈ Zd, 1 ≤ k ≤ d),

and a(A) := 0 in all other cases. Clearly, these rates are translation-invariant in
the sense of (2.36) and satisfy the summability condition (2.35). Also, a jump of
the form x ↦→ x⊕(θ−iA

±
k )x corresponds to a jump of the form x ↦→ inf⊕

i,i±ek
(x) in

the notation of Section 2.7.1 and a jump of the form x ↦→ x⊕(θ−iA
0)x corresponds

to a jump of the form x ↦→ dthi(x), so the process defined by these rates is
a cCP(λ, δ). The claim of Lemma 2.27 will now follow from Proposition 2.28
provided we show that: (i) each configuration z ∈ {0, 1}Zd \ {0} is D-non-trivial
and: (ii) we can choose B such that ∥z∥B = |z| (z ∈ {0, 1}Zd).
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We start by proving (ii). We set B = {A+
1 }, where A+

1 as defined above
is one of the matrices corresponding to an infection next to the origin. Then
a(A+

1 ) = λ > 0. Moreover,

ψcanc(z, (θ−iA
+
1 )y) = z(i+ e1) · y(i) (z, y ∈ {0, 1}Zd).

Hence,

z(i) = 1

if and only if

i− e1 ∈
{︂
k ∈ Zd : ∃y ∈ {0, 1}Zd and B ∈ B s.t. ψcanc(z, (θiB)y) = 1

}︂
,

which shows that ∥z∥B = |z| (z ∈ {0, 1}Zd).
It remains to prove (i). Fix z ∈ {0, 1}Zd \ {0}, a finite set ∆ ⊂ Zd, and

(x(i))i∈∆ ∈ {0, 1}∆. Using the fact that z ̸= 0 and λ > 0, in a finite number of
infection steps, we can infect each site in ∆ ∪ {i ∈ Zd : ∃j ∈ ∆ : j ∼ i}. Starting
with the sites in ∆ with the highest graph distance to Zd \∆, we then can remove
the infection from all sites i ∈ ∆ with x(i) = 0 only using further infections,
proving that (2.37) holds.

The true strength of Proposition 2.28 lies in the fact that it can be applied
even in situations where the definitions of Z-non-triviality and the norm ∥ · ∥B
are more complicated. In particular, [Sturm and Swart, 2008a, Theorem 3] is
based on an application of Proposition 2.28 in a situation where the Z-non-trivial
configurations are all z ̸= 0, 1, and

∥z∥B =
⃓⃓⃓{︂

(i, j) : |i− j| = 1, y(i) ̸= y(j)
}︂⃓⃓⃓
.

Instead of proving Lemma 2.27, we could have also followed the strategy of the
proof of [Bramson et al., 1991, Theorem 1.2]. There the authors use the graphical
representation of the cCP explicitly to work around proving Lemma 2.27.

The third and final lemma extends [Swart, 2022, Lemma 6.36] and [Bramson
et al., 1991, Lemma 2.1].

Lemma 2.29 (Extinction or unbounded growth). Let Z = (Zt)t≥0 be either a
CP(λ, δ) or a cCP(λ, δ) (λ, δ ≥ 0, λ+ δ > 0). For each z ∈ {0, 1}Zd

fin and N ∈ N
one has

lim
t→∞

Pz[0 < |Zt| < N ] = 0. (2.40)

Proof. If z = 0 the statement is trivial, so let z ∈ {0, 1}Zd

fin \ {0}. In the case
λ, δ > 0 [Swart, 2022, Lemma 6.36] and [Bramson et al., 1991, Lemma 2.1] imply

Pz
[︂
∃t ≥ 0 : Zt = 0 or |Zt| → ∞ as t → ∞

]︂
= 1 (2.41)

for the CP and the cCP, respectively, and (2.41) clearly implies (2.40). In fact,
the two proofs are just reformulations of each other, both based on Lévy’s 0-1
law.
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In the case λ = 0, δ > 0 there is no difference between a CP and a cCP and

Pz[∃t ≥ 0 : Zt = 0] = lim
t→∞

Pz[Zt = 0] = lim
t→∞

(︂
1 − e−δt

)︂|z|
= 1

since 0 is absorbing. This implies (2.41) and hence also (2.40).
In the case λ > 0, δ = 0, and if Z is a CP, the function t ↦→ |Zt| is non-

decreasing, hence it converges in N ∪ {∞}. Let N ∈ N. One has

Pz[limt→∞ |Zt| ≤ N ] = 1 − Pz[∃t ≥ 0 : |Zt| > N ] = 1 − lim
t→∞

Pz[|Zt| > N ] = 0
(2.42)

as choosing a suitable sequence of neighbors and neighbors of neighbors of the
infected individuals in z yields that

Pz[|Zt| > N ] ≥
(︃

1 − 1{1,...,N}(|z|)e− λt
N+1−|z|

)︃N+1−|z|

for t > 0. Here, in the case that |z| ≤ N , we have divided time into N +
1 − |z| subintervals and used the fact that 1 − e−λt is the probability to infect
a previously chosen neighbor of an infected individual during a time interval of
length t. Finally, (2.42) implies that

Pz[|Zt| → ∞ as t → ∞] = 1 − Pz[∃N ∈ N : limt→∞ |Zt| = N ]
≥ 1 −

∑︂
N∈N

Pz[limt→∞ |Zt| ≤ N ] = 1,

again implying (2.41) and hence also (2.40).
To treat the cCP in the case λ > 0, δ = 0, we use [Bramson et al., 1991,

Theorem 1.3]. It says that a cCP(1, 0), started in any initial state other than 0,
converges weakly to ν1/2, the product law assigning probability 1/2 to both 0 and
1 at every node. By changing the time scale, the same holds for a cCP(λ, 0) with
an arbitrary λ > 0. Let N ∈ N and ε > 0. Choose now an M = M(N, ε) > N so
that pN := P[X ≤ N ] < ε if X ∼ Bin(M, 1/2) is a binomially distributed random
variable. Additionally, choose an arbitrary x ∈ {0, 1}Zd

fin with |x| = M . Then, by
the weak convergence,

lim sup
t→∞

Pz[|Zt| ≤ N ] ≤ lim
t→∞

Pz[|Zt ∧ x| ≤ N ] = pN < ε,

implying limt→∞ Pz[|Zt| ≤ N ] = 0 (i.e., convergence in probability to ∞). Thus,
(2.40) holds.

Using the three lemmas stated in this subchapter, we are able to prove The-
orem 2.25. Recall that S = {0, 1} × {0, 1} and that Ψ is defined by (2.30).

Proof of Theorem 2.25. Let Y = (Y 1, Y 2) = (Y 1
t , Y

2
t )t≥0 be a 2CP with the same

parameters as the 2CP X = (X1, X2) = (X1
t , X

2
t )t≥0 in the formulation of the

theorem, but started in the deterministic state y = (y1, y2) ∈ SZd

fin . Fix t > 0.
Following [Jansen and Kurt, 2014, Proposition 4.1], we can construct a probability
space (Ω,F ,P) on which there exist independent processes ˜︂X = (˜︂Xt)t≥0 and
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˜︁Y = ( ˜︁Yt)t≥0 whose finite-dimensional distributions coincide with those of X and
Y , respectively, and

E
[︂
Ψ(˜︂Xs, ˜︁Yt+1−s)

]︂
= E

[︂
Ψ(˜︂Xu, ˜︁Yt+1−u)

]︂
(2.43)

holds for all s, u ∈ [0, t+ 1], where E denotes taking expectation with respect to
P. For example, one could construct ˜︂X as in Chapter 1.1 but then construct ˜︁Y
using an independent Poisson point set ω̂. Then one could take (Ω,F ,P) as the
product of the two resulting probability spaces. The duality between ˜︂X and ˜︁Y is
then, of course, not pathwise.

Below, we drop the tildes from the notation. Recall that, in contrast to P, the
symbol Py denotes the law of Y started in y ∈ SZd

fin . Due to the informativeness
of Ψ it follows from Lemma 1.11 that

H :=
{︂
Ψ( · , y) : y ∈ SZd

fin

}︂
is also convergence determining, i.e., showing

lim
s→∞

E[Ψ(Xs, y)] = Py
[︂
∃s ≥ 0 : Ys = (0, 0)

]︂
(2.44)

for all y ∈ SZd

fin implies (2.31) and (2.32). If y = (0, 0), (2.44) follows trivially
from the definition of Ψ, so assume y ̸= (0, 0). We set

λ1 := λ+ λ∨, δ1 := δ + δ∨, λ2 := λ+ λ⊕, δ2 := δ + δ⊕,

so that X1 and Y 1 are both a CP(λ1, δ1), and X2 and Y 2 are both a cCP(λ2, δ2).
Assume, for now, that λ1, λ2 > 0, so that all three auxiliary lemmas above are
applicable. Let ε > 0 be arbitrary. Choose NCP and NcCP as in Lemma 2.26 and
Lemma 2.27 in dependence of the chosen ε, s = 1, and the model parameters.
We have, using the duality equation (2.43) and the law of total expectation, that

E[Ψ(Xt+1, y)]
= E[Ψ(X1, Yt)]
= E

[︂
Ψ(X1, Yt) | Y 1

t = Y 2
t = 0

]︂
Py

[︂
Y 1
t = Y 2

t = 0
]︂

+ E
[︂
Ψ(X1, Yt) | Y 1

t = 0, 0 < |Y 2
t | < NcCP

]︂
Py

[︂
Y 1
t = 0, 0 < |Y 2

t | < NcCP
]︂

⏞ ⏟⏟ ⏞
=:p1(y,t)

+ E
[︂
Ψ(X1, Yt) | Y 1

t = 0, |Y 2
t | ≥ NcCP

]︂
⏞ ⏟⏟ ⏞

=:E1(y,t)

Py
[︂
Y 1
t = 0, |Y 2

t | ≥ NcCP
]︂

+ E
[︂
Ψ(X1, Yt) | 0 < |Y 1

t | < NCP
]︂
Py

[︂
0 < |Y 1

t | < NCP
]︂

⏞ ⏟⏟ ⏞
=:p2(y,t)

+ E
[︂
Ψ(X1, Yt) | |Y 1

t | ≥ NCP
]︂

⏞ ⏟⏟ ⏞
=:E2(y,t)

Py
[︂
|Y 1
t | ≥ NCP

]︂
.

(2.45)

Depending on the choice of the model parameters and y, the deterministic
initial state of Y , it might happen that some of the events on which we condition
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above have probability zero. The cases that either y1 = 0 or y2 = 0, or the
monotonely coupled case δ∨ = λ⊕ = 0 when y satisfies y(i) ̸= (0, 1) for all
i ∈ Zd are such examples. In these cases we define the corresponding conditioned
expectation (arbitrarily) to equal 1. As these conditioned expectations are then
multiplied by 0, the lines in (2.45) where they occur drop out. For the remaining
ones we can argue as below.

From the definition of Ψ it is clear that E[Ψ(X1, Yt) | Y 1
t = Y 2

t = 0] = 1 and

Py
[︂
Y 1
t = Y 2

t = 0
]︂

↗ Py
[︂
∃t ≥ 0 : Yt = (0, 0)

]︂
as t → ∞. Moreover, Lemma 2.29 implies that

lim
t→∞

p1(y, t) = lim
t→∞

p2(y, t) = 0.

As in the proof of [Swart, 2022, Theorem 6.35] we use Lemma 2.26 to compute
that

|E2(y, t)| =
⃓⃓⃓
P

[︂
Ψ(X1, Yt) = 1 | |Y 1

t | ≥ NCP
]︂

− P
[︂
Ψ(X1, Yt) = −1 | |Y 1

t | ≥ NCP
]︂⃓⃓⃓

≤ P
[︂
Ψ(X1, Yt) ̸= 0 | |Y 1

t | ≥ NCP
]︂

= P
[︂
X1

1 ∧ Y 1
t = 0 | |Y 1

t | ≥ NCP
]︂

≤ ε

(2.46)

by the choice of NCP. For E1(y, t) one has that

E1(y, t) = 1 − 2P
[︂
Ψ(X1, Yt) = −1 | Y 1

t = 0, |Y 2
t | ≥ NcCP

]︂
= 1 − 2P

[︂
|X2

1 ∧ Y 2
t | is odd

⃓⃓⃓
Y 1
t = 0, |Y 2

t | ≥ NcCP
]︂

and, due to the independence of X and Y , we can apply Lemma 2.27 and conclude
that

|E1(y, t)| ≤ 2ε.

Plugging then back into (2.45) and computing the limit inferior and the limit
superior, one concludes (2.44) as ε was arbitrary.

To finish the proof, we consider the case that λ1 = 0 and/or λ2 = 0. By
assumption, λi (i ∈ {1, 2}) can only equal zero if δi > 0. The idea is to still use
(2.45), where we used λ1 > 0 for the treatment of E2(y, t) and λ2 > 0 for the
treatment of E1(y, t). However, if λ1 = 0, then Y 1 is a CP(0, δ1) with δ1 > 0, so
the number of infected individuals can only decrease. Choosing NCP := |y1| + 1
makes the line in (2.45) in which E2(y, t) appears vanish. Analogously, choosing
NcCP := |y2| + 1 makes the line in which E1(y, t) appears vanish if λ2 = 0. For
the rest of the terms one then can argue as above.

We conclude that in all cases (2.44) holds, thus also (2.31) and (2.32) as
explained above. Lastly, it is well-known (compare [Swart, 2022, Lemma 4.40])
that (2.32) implies that ν is indeed invariant and the proof is complete.
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M8 0 1 2 3
0 0 1 2 3
1 1 3 3 3
2 2 3 3 3
3 3 3 3 3

M9 0 1 2 3
0 0 1 2 3
1 1 2 3 3
2 2 3 3 3
3 3 3 3 3

M10 0 1 2 3
0 0 1 2 3
1 1 3 3 3
2 2 3 2 3
3 3 3 3 3

M11 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

M12 0 1 2 3
0 0 1 2 3
1 1 0 2 3
2 2 2 3 3
3 3 3 3 3

M13 0 1 2 3
0 0 1 2 3
1 1 3 1 3
2 2 1 2 3
3 3 3 3 3

M14 0 1 2 3
0 0 1 2 3
1 1 2 2 3
2 2 2 2 3
3 3 3 3 3

M15 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

M16 0 1 2 3
0 0 1 2 3
1 1 0 2 3
2 2 2 2 3
3 3 3 3 3

M17 0 1 2 3
0 0 1 2 3
1 1 2 1 3
2 2 1 2 3
3 3 3 3 3

M18 0 1 2 3
0 0 1 2 3
1 1 2 0 3
2 2 0 1 3
3 3 3 3 3

M19 0 1 2 3
0 0 1 2 3
1 1 2 2 3
2 2 2 2 3
3 3 3 3 2

M20 0 1 2 3
0 0 1 2 3
1 1 3 1 1
2 2 1 2 3
3 3 1 3 3

M21 0 1 2 3
0 0 1 2 3
1 1 3 1 1
2 2 1 0 3
3 3 1 3 3

M22 0 1 2 3
0 0 1 2 3
1 1 3 3 2
2 2 3 3 2
3 3 2 2 3

M23 0 1 2 3
0 0 1 2 3
1 1 3 3 1
2 2 3 0 1
3 3 1 1 3

M24 0 1 2 3
0 0 1 2 3
1 1 2 3 1
2 2 3 1 2
3 3 1 2 3

M25 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

M26 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 2.4: Cayley tables of the monoids M8, . . . ,M26.
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M9 is M9-dual to M9
w.r.t. ψ9:

M9
M9 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

M10 is M3-dual to M10
w.r.t. ψ10:

M10
M10 0 1 2 3

0 0 0 0 0
1 0 1 2 2
2 0 2 0 2
3 0 2 2 2

M11 is M1-dual to M11
w.r.t. ψ11:

M11
M11 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1

M13 is M3-dual to M14
w.r.t. ψ13:

M13
M14 0 1 2 3

0 0 0 0 0
1 0 1 2 2
2 0 0 0 2
3 0 2 2 2

M15 is M1-dual to M15
w.r.t. ψ15:

M15
M15 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

M16 is M5-dual to M20
w.r.t. ψ16:

M16
M20 0 1 2 3

0 0 0 0 0
1 0 1 0 0
2 0 2 0 2
3 0 2 2 2

M17 is M5-dual to M17
w.r.t. ψ17:

M17
M17 0 1 2 3

0 0 0 0 0
1 0 1 0 2
2 0 0 0 2
3 0 2 2 2

M18 is M18-dual to M24
w.r.t. ψ18:

M18
M24 0 1 2 3

0 0 0 0 0
1 0 1 2 0
2 0 2 1 0
3 0 3 3 3

M21 is M5-dual to M21
w.r.t. ψ21:

M21
M21 0 1 2 3

0 0 0 0 0
1 0 2 1 2
2 0 1 0 0
3 0 2 0 2

M22 is M22-dual to M22
w.r.t. ψ22:

M22
M22 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

M23 is M23-dual to M23
w.r.t. ψ23:

M23
M23 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

M23 is M5-dual to M23
w.r.t. ψ235:

M23
M23 0 1 2 3

0 0 0 0 0
1 0 2 1 2
2 0 1 1 0
3 0 2 0 2

M24 is M24-dual to M24
w.r.t. ψ24:

M24
M24 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

M25 is M2-dual to M25
w.r.t. ψ25:

M25
M25 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

M26 is M26-dual to M26
w.r.t. ψ26:

M26
M26 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 2.5: Dualities of monoids of cardinality 4. Green tables indicate cases
where ψk, defined as in (2.9) but with ψ replaced by ψk, is weakly informative,
while red tables indicate cases where ψk is not weakly informative. Compare
Chapter 2.6.
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3. Module duality
In Chapter 2 we have equipped the local state space S with a binary operator,
making it a monoid, and we were able to define a useful notion of duality based
on this structure. As many important mathematical structures have two binary
operators, it is natural to ask if we can also develop a useful duality theory if S
is equipped with two binary operators. Recall that, by definition, a semiring is a
triple (R,+, · ) such that:

(i) (R,+) is a commutative monoid with neutral element 0,

(ii) (R, · ) is a monoid with neutral element 1,

(iii) a · 0 = 0 = 0 · a for all a ∈ R,

(iv) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

Property (iii) makes 0 an absorbing element of (R, · ). Property (iv) is called
distributivity. The semiring (R,+, · ) is called commutative if the monoid (R, · )
is commutative. We will sometimes call (R,+) the additive monoid of (R,+, · )
and (R, · ) the multiplicative monoid of (R,+, · ).

Assume that the local state space S is equipped with binary operators + and ·,
making (S,+, · ) a semiring. Then we can equip the monoid SΛ = (SΛ,+), defined
via (2.1), with an additional structure by defining multiplication by scalars from
the left and right as

(a · x)(i) := a · x(i) and (x · a)(i) := x(i) · a (a ∈ S, x ∈ SΛ, i ∈ Λ).
(3.1)

One can check that with this definition SΛ becomes both a left S-module and
a right S-module. Recall that a left R-module over the semiring (R,+, · ) is
a commutative monoid M = (M,+) equipped with a scalar multiplication ∗ :
R ×M → M such that

(i) a ∗ (x+ x′) = a ∗ x+ a ∗ x′ (a ∈ R, x, x′ ∈ M),

(ii) (a+ a′) ∗ x = a ∗ x+ a′ ∗ x (a, a′ ∈ R, x ∈ M),

(iii) (a · a′) ∗ x = a ∗ (a′ ∗ x) (a, a′ ∈ R, x ∈ M),

(iv) 1 ∗ x = x (x ∈ M),

where 1 denotes the neutral element of (R, · ). A right R-module over the semiring
(R,+, · ) has a scalar multiplication ∗ : M ×R → M and is defined analogously.
If (R,+, · ) is commutative, left R-modules and right R-modules coincide and are
simply called R-modules. In particular, if (R,+, · ) is a field, then each R-module
is a vector space.

We now follow the same ideas as in Chapter 2 in order to construct a pathwise
duality based on ψbasic from (1.36), now under the assumption that SΛ is equipped
with the structure of a module over a semiring. Thus, we construct a pathwise
duality for an interacting particle system that has a generator G represented as
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in (1.8) with G consisting only of local module homomorphisms mapping from SΛ

to itself. In particular, each such m : SΛ → SΛ satisfies m(0) = 0, where 0 is the
neutral element of the additive monoid (S,+) of the semiring (S,+, · ). Hence,
we may use the notions of supp(x), the support of x ∈ SΛ, SΛ

fin, and δai ∈ SΛ
fin

(i ∈ Λ, a ∈ S) from Chapter 1.2, now based on 0, the neutral element of (S,+).
In contrast to Chapter 2, we will have to assume that T , the finite set to

which ψbasic maps, is equal to the local state space S. On the other hand, it will
turn out that for any choice of the underlying semiring (S,+, · ) we can identify
the space of all continuous left S-module homomorphisms from SΛ to itself with
SΛ

fin. Also the corresponding duality function will be completely determined by
the underlying semiring on S.

As most results of this chapter have direct analogues from Chapter 2, their
proofs in this section will be stated in a shortened version: If some arguments
work the same way as in a proof from Chapter 2, the arguments are not repeated,
but the corresponding proof is referenced.

3.1 Module homomorphisms
Assume that (S,+, · ) is a semiring and let SΛ = (SΛ,+) denote the monoid
defined via (2.1). We define

L(SΛ,SΛ) :=
{︂
h ∈ H(SΛ,SΛ) : h(a · x) = a · h(x) (a ∈ S, x ∈ SΛ)

}︂
,

R(SΛ,SΛ) :=
{︂
h ∈ H(SΛ,SΛ) : h(x · a) = h(x) · a (a ∈ S, x ∈ SΛ)

}︂
.

In words, L(SΛ,SΛ) is the collection of all left S-module homomorphisms from
SΛ to itself, and likewise R(SΛ,SΛ) is the collection of all right S-module ho-
momorphisms from SΛ to itself. If (S,+, · ) is a commutative semiring, then
L(SΛ,SΛ) = R(SΛ,SΛ). In particular, if (S,+, · ) is a field, then L(SΛ,SΛ) is
the space of linear functions from SΛ to itself. The following lemma is similar to
Lemma 2.10.
Lemma 3.1 (Local module homomorphisms). Let (S,+, · ) be a finite semiring
and let S = (S,+). Let (Mij)i,j∈Λ be an infinite matrix with values in L(S,S)
such that the set

∆ :=
{︂
(i, j) ∈ Λ2 : i ̸= j, Mij ̸= o

}︂
∪

{︂
(i, i) ∈ Λ2 : Mii ̸= id

}︂
is finite, where o ∈ L(S,S) denotes the function constantly equal to the neutral
element of S and id ∈ L(S,S) denotes the identity. Then setting

m[i](x) :=
∑︂
j∈Λ

Mij(x(j)) (i ∈ Λ, x ∈ SΛ) (3.2)

defines a local map m ∈ L(SΛ,SΛ). Conversely, each local map m ∈ L(SΛ,SΛ)
is of this form.
Proof. Using the arguments of the proof of Lemma 2.10, it suffices to show that
for any finite ∆ ⊂ Λ and any function m′ : S∆ → S one has that m′ ∈ L(S∆,S)
if and only if there exists a vector (Mj)j∈∆ with Mj ∈ L(S,S) such that

m′(x) =
∑︂
j∈∆

Mj(x(j)) (x ∈ S∆). (3.3)
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It is straightforward to check that m′ : S∆ → S from (3.3) defines a map m′ ∈
L(S∆,S). On the other hand, given m′ ∈ L(S∆,S), we define Mi : S → S by
Mi(a) := m(ai) (a ∈ S, i ∈ ∆), where ai ∈ S∆ is defined as in (2.4). Then it is
straightforward to check that Mi ∈ L(S,S) and m′ is of the form (3.3).

Lemma 3.1, of course, also holds if we replace left S-modules by right ones.

3.2 Duality of (topological) modules
In parallel to Chapter 2.2, we can define a notion of duality of modules. Let
(R,+, · ) be a semiring. We say that the left R-module M = (M,+) is dual to
the right R-module N = (N,⊕) with respect to ψ : M × N → R if ψ has the
following properties:

(i) ψ(a, b) = ψ(a′, b) for all b ∈ N implies a = a′ (a, a′ ∈ M),

(ii) L(M, (R,+)) =
{︂
ψ( · , b) : b ∈ N

}︂
,

(iii) ψ(a, b) = ψ(a, b′) for all a ∈ M implies b = b′ (b, b′ ∈ N),

(iv) R(N, (R,+)) =
{︂
ψ(a, · ) : a ∈ M

}︂
.

Thus, duality of modules is defined as duality of monoids, with the sole distinction
being that monoid homomorphisms are replaced by R-module homomorphisms,
a special type of monoid homomorphisms. This definition has the following con-
sequence.

Lemma 3.2 (Semiring duality). Let (R,+, · ) be a semiring. Then (R,+), seen
as a left R-module over itself, is dual to (R,+), seen as a right R-module over
itself, with respect to ψ : R ×R → R defined as

ψ(a, b) := a · b (a, b ∈ R). (3.4)

Proof. Due to symmetry, it suffices to show properties (i) and (ii) of the definition
of duality of modules. If ψ(a, b) = ψ(a′, b) for all b ∈ R, then, in particular,

a = ψ(a, 1) = ψ(a′, 1) = a′ (a, a′ ∈ R),

where 1 denotes, as usual, the neutral element of (R, · ). This shows property (i).
If h ∈ L((R,+), (R,+)), then

h(a) = h(a · 1) = a · h(1) = ψ(a, h(1)) (a ∈ R).

On the other hand,

ψ(a+ a′, b) = (a+ a′) · b = a · b+ a′ · b = ψ(a, b) · ψ(a′, b),
ψ(a · a′, b) = a · a′ · b = a · ψ(a′, b) (a, a′, b ∈ R),

completing the proof of property (ii).

Lemma 3.2 implies the following analogue of Proposition 2.5.
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Lemma 3.3 (Maps with a dual IV). Let (R,+, · ) be a semiring. Then a map
m : R → R has a dual map m̂ : R → R with respect to ψ from (3.4) (in the sense
that ψ(m(a), b) = ψ(a, m̂(b)) for all a, b ∈ R) if and only if m ∈ L((R,+), (R,+)).
The dual map m̂, if it exists, is unique and satisfies m̂ ∈ R((R,+), (R,+)).

Proof. This follows essentially in the same way as Proposition 2.5. Note, however,
that we cannot use the argument with ψ† due to the difference between the left
and right R-module. However, one can easily show that m̂ ∈ R((R,+), (R,+))
if it exists with the same arguments used for m.

In parallel to Chapter 2.3 we say that a left or right S-module M over a
semiring (R,+, · ) is a topological (left or right) R-module if it is a topological
monoid. Let (R,+, · ) be a semiring. We say that the topological left R-module
M = (M,+) is dual to the topological right R-module N = (N,⊕) with respect
to ψ : M ×N → R if ψ has the following properties:

(i) ψ(x, y) = ψ(x′, y) for all y ∈ N implies x = x′ (x, x′ ∈ M),

(ii) L(M, (R,+)) ∩ C(M, (R,+)) =
{︂
ψ( · , y) : y ∈ N

}︂
,

(iii) ψ(x, y) = ψ(x, y′) for all x ∈ M implies y = y′ (y, y′ ∈ N),

(iv) R(N, (R,+)) ∩ C(N, (R,+)) =
{︂
ψ(x, · ) : x ∈ M

}︂
.

Assume that the local state space S is equipped with binary operators +
and ·, making (S,+, · ) a semiring. Let SΛ = (SΛ,+) denote the commutative
topological monoid defined via (2.1), and let SΛ

fin = (SΛ
fin,+) be the monoid from

Chapter 2.3. Equipping SΛ
fin with the same scalar multiplication as SΛ, i.e., with

the one defined in (3.1), clearly also SΛ
fin becomes both a left S-module and a right

S-module. According to our conventions we equip it with the discrete topology,
making it a topological (left and right) S-module. Similarly as in (2.9) we define
a function ψ : SΛ × SΛ

fin → S by

ψ(x, y) :=
∑︂
i∈Λ

x(i) · y(i) (x ∈ SΛ, y ∈ SΛ
fin). (3.5)

Note that, in difference to the duality function in (2.9), the function ψ above is
entirely characterized by the underlying structure of a semiring. In parallel to
Proposition 2.8 we have the following result.

Proposition 3.4 (Duality of product modules). Let (S,+, · ) be a finite semiring.
Then the topological left S-module SΛ is dual to the topological right S-module SΛ

fin
with respect to ψ from (3.5).

Proof. One has that ψ(x, y) = ψ(x′, y) for all y ∈ SΛ
fin implies

x(i) = ψ(x, δ1
i ) = ψ(x′, δ1

i ) = x′(i) (i ∈ Λ),

proving property (i) of the definition of duality of topological modules. Prop-
erty (iii) follows in the same way.

74



Using the distributivity of the product and the commutativity of the sum, we
see that

ψ(x+ x′, y) =
∑︂

i∈supp(y)
(x(i) + x′(i)) · y(i) =

∑︂
i∈supp(y)

(x(i) · y(i) + x′(i) · y(i))

=
∑︂

i∈supp(y)
x(i) · y(i) +

∑︂
i∈supp(y)

x′(i) · y(i) = ψ(x, y) +ψ(x′, y)

for all x, x′ ∈ SΛ and y ∈ SΛ
fin. Using the associativity and distributivity of the

product, we moreover obtain that

ψ(a · x, y) =
∑︂

i∈supp(y)
(a · x(i)) · y(i) =

∑︂
i∈supp(y)

a · (x(i) · y(i))

= a ·
∑︂

i∈supp(y)
x(i) · y(i) = a ·ψ(x, y) (a ∈ S, x ∈ SΛ, y ∈ SΛ

fin).

We conclude that {ψ( · , y) : y ∈ SΛ
fin} ⊂ L(SΛ, (S,+)). The fact that {ψ( · , y) :

y ∈ SΛ
fin} ⊂ C(SΛ, (S,+)) follows as in the proof of Proposition 2.8.

Conversely, assume that h ∈ L(SΛ, (S,+)) ∩ C(SΛ, (S,+)). As in the proof of
Proposition 2.8, there then exists a finite set ∆ ⊂ Λ such that

h(x) = h(x⇂∆) = h
(︂∑︂

i∈∆ x(i) · δ1
i

)︂
=

∑︂
i∈∆

x(i) · h(δ1
i ) (x ∈ SΛ),

where x⇂∆∈ SΛ
fin is defined as in (2.10). Hence, defining y ∈ SΛ

fin as

y(i) =
⎧⎨⎩h(δ1

i ) if i ∈ ∆,
0 else,

(i ∈ Λ)

yields h = ψ( · , y), and property (ii) of the definition of duality of topological
modules follows. Property (iv) follows similarly (without relying on the continu-
ity) and the proof is complete.

Thus, by Proposition 3.4, for any semiring (S,+, · ) we may identify the
space L(SΛ, (S,+))∩C(SΛ, (S,+)) with SΛ

fin. Under this identification, restricting
ψbasic : SΛ × C(SΛ, S) → S from (1.36) in the second entry to L(SΛ, (S,+)) ∩
C(SΛ, (S,+)) yields ψ from (3.5).

Combining the proofs of Proposition 2.5, Proposition 2.7 and Proposition 2.13,
one concludes the following.

Proposition 3.5 (Maps with a dual V). Let (S,+, · ) be a finite semiring. Then
a map m : SΛ → SΛ has a dual map m̂ : SΛ

fin → SΛ
fin with respect to the duality

function ψ defined in (3.5) if and only if m ∈ L(SΛ,SΛ) ∩ C(SΛ,SΛ). The dual
map m̂, if it exists, is unique and satisfies m̂ ∈ R(SΛ

fin,SΛ
fin).

Proof. First one shows, as in the proof of Proposition 2.7, that a map m : SΛ →
SΛ has a dual map m̂ : SΛ

fin → SΛ
fin with respect to the function ψ if and only if

m preserves L(SΛ, (S,+)) ∩ C(SΛ, (S,+)). As in the proof of Proposition 2.5, one
then shows that any map m : SΛ → SΛ that preserves L(SΛ, (S,+)) has to satisfy
m ∈ L(SΛ,SΛ). The proof of Proposition 2.13 shows that no discontinuous map
can preserve L(SΛ, (S,+)) ∩ C(SΛ, (S,+)). The part regarding m̂ also follows
from the arguments of the proof of Proposition 2.5.
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One concludes the following analogue of Theorem 2.9.

Theorem 3.6 (Pathwise module duality). Let there exist two associative binary
operators + and · on the local state space S such that (S,+, · ) is a semiring. Let
G and ˆ︁G be the generators from (1.8) and (1.34) defined via G ⊂ L(SΛ,SΛ), a
countable collection of local module homomorphisms. Assuming, as usual, that
G satisfies (1.7), there exists a continuous-time Markov chain Y = (Yt)t≥0 with
generator ˆ︁G, state space SΛ

fin and càglàd sample paths such that X = (Xt)t≥0,
the interacting particle system defined in Chapter 1.1, is pathwise dual to Y with
respect to ψ, the function defined in (3.5).

Proof. The theorem follows with exactly the same arguments as Theorem 2.9.

As in Chapter 2, we need to know how to effectively compute dual maps with
respect to ψ in order to apply Theorem 3.6 in practice. Due to Lemma 3.1, the
following analogue of Proposition 2.11 follows readily.

Proposition 3.7 (Dual local homomorphisms II). Let (S,+, · ) be a finite semi-
ring. For each local m ∈ L(SΛ,SΛ) there exists a local map m̂ ∈ R(SΛ,SΛ)
so that the restriction of m̂ to SΛ

fin is the unique dual map of m with respect to
ψ from (3.5). If (Mij)i,j∈Λ denotes the matrix from Lemma 3.1 such that (3.2)
holds, then m̂ is given via

m̂[i](y) =
∑︂
j∈Λ

ˆ︂Mji(y(j)) (i ∈ Λ, y ∈ SΛ),

where, for i, j ∈ Λ, ˆ︂Mij ∈ R((S,+), (S,+)) is the (unique) dual map of Mij ∈
L((S,+), (S,+)) with respect to ψ from (3.4).

Proof. The proposition follows with exactly the same arguments as Proposi-
tion 2.11.

3.3 Previously known special cases
Some dualities of modules can be identified with dualities of their additive mon-
oids. Comparing the definition of duality of modules from Chapter 3.2 with the
one of duality of monoids from Chapter 2.2, Lemma 3.2 has the following direct
consequence.

Lemma 3.8 (Semirings and monoids). Let (R,+, · ) be a semiring. Then the
monoid (R,+) is (R,+)-dual to itself with respect to ψ from (3.4) if and only if

H((R,+), (R,+)) = L((R,+), (R,+)). (3.6)

Let (R,+, · ) be a semiring with 1 ∈ R being the neutral element of its
multiplicative monoid (R, · ). We say that 1 generates (R,+) if each a ∈ R with
a ̸= 0 is of the form

a = 1 + · · · + 1⏞ ⏟⏟ ⏞
n times

for some n ∈ N. It is easy to see that (R,+, · ) must be commutative if 1 generates
(R,+).
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Lemma 3.9 (Semirings generated by 1). Assume that (R,+, · ) is a commutative
semiring and that 1, the neutral element of (R, · ), generates (R,+). Then the
monoid (R,+) is (R,+)-dual to itself with respect to ψ from (3.4).

Proof. Due to Lemma 3.8 it suffices to verify that one has H((R,+), (R,+)) =
L((R,+), (R,+)), i.e., that each h ∈ H((R,+), (R,+)) satisfies h(a · b) = a · h(b)
(a, b ∈ R). For a = 0, the neutral element of (R,+), this is clear since h(0) = 0.
Otherwise, we can write a = 1 + · · · + 1 and observe that

h(a · b) = h((1 + · · · + 1) · b) = h(b+ · · · + b) = h(b) + · · · + h(b)
= (1 + · · · + 1) · h(b) = a · h(b) (a ∈ R \ {0}, b ∈ R),

completing the proof.

Let n ∈ N and denote, as in Chapter 2.4.2, addition modulo n by ⊕ and
multiplication modulo n by ⊙. Then ({0, . . . , n − 1},⊕,⊙) is a semiring and 1
generates ({0, . . . , n − 1},⊕). It follows that the corresponding duality function
ψ from (3.5) is ψcanc from (2.18).

Next, we consider the lattice duality from Chapter 2.4.1. One says that a
lattice (L,≤) with join ∨ and meet ∧ is distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (a, b, c ∈ L).

Clearly, each distributive lattice (L,≤) is a semiring (L,∨,∧), where the least
element 0 ∈ L is the neutral element of its additive monoid (L,∨) and the greatest
element ⊤ ∈ L is the neutral element of its multiplicative monoid (L,∧). The
only lattice (L,≤) in which ⊤ generates (L,∨) is ({0, 1},∨,∧), where ∨ and ∧
denote the usual maximum and minimum, respectively. In this special case the
duality function ψ from (3.5) is ψ1 from Chapter 2.5, a special case of ψadd
from (2.17). For all other distributive lattices (L,≤), however, ⊤ ∈ L does not
generate (L,∨) and ψ from (3.5) does not have the form of (2.17).

It is also worth noting that if one drops our usual assumption that the local
state space S has to be finite, one could set S = R. Then the duality function ψ
from (3.5) is the standard inner product on ℓ2. Linear duality with this duality
function has long been used in the study of linear interacting particle systems
(see [Liggett, 1985, Chapter IX] for an overview). As the focus of the present
thesis lies on interacting particle systems with finite local state spaces, the topic
of linear duality will not be further explored in this work.

3.4 Computing module dualities
In parallel to Chapter 2.5, we list all possible dualities arising from Proposition 3.4
if SΛ is equipped with the structure of a module and S has cardinality between
two and four. This task boils down to finding all possible ways to define a product
· on one commutative monoid (M,+) of those identified in Chapter 2.5 so that
(M,+, · ) is a semiring. Unfortunately, we have not found a sequence of the
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N1 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 3 3 3
3 3 3 3 3

N2 0 1 2 3
0 0 1 2 3
1 1 1 1 3
2 2 2 2 3
3 3 3 3 3

Table 3.1: Cayley tables of the monoids N1 and N2.

number of semirings (up to (anti-) isomorphisms) with n elements in the OEIS
[OEIS Foundation Inc., 2024].1

Recall that if (M,+, · ) is a semiring, then the monoid (M, · ) does not have to
be commutative. On the other hand, the monoid (M, · ) has to have an absorbing
element, which is the neutral element 0 of (M,+). It turns out that all monoids
with two or three elements that contain an absorbing element are commutative,
but there exist two monoids with four elements that contain an absorbing element
and are not commutative. We have named these N1 and N2. Their Cayley tables
are given in Table 3.1.

Again using Mathematica [Wolfram Research Inc., 2024], we have checked
for all pairs of monoids ((M,+), (N, · )) so that (M,+) is commutative, (N, · )
contains an absorbing element and M and N have the same cardinality that
lies between two and four, if it is possible to identify the elements of M and
N in such a way that (M,+, · ) is a semiring. Again, the corresponding code
can be accessed in the attachments to the online version of this thesis at https:
//dspace.cuni.cz/.

In Table 3.2 we list all possible ways to define a multiplication · on the com-
mutative monoids Mk = (Mk,+) with k ∈ {1, . . . , 7} such that (Mk,+, · ) is a
semiring. Below each Cayley table, we have indicated to which monoid (Mk, · )
is (anti-) isomorphic. Note that each Cayley table gives rise to a duality function
of the form (3.5). The corresponding tables for the monoids M8, . . . ,M26 are
given in Table 3.3 (found at the end of Chapter 3). We have only listed semirings
that are not (anti-) isomorphic to each other. In other words, on some of the
monoids it may be possible to define a multiplication in a way that is not listed,
but in such a case the resulting semiring is (anti-) isomorphic to a semiring that
occurs in our list. In this way we have identified two semirings with 2 elements,
six semirings with 3 elements and thirty eight semirings with 4 elements.

In Chapter 3.3 we saw that the method to identify dualities via dual modules
partially overlaps with the method to identify dualities via dual monoids pre-
sented in Chapter 2. By Lemma 3.9, if (R,+, · ) is a semiring in which 1, the
neutral element of (R, · ), generates (R,+), then the monoid (R,+) is (R,+)-dual
to itself with respect to ψ : R × R → R defined as ψ(a, b) := a · b (a, b ∈ R).
The monoid dualities with respect to the duality functions ψ1, ψ2, ψ3, ψ6, ψ7, ψ9,
ψ22, ψ24 and ψ26 from Table 2.2 and Table 2.5 are of this special form and hence
occur also in our tables of multiplications in semirings.

1A semiring isomorphism between (R,+, · ) and (S,⊕,⊗) is a bijection f : R → S such that
f(0) = 0, f(1) = 1, f(a + b) = f(a) ⊕ f(b) and f(a · b) = f(a) ⊗ f(b) (a, b ∈ R). A semiring
antiisomorphism is a bijection f : R → S with the same first three properties, but requiring
f(a · b) = f(b) ⊗ f(a) (a, b ∈ R).
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(M1, · ) 0 1
0 0 0
1 0 1

mult. ∼= M1

(M2, · ) 0 1
0 0 0
1 0 1

mult. ∼= M1

(M3, · ) 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M4, · ) 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

mult. ∼= M3

(M4, · ) 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M4, · ) 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

mult. ∼= M4

(M6, · ) 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M7, · ) 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

mult. ∼= M5

Table 3.2: Cayley tables of all products on (Mk,+) such that (Mk,+, · ) becomes
a semiring (k ∈ {1, . . . , 7}). Green tables indicate cases where ψ, defined as in
(3.5), is weakly informative, while red tables indicate cases where ψ is not weakly
informative. Orange tables indicate cases where our methods were not able to
decide whether ψ is weakly informative.

Interestingly, we have found one more duality between commutative mon-
oids that also occurs in our tables of multiplications in semirings. This is ψ23,
which also occurs in Table 3.3 as the multiplication on M23 = (M23,+) that is
isomorphic to M11. In this example, the neutral element of (M23, · ) does not
generate (M23,+) ∼= M1 × M2. Nevertheless, one can check that L(M23,M23) =
R(M23,M23) = H(M23,M23) if the multiplication is given as in the correspond-
ing Cayley table.

We point out some additional observations. Recall that the four lattices with
2–4 elements correspond to M1, M4, M11 and M15 from Table 2.1 and Table 2.4.
All of these lattices are distributive and hence are semirings of the form (L,∨,∧)
as outlined in Chapter 3.3. One should moreover note that for more than half of
the identified semirings either the additive monoid or the multiplicative monoid
is isomorphic to one of the four monoids M1, M4, M11 and M15.

Defining a ring (R,+, · ) to be a semiring in which each a ∈ R has an additive
inverse, i.e., an element −a ∈ R such that a + (−a) = 0, the neutral element
of (R,+), there exist one ring with 2 elements, one ring with 3 elements and
four rings with 4 elements (sequence A037291 in the OEIS [OEIS Foundation
Inc., 2024]). Since, for each n ∈ N, the semiring ({0, . . . , n− 1},⊕,⊙), discussed
in Chapter 3.3, is a ring, three of the six rings were already looked at. The
other three rings are those semirings from Table 3.3, whose additive monoid
is isomorphic to M25. In particular, the ring whose multiplicative monoid is
isomorphic to M18 is the finite field (F4,+, · ) with 4 elements. As 1 does not
generate M25, none of these dualities satisfies Lemma 3.9 and one can check that
in all three cases (3.6) is not satisfied. Indeed, H(M25,M25) contains sixteen
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elements while, for all three choices of the product, L(M25,M25) = R(M25,M25)
contains, due to Lemma 3.2, only four elements.

3.5 Representation of semirings
As in Chapter 2.6, we investigate in which cases the duality function ψ from (3.5)
is informative. Let (S,+,⊗) be a finite semiring. Since we can write ψ(x, y) =∑︁
i∈Λ ψ(x(i), y(i)) (x ∈ SΛ, y ∈ SΛ

fin) for ψ from (3.4), ψ from (3.5) has the
same structure as ψ from (2.9) and the additive monoid (S,+) is the one that
determines the informativeness. In particular, one has the following analogue of
Proposition 2.20.

Proposition 3.10 (Informativeness of module dualities). Let (S,+,⊗) be a finite
semiring. Then ψ from (3.5) is informative if (S,+) is a submonoid of (C, · ),
where · denotes the usual multiplication.

Proof. Using Proposition 3.4 this follows in the same way as Proposition 2.20.

Also Proposition 2.21 has a direct analogue for dualities between modules if
one replaces the commutative monoid T with (S,+). In particular, we can apply
the same iterative procedure to check if a duality function arising from a duality
between modules is weakly informative. Unfortunately, in contrast to the results
in Chapter 2.6, there exist cases in which we cannot rule out weak informativeness
in the second step of the iteration while Proposition 3.10 is not applicable either.
For example, consider the semiring from Table 3.2, whose additive monoid is M4
and whose multiplicative monoid is isomorphic to M3. Ordering the elements of
{0, 1, 2}2 again as (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), the
matrix form of ψ2, computed as in Chapter 2.6 based on ψ from (3.4) for the
chosen product, and a test matrix B are given as

ψ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 1 1 1
0 1 2 0 1 2 1 1 2
0 0 0 1 1 1 2 2 2
0 0 1 1 1 1 2 2 2
0 1 2 1 1 2 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, the equation Bx = 0 only has the trivial solution and we cannot rule out
the (weak) informativeness of the corresponding duality function ψ.

We have computed ψ2 for all found semirings and colored Table 3.2 and Ta-
ble 3.3 accordingly. Examples of two random variables that rule out the weak
informativeness of the semirings colored in red are collected in Appendix A.2.
Note that Proposition 3.10 is only applicable to duality functions that also ap-
peared in Chapter 2.5. Moreover, the considerable number of duality functions for
which our methods are unable to determine whether they are weakly informative
highlights the necessity for the development of further methods.
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(M8, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M8, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M8, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M9, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M10, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M10, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M11, · ) 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

mult. ∼= M11

(M11, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M11, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M11, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M11, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M13, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M13, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M14, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 1 2 3

mult. ∼= M8

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 2
3 0 1 2 3

mult. ∼= M9

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 2 2
3 0 1 2 3

mult. ∼= M10

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 1 1
2 0 1 2 3
3 0 1 3 3

mult. ∼= M13

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 1 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= M13

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 1 2
3 0 1 2 3

mult. ∼= M14

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 1 3
2 0 1 2 3
3 0 3 3 3

mult. ∼= M15

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 1 3 3

mult. ∼= M15

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= M15

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= N1

(M15, · ) 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 3 3 3

mult. ∼= N2

(M17, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M20, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M20, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M21, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 0
3 0 3 0 3

mult. ∼= M10

(M22, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M23, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

mult. ∼= M11

(M24, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M25, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

mult. ∼= M11

(M25, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 0

mult. ∼= M12

(M25, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

mult. ∼= M18

(M26, · ) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

mult. ∼= M12

Table 3.3: Cayley tables of all products on (Mk,+) such that (Mk,+, · ) becomes
a semiring (k ∈ {8, . . . , 26}). Green tables indicate cases where ψ, defined as in
(3.5), is weakly informative, while red tables indicate cases where ψ is not weakly
informative. Orange tables indicate cases where our methods were not able to
decide whether ψ is weakly informative. Compare Chapter 3.5.
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4. Monotone duality
In this chapter we assume that the local state space S is equipped with a partial
order ≤ and that is has a least element 0, i.e., 0 ≤ a for all a ∈ S. We equip SΛ

with the product order and we write x < y if x ≤ y and x ̸= y (x, y ∈ SΛ). For
any set A ⊂ S∆ (∆ ⊂ Λ), we call

A↑ :=
{︂
x ∈ S∆ : ∃x′ ∈ A s.t. x′ ≤ x

}︂
(4.1)

the upset of A, and we say that A is increasing if A↑ = A. In analogy with (4.1),
the downset of a set A ⊂ S∆ (∆ ⊂ Λ) is defined as

A↓ =
{︂
x ∈ S∆ : ∃x′ ∈ A s.t. x ≤ x′

}︂
,

and we say that A is decreasing if A↓ = A.
In this setup we will construct a dual process for interacting particle systems

that have a random mapping representation, where each m ∈ G is monotone in
the sense that

x ≤ x′ implies m(x) ≤ m(x′) (x, x′ ∈ SΛ). (4.2)

The staring point of the construction is ψbasic : SΛ × P(SΛ) → {0, 1} from
Chapter 1.4 in the form of (1.38). Recall that every map m : SΛ → SΛ has a
unique dual map with respect to ψbasic that is given by its preimage map m−1. If
m is monotone and A ⊂ SΛ is increasing, then it turns out (compare the proof of
[Sturm and Swart, 2018, Lemma 5]) that m−1(A) is increasing as well. Moreover,
if m is continuous, then m−1(A) is, of course, open if A is open. This gives rise
to the idea to restrict ψbasic in the second argument to all open and increasing
subsets of SΛ. Constructing the interacting particle system X = (Xt)t≥0 then via
its stochastic flow, as done in (1.13), the idea is to define a backward stochastic
flow consisting of the preimage maps of the maps that make up the original
stochastic flow.

The dual process based on the idea outlined above would have the collection
of all open increasing subsets of SΛ as its state space. Since this would be a rather
abstract state space, we describe in Chapter 4.1 a more accessible characterization
of this space.

We will also assume that the interacting particle system X has 0, the config-
uration constantly equal to the least element 0 ∈ S, as a trap. This will prevent
the about to be constructed dual process from jumping into a trap that we are
not interested in. Due to the existence of the trap 0, we are again in the setup
of Chapter 1.2 and can repeat the definitions of supp(x), SΛ

fin and δai (i ∈ Λ,
a ∈ S), now based on the least element 0. Moreover, we are going to use x⇂Γ∈ SΛ

(Γ ⊂ Λ), defined as in (2.10) but based on the least element 0.

4.1 The monotone dual space
Recall that a minimal element of a set A ⊂ SΛ is a configuration x ∈ A such that
there does not exist an x′ ∈ A with x′ < x. We let

A◦ :=
{︂
x : x is a minimal element of A

}︂
(4.3)

83



denote the set of minimal elements of A. Recall that SΛ is equipped with the
product topology. We set

I(SΛ) :=
{︂
A ⊂ SΛ : A is open and increasing

}︂
,

H(SΛ) :=
{︂
Y ⊂ SΛ

fin : Y ◦ = Y
}︂
.

The following proposition describes a bijection between I(SΛ) and H(SΛ).

Proposition 4.1 (Encoding open increasing sets). The map Y ↦→ Y ↑ is a bijec-
tion from H(SΛ) to I(SΛ) and the map A ↦→ A◦ is its inverse.

Proof. First note that Y ↑ is indeed open for Y ∈ H(SΛ). Indeed, if Y = ∅, then
also Y ↑ = ∅. If Y = {y} for some y ∈ SΛ

fin, then

Y ↑ = {y}↑ =
{︂
x ∈ SΛ : y(i) ≤ x(i) for i ∈ supp(y)

}︂
.

By the definitions of the product topology and of the discrete topology on S, all
finite-dimensional cylinder sets are open and hence, since supp(y) is finite, Y ↑ is
open in the product topology.1 If Y consists of more than one element, then we
can write

Y ↑ =
⋃︂
y∈Y

{y}↑,

and Y ↑ is open as a union of open sets.
It then suffices to show that (Y ↑)◦ = Y for Y ∈ H(SΛ), A◦ ⊂ SΛ

fin for A ∈
I(SΛ) and (A◦)↑ = A for A ∈ I(SΛ). The first assertion is easy to verify. We will
show the third assertion and the arguments along the way will imply the second
one as well.

Let A ∈ I(SΛ). Then A◦ ⊂ A implies that (A◦)↑ ⊂ A↑ = A. If A = ∅, then
∅ ⊂ (∅◦)↑ trivially and there is nothing left to show. Hence, assume that A ̸= ∅
and let x ∈ A. Let (∆n)n∈N be a sequence of finite subsets of Λ with the property
that ∆n ↗ Λ. Then x⇂∆n→ x in the product topology. As A is open, there exists
an N ∈ N so that x⇂∆n∈ A for all n ≥ N . As x⇂∆N

∈ SΛ
fin, we can find an x′ ∈ A◦

such that x′ ≤ x⇂∆N
≤ x, thus x ∈ (A◦)↑. In particular, this shows that there

cannot exist an x ∈ A◦ ∩ (SΛ
fin)c.

We will use the space

H−(SΛ) := H(SΛ) \ {{0}}

as the state space of the dual process. The main advantage of choosing H−(SΛ)
over H(SΛ) lies in the more interesting greatest element of H−(SΛ), based on
which we will construct an upper invariant law of the dual process in Chapter 4.5.
For the aim to use H−(SΛ) as the state space of the dual process, we need to equip
H−(SΛ) with a topology. Note that H−(SΛ) is uncountable, so this task is not as
straightforward as in the previous chapters. We first equip I(SΛ) with a topology
and then use the bijection from Proposition 4.1 to transfer it to H(SΛ). We will
use the topology described in the following proposition. Note that {0}↑ = SΛ so
that the space I−(SΛ) defined below corresponds to H−(SΛ) via the bijection of
Proposition 4.1.

1In fact, Y ↑ = {y}↑ is clopen (i.e., both closed and open).
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Proposition 4.2 (Dual topology). There exists a unique metrizable topology on
I(SΛ) such that a sequence (An)n∈N ⊂ I(SΛ) converges to a limit A ∈ I(SΛ) if
and only if

1An(x) → 1A(x) for all x ∈ SΛ
fin. (4.4)

The space I(SΛ) is compact in this topology, and so is I−(SΛ) := I(SΛ) \ {SΛ}.

We construct the topology on I(SΛ) that satisfies Proposition 4.2 explicitly
using several lemmas. The staring point is the metric d from (1.2). Recall that
the metric d generates the product topology on SΛ. Note that d(x, y) ≤ 1/2
(x, y ∈ SΛ) with equality if and only if x(i) ̸= y(i) for all i ∈ Λ. Moreover,
d(x, y) < 1/3n (x, y ∈ SΛ) implies that d(x, y) ≤ 1/(2 · 3n) = ∑︁∞

k=n+1 1/3k, so
that the open ball

B1/3n(x) :=
{︃
y ∈ SΛ : d(x, y) < 1

3n
}︃

(x ∈ SΛ)

is actually clopen, i.e., both closed and open.
Let K(SΛ) denote the space of all compact subsets of SΛ. On K+(SΛ) :=

K(SΛ) \ {∅} one defines the Hausdorff metric dH as

dH(A,B) := max
{︄

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}︄

(A,B ∈ K+(SΛ)),

where d is the metric from (1.2) and (as usual)

d(x,B) := inf
y∈B

d(x, y) (x ∈ SΛ, B ⊂ SΛ).

The corresponding topology on (K+(SΛ), dH) is called the Hausdorff topology
and it is well-known (see, e.g., [Schertzer et al., 2014, Lemma B.1]) that it only
depends on the topology on SΛ, i.e., the product topology, and not on the exact
definition of the underlying metric. However, using the metric dH based on the
concrete metric d from (1.2) will be useful in the following. We extend the metric
dH to K(SΛ) by setting dH(∅, A) := 1 for all A ∈ K+(SΛ) so that ∅ is an isolated
point. By [Schertzer et al., 2014, Lemma B.3] the space K(SΛ) is then compact
since SΛ is compact.

We want to identify I(SΛ) with a subspace of K(SΛ). The assertion A↕
n → A↕

in the following lemma is to be understood to mean that both A↑
n → A↑ and

A↓
n → A↓.

Lemma 4.3 (Convergence of up- and downset). Let (An)n∈N ⊂ K(SΛ) and as-
sume that An → A ∈ K(SΛ). Then also A↕

n → A↕ in K(SΛ).

For the proof of Lemma 4.3 we will need a classical result. Let E be a compact
metrizable space that is equipped with a partial order ≤ that is compatible with
the topology in the sense that the set{︂

(x, y) ∈ E2 : x ≤ y
}︂

is a closed subset of E2, (4.5)

where E2 is equipped with the product topology.2 The following result is a special
case of [Nachbin, 1965, Proposition 4].

2This notion is also used in [Liggett, 1985]. In the more classical references [Nachbin, 1965]
and [Kamae and Krengel, 1978] an order that satisfies (4.5) is called closed.
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Lemma 4.4 (Closedness of upset and downset). Let E be a compact Hausdorff
space that is equipped with a partial order ≤ that is compatible with the topology.
Assume that A ⊂ E is closed. Then A↑ and A↓ are also closed.

Proof of Lemma 4.3. It is easy to check that the product order on SΛ is compati-
ble with the (product) topology. Moreover, every A ∈ K(SΛ) is closed (in SΛ), so
Lemma 4.4 implies that the sets A↕ are closed as well. Hence indeed A↕ ∈ K(SΛ),
as closed subsets of a compact topological space are compact.

Now assume that A = ∅. As ∅ is isolated in K(SΛ), An → A implies that
there exists an N ∈ N so that An = ∅ for all n ≥ N . As ∅↑ = ∅↓ = ∅ it follows
that also A↕

n → A↕.
Let now A,B ∈ K+(SΛ) and n ∈ N. We show that dH(A,B) < 1/3n implies

that dH(A↑, B↑) < 1/3n. Let x ∈ B↑ and b ∈ B so that b ≤ x. Then, as
dH(A,B) < 1/3n, there exists an a ∈ A such that d(a, b) < 1/3n, which implies
that aγ−1({1,...,n}) = bγ−1({1,...,n}). Let now ax ∈ SΛ be defined as

ax(i) :=
⎧⎨⎩x(i) if i ∈ γ−1({1, . . . , n}),
a(i) else,

(i ∈ Λ).

Then b ≤ x implies that a ≤ ax and the construction of ax implies that d(x, ax) ≤
1/(2 · 3n) and hence d(x,A↑) ≤ 1/(2 · 3n). As x ∈ B↑ was arbitrary we conclude
that supx∈B↑ d(x,A↑) ≤ 1/(2 · 3n). Interchanging the roles of B and A yields
that dH(A↑, B↑) ≤ 1/(2 · 3n) < 1/3n. The argument for ↑ replaced by ↓ works
analogously.

Let A ∈ I(SΛ). Then Ac, being a closed subset of a compact topological
space, is compact. We have the following.

Lemma 4.5 (Closedness within compact sets). The set {Ac : A ∈ I(SΛ)} is
closed in K(SΛ).

Proof. Let (Bn)n∈N ⊂ {Ac : A ∈ I(SΛ)} and assume that Bn → B ∈ K(SΛ).
As each Bn (n ∈ N) is decreasing, Lemma 4.3 shows that also Bn → B↓. The
Hausdorff property of K(SΛ) then implies that B = B↓ and the proof is complete.

Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. Using Lemma 4.5 we can equip I(SΛ) with the metric

dI(A,B) := dH(Ac, Bc) (A,B ∈ I(SΛ)), (4.6)

making (I(SΛ), dI) and (I−(SΛ), dI) compact metric spaces, isometric to some
closed subspaces of the metric space (K(SΛ), dH).

Next, we prove the convergence criterion. To start with, we consider the case
A = SΛ. As SΛ is isolated in I(SΛ), An → SΛ implies that there exists an N ∈ N
such that An = SΛ for all n ≥ N so that (4.4) is trivial. On the other hand,
assuming (4.4) and taking x = 0 implies that there has to exist an N ∈ N such
that 0 ∈ An for all n ≥ N . But 0 ∈ An implies 0 ∈ A◦

n and by minimality
A◦
n = {0}. Hence, by Proposition 4.1, An = SΛ for all n ≥ N so that An → SΛ.
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Assume now that A ∈ I−(SΛ). If x = 0 violates (4.4), then, by the arguments
above, An = SΛ for infinitely many n ∈ N and An cannot converge to A. Now
assume that there exists an x ∈ SΛ

fin \ {0} such that 1An(x) does not converge
to 1A(x). This implies that for all n ∈ N there exists an N ≥ n such that
x ∈ AN △A = (AN \ A) ∪ (A \ AN). Let now a∗ := min{ai : i ∈ supp(x)} and
m := log1/3(a∗). We claim that x ∈ AN △A implies that dH(Ac

N , A
c) ≥ a∗ and

hence also

lim sup
n→∞

dH(Ac
n, A

c) ≥ a∗.

To check the claim, due to symmetry we may w.l.o.g. assume that x ∈ AN ∩ Ac.
Would there now be a y ∈ Ac

N with d(x, y) < a∗ = 1/3m, then, as supp(x) ⊂
γ−1({1, . . . ,m}), we would have y ⇂supp(x)= x. But, as Ac

N is decreasing, x =
y⇂supp(x)≤ y implies x ∈ Ac

N , a contradiction.
For the reverse direction let ε > 0. Choose an m ∈ N such that 1/(2 ·3m) < ε.

By assumption, for all x ∈ SΛ
fin there exists anN(x) ∈ N such that 1An(x) = 1A(x)

for all n ≥ N(x). Set now

N0 := max
{︂
N(x) : supp(x) ⊂ γ−1({1, . . . ,m})

}︂
.

We claim that this implies that dH(Ac
n, A

c) < ε for all n ≥ N0 and hence

lim sup
n→∞

dH(Ac
n, A

c) = 0,

as ε was arbitrary. To check the claim, let n ≥ N0 and assume that there exists
an x ∈ SΛ with arbitrary support satisfying x ∈ Ac

n ∩ A. We then also have
that x⇂γ−1({1,...,m})∈ Ac

n which implies that x⇂γ−1({1,...,m})∈ Ac as n ≥ N0. Due to
the construction of d this implies that d(x,Ac) ≤ 1/(2 · 3N0). By symmetry, an
arbitrary x ∈ An ∩Ac has to satisfy d(x,Ac

n) ≤ 1/(2 · 3N0) and the claim follows.
The uniqueness of the metrizable topology that satisfies (4.4) follows from

the fact that convergence of sequences characterizes a topology in metrizable
spaces.

We equip H(SΛ) with a topology so that the bijection from Proposition 4.1
is a homeomorphism. Then both H(SΛ) and H−(SΛ) are compact metrizable
spaces and a sequence (Yn)n∈N ⊂ H(SΛ) converges to a limit Y ∈ H(SΛ) if and
only if 1Y ↑

n
(x) → 1Y ↑(x) for all x ∈ SΛ

fin.
As SΛ is equipped with a partial order, it makes sense to also have a partial

order on H−(SΛ). We equip the space I(SΛ) with the partial order of set inclu-
sion, which through the bijection of Proposition 4.1 defines a partial order ≤ on
H(SΛ) such that

Y ≤ Z ⇔ Y ↑ ⊂ Z↑ (Y, Z ∈ H(SΛ)). (4.7)

Since {0}↑ = SΛ, it is clear that {0} is the greatest element of H(SΛ). It turns
out that H−(SΛ) also has a greatest element, which is more interesting. We set

Ssec := (S \ {0})◦.
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Elements of Ssec are “second from below” in the order on S. We define Ysec ∈
H(SΛ) as

Ysec :=
{︂
δai : i ∈ Λ, a ∈ Ssec

}︂
, (4.8)

with δai being defined by (1.16). The following lemma describes some elementary
properties of the partial order on H(SΛ).

Lemma 4.6 (Order on the dual state space). The partial order ≤ defined in
(4.7) is compatible with the topologies on H(SΛ) and H−(SΛ). Moreover, Ysec is
the greatest element of H−(SΛ).

Proof. Let Y, Z ∈ H(SΛ). As

Y ≤ Z ⇔ Y ↑ ⊂ Z↑ ⇔ (Z↑)c ⊂ (Y ↑)c,

it suffices to show that K(SΛ) satisfies (4.5) if it is equipped with the partial
order ⊂. Let (An)n∈N, (Bn)n∈N ⊂ K(SΛ) be two sequences such that An ⊂ Bn

for all n ∈ N and assume that An → A ∈ K(SΛ) and Bn → B ∈ K(SΛ). If
A = ∅, then trivially A ⊂ B. Hence, assume that A ̸= ∅ and let a ∈ A. From
the definition of the Hausdorff metric we can conclude that there exist an ∈ An
(n ∈ N) so that an → a in SΛ. But then an ∈ Bn (n ∈ N) and by [Schertzer
et al., 2014, Lemma B.1] this implies that a ∈ B. From this one concludes that
A ⊂ B. Hence, K(SΛ) satisfies (4.5).

Finally, we consider Ysec. Clearly, 0 /∈ Ysec, so Ysec ∈ H−(SΛ). Let Y ∈
H−(SΛ). Since 0 /∈ Y , for every y ∈ Y there has to exist an i ∈ Λ satisfying
y(i) ̸= 0. But then there also exists an a ∈ Ssec such that a ≤ y(i). Hence also
δai ≤ y and thus y ∈ Y ↑

sec. It follows that Y ↑ ⊂ Y ↑
sec, i.e., Y ≤ Ysec.

4.2 The monotone backward flow
After having equipped H−(SΛ) in the last subchapter with a topology and a
partial order, we are now ready to construct the dual process. Recall that, in
contrast to the last two chapters, Proposition 1.8 and Theorem 1.9 are not appli-
cable since H−(SΛ) is uncountable. Therefore, we take a more direct approach
than in the last two chapters. Instead of working with the local maps that make
up the collection G and first prove duality between local maps, we work directly
with the stochastic flow (Xs,u)s≤u. As indicated at the start of this chapter, the
idea is to define a backward stochastic flow consisting of the preimage maps of the
maps that make up (Xs,u)s≤u while utilizing the homeomorphism from Proposi-
tion 4.1. The next lemma shows that this idea indeed leads to an almost surely
well-defined backward stochastic flow in the sense of Chapter 1.3.

Lemma 4.7 (Dual flow). Assume the summability condition (1.7) and that every
map m ∈ G is monotone in the sense of (4.2) and satisfies (1.22). Let (Xs,u)s≤u
be the stochastic flow from (1.12). Then, almost surely, setting

Yu,s(Y ) :=
{︂
y ∈ SΛ : Xs,u(y) ∈ Y ↑

}︂◦
(Y ∈ H(SΛ), u ≥ s) (4.9)

yields a well-defined map Yu,s : H(SΛ) → H(SΛ) for all u ≥ s.
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Proof. Let u ≥ s, Y ∈ H(SΛ), and letA := {y ∈ SΛ : Xs,u(y) ∈ Y ↑} be the preim-
age of Y ↑ under the map Xs,u. By Lemma 1.4, Xs,u is almost surely continuous.
Similarly, it follows from Lemma 1.2 that Xs,u is almost surely monotone. The
continuity of Xs,u implies that A is open and the monotonicity of Xs,u implies that
A is increasing. By (4.9) and Proposition 4.1, it now follows that Yu,s(Y )↑ = A.
Hence Yu,s(Y )↑ ∈ I(SΛ) and Yu,s(Y ) ∈ H(SΛ) by Proposition 4.1.

It follows readily that (Yu,s)u≥s is a backward stochastic flow in the sense of
Chapter 1.3. Note that Yu,s(Y ) is the collection of minimal configurations y with
the property that if we start the interacting particle system X = (Xt)t≥0 from
Theorem 1.3 at time s in the initial state y and evolve it under the graphical
representation, then at time u the state of the interacting particle system lies in
Y ↑.

Due to the construction we instantly get a duality of the stochastic flows
(Xs,u)s≤u and (Yu,s)u≥s in the sense of (1.27). Let ψmon : SΛ × H(SΛ) → {0, 1}
be defined as

ψmon(x, Y ) := 1Y ↑(x) (x ∈ SΛ, Y ∈ H(SΛ)), (4.10)

i.e., by first restricting ψbasic in the form of (1.38) in the second coordinate to
I(SΛ) and then applying the homeomorphism between I(SΛ) and H(SΛ) from
Proposition 4.1. It follows from the definition of the backward stochastic flow
(Yu,s)u≥s that

ψmon(Xs,u(x), Y ) = ψmon(x,Yu,s(Y )) (4.11)

holds almost surely for all s ≤ u, x ∈ SΛ and Y ∈ H(SΛ) simultaneously.
It turns out that we can define the backward stochastic flow (Yu,s)u≥s also if

we assume the summability condition (1.18) instead of (1.7). As a consequence,
(4.11) then holds almost surely for all s ≤ u, x ∈ SΛ

fin (!) and Y ∈ H(SΛ)
simultaneously.

Lemma 4.8 (Alternative definition). Assume the summability condition (1.18)
and that every map m ∈ G is monotone in the sense of (4.2) and satisfies (1.22).
Let (Xs,u)s≤u be the stochastic flow from (1.20). Then, almost surely, setting

Yu,s(Y ) :=
{︂
y ∈ SΛ

fin : Xs,u(y) ∈ Y ↑
}︂◦

(Y ∈ H(SΛ), u ≥ s) (4.12)

yields a well-defined map Yu,s : H(SΛ) → H(SΛ) for all u ≥ s. If also the
summability condition (1.7) holds, then the maps from (4.9) and (4.12) are (a.s.)
identical.

Proof. It follows from the proofs of Proposition 1.5 and Theorem 1.6 that under
(1.18), almost surely, for all s ≤ u the random map Xs,u : SΛ

fin → SΛ
fin is a

concatenation of finitely many continuous and monotone maps. Hence, Xs,u

itself is continuous and monotone. The rest of the argument for the first assertion
follows in the same way as in the proof of Lemma 4.7.

If the summability conditions (1.7) and (1.18) both hold, then the definitions
of Xs,u(y) for y ∈ SΛ

fin via (1.12) and (1.20) yield, by definition, the same (random)
element of SΛ

fin. Moreover, any element of the right-hand side of (4.9) has to be
an element of SΛ

fin as we have seen in the proof of Lemma 4.7. It follows that the
right-hand sides of (4.9) and (4.12) (a.s.) coincide.
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4.2.1 The monotone dual process
With this we have shown two of the three bullet points from Chapter 1.3 that were
needed in order to have a pathwise duality. The main result of this subchapter
says that under the assumptions from Chapter 1.2 also the last remaining bullet
point is satisfied. Namely, we show that, for fixed u ∈ R and a random variable
Y0, setting Ys := Yu,u−s(Y0) as in (1.33) defines a Feller process Y = (Ys)s≥0 with
state space H−(SΛ) and càglàd sample paths. In the upcoming theorem P again
denotes the probability measure on the probability space where the graphical
representation ω from Chapter 1.1 lives.

Theorem 4.9 (Dual stochastic flow and Markov process). Assume the summa-
bility condition (1.18), and that every map m ∈ G is monotone and satisfies
(1.22). Then, almost surely, (4.12) defines a map Yu,s : H−(SΛ) → H−(SΛ) for
all u ≥ s, and setting

Qt(Y, · ) := P[Yt,0(Y ) ∈ · ] (Y ∈ H−(SΛ), t ≥ 0)

defines a Feller semigroup on H−(SΛ). If u ∈ R and Y0 is a random variable
with values in H−(SΛ) that is independent of the graphical representation ω, then
setting

Yt := Yu,u−t(Y0) (t ≥ 0) (4.13)

defines a Feller process Y = (Yt)t≥0 with càglàd sample paths whose transition
probabilities are (Qt)t≥0.

Proof. Recall from Theorem 1.6 and its proof that the summability condition
(1.18) implies that ∑︂

m∈G:
m(x)̸=x

rm < ∞ for all x ∈ SΛ
fin (4.14)

holds and that one can (a.s.) define random maps Xs,u : SΛ
fin → SΛ

fin for all s ≤ u
via (1.20).

We begin the proof by showing that Yu,s(Y ) ∈ H−(SΛ) for all u ≥ s and
Y ∈ H−(SΛ). Let Y ∈ H−(SΛ). Using (4.11), Lemma 1.4 and the definition of
ψmon,

0 = ψmon(0, Y ) = ψmon(Xs,u(0), Y ) = ψmon(0,Yu,s(Y )), (4.15)

thus Yu,s(Y ) ̸= {0}, i.e., Yu,s(Y ) ∈ H−(SΛ).
Moreover, by construction, the stochastic flow (Yu,s)u≥s has independent in-

crements meaning that Yt1,t0 ,Yt2,t1 , . . . ,Ytn,tn−1 are independent for all t0 < t1 <
. . . < tn (n ∈ N) and Yu,s and Yu+t,s+t (u ≥ s, t ∈ R) are identically distributed.
These two facts imply that Y = (Yt)t≥0 defined by (4.13) is a Markov process
with Markov semigroup (Qt)t≥0 (compare [Swart, 2022, Proofs of Theorem 4.20
and Proposition 2.7]).

Hence, to conclude that Y is a Feller process it suffices to show that

(Y, t) ↦→ Qt(Y, · ) is a continuous map from H−(SΛ) × [0,∞) to M1(H−(SΛ)).
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Let ((Yn, tn))n∈N ⊂ H−(SΛ)×[0,∞) such that (Yn, tn) → (Y, t) ∈ H−(SΛ)×[0,∞)
as n → ∞ (where H−(SΛ)× [0,∞) is equipped with the product topology). Since
almost sure convergence implies weak convergence in law, it suffices to show that

Ytn,0(Yn) −→
n→∞

Yt,0(Y ) a.s.

By Proposition 4.2 we have to show that

1(Ytn,0(Yn))↑(x) −→
n→∞

1(Yt,0(Y ))↑(x) a.s.

for each x ∈ SΛ
fin. By (4.11) this is equivalent to

1Y ↑
n

(X0,tn(x)) −→
n→∞

1Y ↑(X0,t(x)) a.s. (4.16)

for each x ∈ SΛ
fin. Let, as in (1.21),

I(x) :=
{︂
u ∈ R : ∃(m,u) ∈ ω with m(x) ̸= x

}︂
.

Then, due to (4.14), I(x) is a Poison point set on R with finite intensity. Let now

t− := sup{u ∈ I(x) : u ≤ t},
t+ := inf{u ∈ I(x) : u ≥ t}.

Since t is a deterministic time, t− < t < t+ a.s. Since X0,tn(x) = X0,t(x) for all n
large enough so that t− < tn < t+, (4.16) follows from Proposition 4.2.

Finally, we show that Y has (a.s.) càglàd sample paths. Fix u ∈ R. We show
that Y has (a.s.) càglàd sample paths by proving that (−∞, u] ∋ t ↦→ Yu,t(Y ) ∈
H−(SΛ) has (a.s.) càdlàg sample paths for all Y ∈ H−(SΛ). As indicated above,
(4.14) implies that (a.s.)

Is1,s2(x) := I(x) ∩ (s1, s2] is finite for all s1 ≤ s2 and x ∈ SΛ
fin. (4.17)

For any Y ∈ H−(SΛ) and t < u choose an arbitrary sequence (sn)n∈N ⊂ (t, u]
with sn ↘ t. We show that Yu,sn(Y ) → Yu,t(Y ) in H−(SΛ) as n → ∞. Using
Proposition 4.2 and the definition of ψmon, this is equivalent to showing that

ψmon(x,Yu,sn(Y )) −→
n→∞

ψmon(x,Yu,t(Y )) for all x ∈ SΛ
fin.

By (4.11) this again is equivalent to showing

ψmon(Xsn,u(x), Y ) −→
n→∞

ψmon(Xt,u(x), Y ) for all x ∈ SΛ
fin. (4.18)

By (4.17) for all t ∈ R and x ∈ SΛ
fin there (a.s.) exists an ε > 0 such that

It,t+ε(x) = ∅. Hence, in this case Xsn,u(x) = Xt,u(x) for all sn ∈ (t, t + ε] and
(4.18) follows. Thus, t ↦→ Yu,t(Y ) is (a.s.) right-continuous.

For any Y ∈ H−(SΛ) and t ≤ u choose an arbitrary sequence (sn)n∈N ⊂
(−∞, t) with sn ↗ t. We show that Yu,sn(Y ) has a limit as n → ∞. With
the arguments from above we can equivalently show that ψmon(Xsn,u(x), Y ) has
a limit as n → ∞. Again, due to (4.17), for all t ∈ R and x ∈ SΛ

fin there (a.s.)
exists an ε > 0 such that It−ε,t(x) is either the empty set or equal to {t}. But in
both cases there exists an n0 ∈ N such that Xsn,u(x) = Xsn0 ,u

(x) for all n ≥ n0.
It follows that ψmon(Xsn,u(x), Y ) has a limit as n → ∞ and hence t ↦→ Yu,t(Y )
has (a.s.) left limits.

91



Before we continue we add a remark regarding the proof of Theorem 4.9.
Going back to the proof of Theorem 1.6, one may notice that the conditions of
Theorem 4.9 are sufficient but not necessary. A particularly interesting question
is in what way one can weaken (1.22), i.e., the condition that every local map
m ∈ G maps 0 to itself. Without the condition (1.22) we lose the property that
Yu,s(Y ) ∈ H−(SΛ) for all u ≥ s and Y ∈ H−(SΛ). Hence, we have to choose the
whole set H(SΛ) as the state space of the dual process. If started in H−(SΛ), the
dual process can jump into the trap {0}. In order for it to still be a Feller process
we have to make sure that the first entrance time of the trap {0} is almost surely
positive. It is straightforward to modify the proof of Theorem 1.6 to show that
having

sup
i∈Λ

∑︂
m∈G:
m(0)=0

rm
(︂
1D(m)(i) + |R↑

i (m)|
)︂
< ∞

instead of (1.18) and ∑︂
j∈Λ

∑︂
m∈G:
m(0) ̸=0

rm1D(m)(j) < ∞ (4.19)

instead of (1.22) suffices to conclude (4.14) and that one can (a.s.) define random
maps Xs,u : SΛ

fin → SΛ
fin for all s ≤ u via (1.20). Note, however, that (4.19) implies

that ∑︂
m∈G:
m(0)̸=0

rm < ∞,

disallowing many natural and interesting cases. Indeed, it seems that the first
entrance time of {0} is a.s. zero in many cases where (4.19) is violated, e.g.,
for stochastic Ising models or more generally for processes on infinite grids in
which zero spins jump with a constant rate to a nonzero value, independent of
everything else.

In parallel to Theorem 2.9 and Theorem 3.6, we formulate the following result
summarizing the work we have done up to now in this chapter.

Theorem 4.10 (Pathwise monotone duality). Let there exist a partial order ≤
on the local state space S and assume that there exists a least element 0 ∈ S
with respect to this partial order. Let G be the generator from (1.8) defined via
G, a countable collection of local monotone maps satisfying (1.22). Assuming the
summability condition (1.18), there exists a Feller process Y = (Yt)t≥0 with state
space H−(SΛ) and càglàd sample paths such that X = (Xt)t≥0, the continuous-
time Markov chain with state space SΛ

fin, defined in Chapter 1.2, is pathwise dual
to Y with respect to ψmon, the duality function defined in (4.10). If also the
summability condition (1.7) holds, then X can be defined as an interacting particle
system with state space SΛ, and pathwise duality of X and Y with respect to ψmon
still holds.

Proof. The claims follow from the previous results in this subchapter, the con-
struction of X as a continuous-time Markov chain in Chapter 1.2, the steps
outlined in Chapter 1.3, and Theorem 1.3.
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Thus, if only the summability condition (1.18) holds, then the roles of the two
processesX and Y are exchanged compared to the setup at the end of Chapter 1.3:
X becomes a continuous-time Markov chain on a countable state space and Y is a
Feller process on an uncountable state space. In this situation, Y may be regarded
as the process of primary interest, that is studied through the continuous-time
Markov chain X, which is comparatively easier to comprehend.

On the other hand, if only the summability condition (1.7) holds, then one can
construct a version of Y on a countable state space as we will see in Chapter 4.3.
The (pathwise) duality of the interacting particle system X from Theorem 1.3 to
this continuous-time Markov chain had already been established in the literature.

4.2.2 Monotone dual maps
In difference to Theorem 2.9 and Theorem 3.6, Theorem 4.10 does not provide
a generator of the dual process Y. Formally, its generator should look similar to
the one in (1.34), i.e., it should have the form∑︂

m∈G
rm

{︂
f(m̂(Y )) − f(Y )

}︂
(Y ∈ H−(SΛ)), (4.20)

if m̂ : H−(SΛ) → H−(SΛ) is the unique dual map of m : SΛ → SΛ. The existence
of unique dual maps is guaranteed by the following result.

Lemma 4.11 (Maps with a dual V). A map m : SΛ → SΛ has a dual map
m̂ : H(SΛ) → H(SΛ) with respect to ψmon if and only if it preserves {f : SΛ →
{0, 1} : f is monotone and lower semi-continuous}. The dual map m̂, if it exists,
is unique. In particular, the unique dual map m̂ of a continuous monotone map
m : SΛ → SΛ is given by

m̂(Y ) := m−1(Y ↑)◦ (Y ∈ H(SΛ)). (4.21)

If m satisfies (1.22), then moreover m̂(Y ) ∈ H−(SΛ) for all Y ∈ H−(SΛ).

To prove Lemma 4.11, we again apply Lemma 1.7. We first prove the following
small fact that implies (1.30). It will also be used at other points in the remainder
of this chapter.

Lemma 4.12 (Separation of points). The collection {ψmon(x, · ) : x ∈ SΛ
fin} of

functions from H(SΛ) to {0, 1} separates points.

Proof. Let Y1, Y2 ∈ H(SΛ) with Y1 ̸= Y2. Then, by Proposition 4.1, there exists
an x ∈ Y ↑

1 △Y
↑

2 . W.l.o.g. we assume x ∈ Y ↑
1 \Y ↑

2 and we choose y ∈ Y1 with y ≤ x.
Then y /∈ Y ↑

2 as else x ∈ Y ↑
2 , and y ∈ SΛ

fin as Y1 ⊂ SΛ
fin. Hence,

ψmon(y, Y1) = 1Y ↑
1

(y) = 1 ̸= 0 = 1Y ↑
2

(y) = ψmon(y, Y2),

implying the claim.

We continue with the proof of Lemma 4.11.
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Proof of Lemma 4.11. By Lemma 4.12, the first two assertion of Lemma 4.11
follow from Lemma 1.7 provided we show that

Hψmon =
{︂
f : SΛ → {0, 1} : f is monotone and lower semi-continuous

}︂
. (4.22)

Note that a function f : SΛ → {0, 1} is lower semi-continuous if and only if
f−1({1}) = {x ∈ SΛ : f(x) = 1} is open. Thus,{︂

f : SΛ → {0, 1} : f is lower semi-continuous
}︂

=
{︂
1A : A ⊂ SΛ is open

}︂
.

Moreover, 1A is monotone if A ⊂ SΛ is increasing, while, for all monotone f :
SΛ → {0, 1}, Af := {x ∈ SΛ : f(x) = 1} is increasing and f = 1Af

. Together
with Proposition 4.1 this implies (4.22).

Assume now that m : SΛ → SΛ is monotone and continuous. Then one has
that

ψmon(m(x), Y ) = 1Y ↑(m(x)) = 1m−1(Y ↑)(x) (Y ∈ H(SΛ)).

Using the same argument as in the proof of Lemma 4.7, the set m−1(Y ↑) is open
and increasing. Hence, by Proposition 4.1, m−1(Y ↑)◦ ∈ H(SΛ) and

m−1(Y ↑) =
[︂
m−1(Y ↑)◦

]︂↑
(Y ∈ H(SΛ)).

Thus, the map m̂, defined in (4.21), is dual to m. The last assertion of the lemma
follows analogously to the argument in (4.15).

Recall that (4.20) does not suffice to define a generator. One must also spec-
ify its domain, usually characterized by a core, that has the property that the
closure of the generator restricted to the core is the generator itself (compare,
e.g., [Liggett, 1985, Chapter I.2], [Swart, 2022, Chapter 4.2]). It is not apparent
to us which collection of continuous function defined on H−(SΛ) may be used to
define a core for the generator of Y.

4.2.3 The backward evolution equation
While we leave the problem of giving a generator characterization of the dual
process Y to future work, we do give a characterization of the backward stochastic
flow as a solution of an evolution equation. Recall that for countable dual spaces
we had seen this characterization in Chapter 1.3.

Proposition 4.13 (Backward flow evolution). Under the assumptions of Theo-
rem 4.9, almost surely, for each u ∈ R and Y ∈ H−(SΛ), there exists a unique
càdlàg function (−∞, u] ∋ t ↦→ Yt ∈ H−(SΛ) that solves the evolution equation

Yu = Y and Yt− =
⎧⎨⎩m̂(Yt) if (m, t) ∈ ω,

Yt else,
(t ≤ u). (4.23)

This function is given by Yt = Yu,t(Y ) (t ≤ u), where (Yu,s)u≥s is the backward
stochastic flow defined in (4.12).

94



Proof. Recall that it was shown in the proof of Theorem 4.9 that under its as-
sumptions for fixed u ∈ R and Y ∈ H−(SΛ), t ↦→ Yu,t(Y ) is (a.s.) indeed a càdlàg
function from (−∞, u] to H−(SΛ).

Fix u ∈ R. We show that (−∞, u] ∋ t ↦→ Yu,t(Y ) ∈ H−(SΛ) (a.s.) solves
(4.23). The first part of (4.23) follows directly from the definition of Ys,s and the
fact that Xs,s(y) = y for all y ∈ SΛ

fin (compare the construction of (Xs,u)s≤u via
(1.20)). To show also the second part, we introduce further notation. As G × G
is countable and all maps are applied with finite rates, almost surely

∄t ∈ R : |{m ∈ G : (m, t) ∈ ω}| ≥ 2.

Hence, we can almost surely define random maps mω
t : SΛ

fin → SΛ
fin and m̂ω

t :
H−(SΛ) → H−(SΛ) for all t ∈ R as

mω
t :=

⎧⎨⎩m if (m, t) ∈ ω,

id else,
and m̂ω

t :=
⎧⎨⎩m̂ if (m, t) ∈ ω,

id else,

where id denotes in both cases the identity and m̂ is the dual map of m ∈ G from
Lemma 4.11. Using the newly introduced notation, it follows from the arguments
from the proof of Theorem 4.9 that, for any t ≤ u and x ∈ SΛ

fin,

ψmon(x,Yu,s(Y )) = ψmon(Xs,u(x), Y ) → ψmon(Xt,u ◦ mω
t (x), Y ) as s ↗ t.

But, by (4.11) and the duality of the maps,

ψmon(Xt,u ◦ mω
t (x), Y ) = ψmon(mω

t (x),Yu,t(Y )) = ψmon(x, m̂ω
t (Yu,t(Y )))

and we conclude from Proposition 4.2 and the definition of ψmon that Yu,s(Y ) →
m̂ω
t (Yu,t(Y )) in H−(SΛ) as s ↗ t. As this is just another way of writing the

second part of (4.23), we conclude that (−∞, u] ∋ t ↦→ Yu,t(Y ) ∈ H−(SΛ) (a.s.)
solves (4.23).

Finally, we prove the uniqueness of the solutions of (4.23). We will show that
if (Yt)t≤u, for fixed u ∈ R and Y ∈ H−(SΛ), solves (4.23), then

ψmon(x, Ys) = ψmon(Xu, Y ) (s ≤ u, x ∈ SΛ
fin), (4.24)

where (Xt)t≥s solves (1.14) started at time s in state x. The uniqueness of the
solutions of (1.14) (compare the comment below Theorem 1.6) together with
Lemma 4.12 then implies the uniqueness of the solutions of (4.23).

We use a strategy similar to the proof of [Swart, 2022, Theorem 6.20]. We
equip SΛ

fin ×H−(SΛ) with the product topology consisting of the discrete topology
on SΛ

fin and of the topology from Proposition 4.2 on H−(SΛ). Then ψmon is, by
Proposition 4.2, a continuous function from SΛ

fin × H−(SΛ) to {0, 1}. Fix u ∈ R
and Y ∈ H−(SΛ) and assume that (Yt)t≤u solves (4.23). Fix moreover s ≤ u and
x ∈ SΛ

fin and assume that (Xt)t≥s solves (1.14) (restricted to SΛ
fin). Then the fact

that (Yt)t≤u and (Xt)t≥s are càdlàg implies that

[s, u] ∋ t ↦→ ψmon(Xt, Yt) ∈ {0, 1} (4.25)

is càdlàg as well. If (m, t) ∈ ω for some t ∈ (s, u], then the evolution equations
and the duality of the maps imply that

ψmon(Xt, Yt) = ψmon(m(Xt−), Yt) = ψmon(Xt−, m̂(Yt)) = ψmon(Xt−, Yt−).
(4.26)
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If there exists no m ∈ G such that (m, t) ∈ ω, then (4.26) holds trivially. The
finiteness of {0, 1} now implies that the function in (4.25) is constant. Plugging
in t = u and t = s this implies (4.24) and the proof is complete.

4.3 Previously known construction
In previous work [Gray, 1986, Sturm and Swart, 2018], the dual process Y from
Theorem 4.9 had already been constructed, but only for finite initial states. This
more limited construction does not allow one to discuss the upper invariant law
of the dual process, as we will do in Chapter 4.5. Nevertheless, for the sake of
completeness, we demonstrate in this subchapter how this construction may be
done using the previously established notation and results. Let

Hfin(SΛ) :=
{︂
Y ∈ H(SΛ) : |Y | < ∞

}︂
(4.27)

denote the subset of H(SΛ) consisting of the finite subsets Y ⊂ SΛ with Y ◦ = Y .
Note that in this case we do not remove the element {0}, and that Hfin(SΛ) is
countable. As usual, we equip Hfin(SΛ) with the discrete topology.

Proposition 4.14 (Dual chain). Assume the summability condition (1.7) and
that every map m ∈ G is monotone. Then, almost surely, (4.9) defines a map
Yu,s : Hfin(SΛ) → Hfin(SΛ) for all u ≥ s. If u ∈ R and Y0 is a random variable
with values in Hfin(SΛ) that is independent of the graphical representation ω, then
setting

Yt := Yu,u−t(Y0) (t ≥ 0) (4.28)

defines a continuous-time Markov chain Y = (Yt)t≥0 with state space Hfin(SΛ)
and càglàd sample paths.

Comparing with [Sturm and Swart, 2018], the reader might notice that the
random maps {Yu,s}u≥s there are not defined as in (4.9), but as limits of concate-
nations of finitely many dual maps of the maps appearing in the Poison point set
ω (compare [Sturm and Swart, 2018, Equation (143) & Proposition 28]). How-
ever, based on the proof of Proposition 4.14 that is about to follow, it is not
hard to see that we can prove a version of Proposition 4.13 with H−(SΛ) re-
placed by Hfin(SΛ). The uniqueness in the modified version then implies that
both approaches (a.s.) yield the same random maps.

In order to prove Proposition 4.14, we first state a lemma with an additional
property of the dual map m̂ from (4.21). In fact, the result below was already
stated as part of [Sturm and Swart, 2018, Lemma 29]. However, in [Sturm and
Swart, 2018] monotone dual maps are defined via the dual of a partially ordered
set (compare Chapter 2.4.1). For the convenience of the reader, we present below
a reformulated proof adapted to the notation and definitions of the present thesis.
For any A ⊂ SΛ, we set supp(A) := ⋃︁

x∈A supp(x) and call supp(A) the support
of A.

Lemma 4.15 (Support of the dual map). For each continuous monotone map
m : SΛ → SΛ, the map m̂ from (4.21) satisfies

supp(m̂(Y )) ⊂
⋃︂

i∈supp(Y )
R(m[i]) (Y ∈ H(SΛ)). (4.29)
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Proof. Let Y ∈ H(SΛ). As

supp(m̂(Y ))

= supp
⎛⎝⎡⎣ ⋃︂

y∈y
m−1({y}↑)

⎤⎦◦⎞⎠ ⊂ supp
⎛⎝ ⋃︂
y∈y

m−1({y}↑)◦

⎞⎠ =
⋃︂
y∈y

supp(m−1({y}↑)◦)

and supp(Y ) = ⋃︁
y∈Y supp(y), it suffices to show that

supp
(︂
m−1({y}↑)◦

)︂
⊂

⋃︂
i∈supp(y)

R(m[i]) (y ∈ SΛ
fin). (4.30)

Hence, let y ∈ SΛ
fin and assume that k ∈ supp(m−1({y}↑)◦). By the definition

of the support, there then exists an x ∈ m−1({y}↑)◦ with x(k) ̸= 0. We define
xk⇝0 ∈ SΛ via

xk⇝0(m) :=
⎧⎨⎩0 if m = k,

x(m) else,
(m ∈ Λ). (4.31)

Then y ≰ m(xk⇝0) as otherwise the minimality of x ∈ m−1({y}↑) would be
violated. Hence, there exists an i ∈ Λ such that y(i) ≤ m(x)(i) but y(i) ≰
m(xk⇝0)(i). This shows that m(x)(i) ̸= m(xk⇝0)(i) and hence k ∈ R(m[i]), and
also that y(i) ̸= 0 so that i ∈ supp(y). This establishes (4.30) and hence also
(4.29).

With this, we are ready to prove Proposition 4.14.

Proof of Proposition 4.14. By Lemma 1.4, Xs,u is almost surely a continuous map
for all s ≤ u. Hence, by Lemma 4.11, Xs,u possesses (a.s.) a dual map that we
denote by ˆ︂Xs,u. Then Lemma 4.15 (using also Lemma 1.1) implies that ˆ︂Xs,u (a.s.)
maps Hfin(SΛ) into itself. Finally, (4.11) and the uniqueness of the dual map in
Lemma 4.11 imply that Yu,s = ˆ︂Xs,u.

Fix u ∈ R, let Y0 be a random variable with values in Hfin(SΛ) that is in-
dependent of the graphical representation ω, and let Y = (Yt)t≥0 be defined by
(4.28). The fact that Y is a Markov process follows from the fact that it is
constructed from a stochastic flow with independent increments (compare the
proof of Theorem 4.9). It remains to show that Y has (a.s.) càglàd sample paths.
As Hfin(SΛ) is equipped with the discrete topology, this amounts to showing
that (−∞, u] ∋ t ↦→ Yu,t(Y ) ∈ Hfin(SΛ) is (a.s.) piecewise constant and right-
continuous for all Y ∈ Hfin(SΛ).

Generalizing the notation m[i] introduced in Chapter 1.1, for any finite set
∆ ⊂ Λ and map m : SΛ → SΛ, let m[∆] : SΛ → S∆ denote the map defined
by m[∆](x)(i) := m(x)(i) (i ∈ ∆). Recall (4.9), the definition of the backward
stochastic flow under (1.7). We observe that Xs,u(x) ∈ Y ↑ if and only if

∃y ∈ Y s.t. y(i) ≤ Xs,u(x)(i) ∀i ∈ supp(Y ). (4.32)

It follows from Lemma 1.2 that for fixed u ∈ R and i ∈ Λ, the function s ↦→
ωs,u(i) is piecewise constant and right-continuous and hence the same is true for
s ↦→ Xs,u[i]. As a consequence, for any finite ∆ ⊂ Λ, also the map s ↦→ Xs,u[∆] is
piecewise constant and right-continuous. Applying this to ∆ = supp(Y ), we see
from (4.9) and (4.32) that t ↦→ Yu,t(Y ) is piecewise constant and right-continuous
for all Y ∈ Hfin(SΛ).
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4.4 Informativeness of monotone duality
As in the previous two chapters, we want to investigate whether (or in which
cases) the duality function ψmon from (4.10) is informative. It turns that ψmon is
always informative if we take Hfin(SΛ) from (4.27) as the dual space.

Proposition 4.16 (Informativeness of ψmon). The collection

F :=
{︂
ψmon( · , Y ) : Y ∈ Hfin(SΛ) \ {{0}}

}︂
⊂ C(SΛ, {0, 1}) (4.33)

is distribution determining.

For the proof of Proposition 4.16 we are going to use the following lemma.

Lemma 4.17 (Clopen increasing subsets). Let Y ∈ H(SΛ). Then Y is finite if
and only if Y ↑ is closed.

Proof. Fist assume that Y ∈ H(SΛ) is finite, i.e., that there exist an n ∈ N0 and
y1, . . . , yn ∈ SΛ

fin such that Y = {y1, . . . , yn}. Then

Y ↑ = {y1}↑ ∪ · · · ∪ {yn}↑

is closed, as it is the union of finitely many closed sets (compare Lemma 4.4).
Conversely, assume that Y ↑ is closed, and hence clopen (i.e., also open), as

Y ↑ ∈ I(SΛ) by Proposition 4.1. This implies that 1Y ↑ : SΛ → {0, 1} is a
continuous function. By Lemma 1.1, this implies that R(1Y ↑) from (1.3) is finite.
We claim that

supp(Y ) ⊂ R(1Y ↑) (4.34)

implying the finiteness of Y . To see (4.34), let i ∈ supp(Y ). Then there exists
a y ∈ Y with i ∈ supp(y). By the minimality of Y then yi⇝0 /∈ Y ↑, where yi⇝0,
defined in (4.31), denotes the configuration obtained from y by changing the i-th
coordinate to 0. Hence 1Y ↑(y) ̸= 1Y ↑(yi⇝0) and i ∈ R(1Y ↑), implying (4.34).
This completes the proof.

With this, we are ready to prove Proposition 4.16.

Proof of Proposition 4.16. As usual, we want to apply Lemma 1.12. We start by
showing that F from (4.33) is closed under products. Note that F ⊂ C(SΛ, {0, 1})
follows from Lemma 4.17. Let Y1, Y2 ∈ Hfin(SΛ). Noting that Y ↑

1 ∩ Y ↑
2 ∈ I(SΛ)

and using Proposition 4.1, one has that

ψmon( · , Y1)ψmon( · , Y2) = 1Y ↑
1

( · )1Y ↑
2

( · ) = 1Y ↑
1 ∩Y ↑

2
( · ) = ψmon( · , (Y ↑

1 ∩ Y ↑
2 )◦).

By Lemma 4.17, (Y ↑
1 )c and (Y ↑

1 )c are open and

(Y ↑
1 ∩ Y ↑

2 )c = (Y ↑
1 )c ∪ (Y ↑

1 )c

is open as well. Hence, using Lemma 4.17 in the converse direction, (Y ↑
1 ∩ Y ↑

2 )◦

is finite.3 Moreover, if Y1 ̸= {0} ≠ Y2, then clearly also (Y ↑
1 ∩Y ↑

2 )◦ ̸= {0}. Hence,
F is closed under products.

3If S is a lattice, then one can check that (Y ↑
1 ∩ Y ↑

2 )◦ = {y1 ∨ y2 : y1 ∈ Y1, y2 ∈ Y2}◦,
providing an alternative proof that (Y ↑

1 ∩ Y ↑
2 )◦ is finite.
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Next, we show that F also separates points. Let x1, x2 ∈ SΛ and assume that
x1 ̸= x2. Then there has to exist an i ∈ Λ such that x1(i) ̸= x2(i). Then either
x1(i) ≰ x2(i) or x2(i) ≰ x1(i), so interchanging the roles of x1 and x2 if necessary,
we can w.l.o.g. assume that x1(i) ≰ x2(i). Now, using the notion of (1.16),

ψmon
(︂
x2,

{︂
δ
x1(i)
i

}︂)︂
= 0 ̸= 1 = ψmon

(︂
x1,

{︂
δ
x1(i)
i

}︂)︂
.

This shows that F separates points and hence F is distribution determining by
Lemma 1.12.

By Theorem 4.10, the construction of Theorem 4.9 allows one to view X =
(Xt)t≥0 as a continuous-time Markov chain on the countable state space SΛ

fin and
Y = (Yt)t≥0 as a Feller process on the uncountable state space H−(SΛ). Hence, in
order to characterize the law of the Feller process Y, one would like ψmon to also be
“informative” if one exchanges the roles of primal and dual space. Unfortunately,
the collection {︂

ψmon(x, · ) : x ∈ SΛ
fin

}︂
is not distribution determining. Indeed, let S = {0, 1} and i, j ∈ Λ with i ̸= j.
Define random variables Y1 and Y2 on H({0, 1}Λ) via

P[Y1 = {δi}] = P[Y1 = {δj}] = 1
2

and

P[Y2 = {δi}] = P[Y2 = {δj}] = P[Y2 = {δi, δj}] = P[Y2 = {δi + δj}] = 1
4 ,

where δi, δj ∈ {0, 1}Λ
fin are defined by (1.16) and + denotes the usual pointwise

addition on {0, 1}Λ. Then,

P
[︂
x ∈ (Y1)↑

]︂
= P

[︂
x ∈ (Y2)↑

]︂
=

⎧⎪⎪⎨⎪⎪⎩
1 if i, j ∈ supp(x),
0 if i, j /∈ supp(x),
1
2 else,

for all x ∈ {0, 1}Λ
fin.

However, if one takes a larger collection than just {ψmon(x, · ) : x ∈ SΛ
fin}, the

property to be distribution determining follows easily from the already established
results.

Proposition 4.18 (Dual informativeness of ψmon). The collection

F :=
{︂∏︂n

k=1ψmon(xk, · ) : n ∈ N, x1, . . . , xn ∈ SΛ
fin

}︂
⊂ C(H(SΛ), {0, 1}) (4.35)

is distribution determining.

Proof. Note that the continuity of the functions in F follows directly from Propo-
sition 4.2 and the definition of ψmon. The closedness of F under products follows
from its definition. The fact that F separates points follows from Lemma 4.12.
Now, Lemma 1.12 again implies that F is distribution determining.
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4.5 Upper invariant laws and survival
As already stated at the beginning of the Chapter 4.3, one of the main advantages
of the extended construction of the dual process Y from Theorem 4.9 is the pos-
sibility to study its upper invariant law. We begin this subchapter by recapping
general theory for monotone Feller processes on compact metrizable spaces.

Let E be a compact metrizable space that is equipped with a partial order
≤ that is compatible with the topology. Two probability measure µ, ν ∈ M1(E)
are said to be stochastically ordered, denoted µ ≤ ν, if they satisfy the following
equivalent conditions [Liggett, 1985, Theorem II.2.4].

(i)
∫︁
f(x) dν(x) ≤

∫︁
f(x) dµ(x) for all continuous monotone f : E → R.

(ii) It is possible to couple random variables X,X ′ with laws µ, ν such that
X ≤ X ′ a.s.

It is known [Kamae and Krengel, 1978, Theorem 2] that the stochastic order is a
partial order on M1(E). In particular, µ ≤ ν ≤ µ implies µ = ν (µ, ν ∈ M1(E)).
A Feller process with state space E and Feller semigroup (Pt)t≥0 is said to be
monotone if

Pt(x, · ) ≤ Pt(y, · ) (x, y ∈ E, x ≤ y).

The following result is well-known. It is stated for E = {0, 1}Λ in [Liggett, 1985,
Theorem III.2.3] and [Swart, 2022, Theorem 5.4]. Generalizing the proof to all
compact metrizable spaces equipped with a compatible topology is straightfor-
ward. The measure ν below is called the upper invariant law.

Proposition 4.19 (Upper invariant law). Let E be a compact metrizable space
equipped with a partial order that is compatible with the topology. Assume that E
possesses a greatest element ⊤ ∈ E, i.e., x ≤ ⊤ for all x ∈ E. Let (Pt)t≥0 be the
semigroup of a monotone Feller process F = (Ft)t≥0 with state space E. Then
there exists an invariant law ν of F that is uniquely characterized by the property
that ν ≤ ν for each invariant law ν of F . Moreover, one has

Pt(⊤, · ) =⇒
t→∞

ν,

where ⇒ denotes weak convergence of probability measures on E.

Returning to the previous setup, let X = (Xt)t≥0 be an interacting particle
system with generator of the form (1.8) and with its local state space S being
equipped with a partial order ≤ and a least element 0. As already stated multiple
times, it follows from Lemma 1.2 that if all maps m ∈ G are monotone, then
(assuming (1.7)) the maps {Xs,u}s≤u are (a.s.) monotone for all s ≤ u. This, in
turn, implies that the interacting particle system X is monotone.4 Thus, if the
local state space S has a greatest element ⊤, then such an interacting particle
system has an upper invariant law that is the long-time limit law started from
the constant configuration ⊤.

4Remarkably, the converse statement does not hold. Having a generator of the form (1.8)
with all maps being monotone is strictly stronger than being monotone, see [Fill and Machida,
2001].
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Recall that we equipped H(SΛ) with a partial order defined in (4.7). It follows
immediately from the definitions that the maps {Yu,s}u≥s are monotone with
respect to this partial order for all s ≤ u as long as they are well-defined. Hence,
the Feller process Y = (Yt)t≥0 with state space H−(SΛ) defined in Theorem 4.9 is
monotone. Recall the definition of Ysec from (4.8). The abstract Proposition 4.19
implies (together with Lemma 4.6) that Y has an upper invariant law µ and that

Y0 = Ysec implies that P[Yt ∈ · ] =⇒
t→∞

µ.

As far as we know, this upper invariant law has never been studied before, except
in the special case when the interacting particle system X is additive. Compare
Chapter 4.6.

Recall the definitions of SΛ
fin and Hfin(SΛ) from (1.15) and (4.27). In view of

Theorem 1.6 and Proposition 4.14, under the assumptions of the latter part of
Theorem 4.10, the Markov processes X and Y, started in initial states in SΛ

fin and
Hfin(SΛ), respectively, stay in these spaces for all times t ≥ 0. We will relate
the upper invariant laws of X and Y to the behavior of Y and X (in this order)
started from finite initial states.

Following the convention in Chapter 1.3, we denote by PY the law of Y started
in Y ∈ Hfin(SΛ), while Px denotes the law of X started in x ∈ SΛ. We denote
expectation with respect to PY by EY . Recall the definition of survival for the in-
teracting particle system X from Chapter 1.2. Similarly, we say that its monotone
dual process Y survives if there exists a Y ∈ Hfin(SΛ) such that

PY [∃t ≥ 0 : Yt = ∅] < 1.

Otherwise we say that Y dies out. Note that in order to speak about the survival
of Y, it suffices to construct Y in the sense of Proposition 4.14. The following
proposition is a simple consequence of duality. Similar results have been exploited
to great length for additive interacting particle systems.

Proposition 4.20 (Upper invariant law of the particle system). Assume the
summability condition (1.7), that every map m ∈ G is monotone and that S
has a greatest element ⊤. Let X be a random variable whose law is ν, the upper
invariant law of the interacting particle system X from Theorem 1.3. Then X = 0
a.s. if the dual process Y from Proposition 4.14 dies out and X ̸= 0 a.s. if the
dual process Y survives.

To prove Proposition 4.20, we show that ν and can be characterized by how
it integrates the duality function ψmon in the following sense.

Lemma 4.21 (Characterizing ν). Assume the summability condition (1.7), that
every map m ∈ G is monotone and that S has a greatest element ⊤. Then the
upper invariant law ν of the interacting particle system X from Theorem 1.3 is
uniquely characterized by the relation∫︂

ψmon(x, Y ) dν(x) = PY [Yt ̸= ∅ ∀t ≥ 0] (Y ∈ Hfin(SΛ)), (4.36)

where Y = (Yt)t≥0 the dual process from Proposition 4.14.

101



Proof. Let Y ∈ Hfin(SΛ). Since ∅ is a trap for the dual process Y, we have that

PY [Yt ̸= ∅
]︂

↘ PY [Ys ̸= ∅ ∀s ≥ 0
]︂

as t → ∞. (4.37)

The duality between X and Y implies for t ≥ 0 that

E⊤[ψmon(Xt, Y )] = EY [ψmon(⊤,Yt)
]︂

= PY [Yt ̸= ∅].

Together with (4.37) this implies (4.36). The fact that (4.36) uniquely character-
izes ν follows from the fact that F from (4.33) is distribution determining.

The proof of Proposition 4.20 now follows readily.

Proof of Proposition 4.20. Let δ0 denote the Dirac measure on 0 ∈ SΛ. As∫︂
ψmon(x, Y ) dδ0(x) = 0 (Y ∈ Hfin(SΛ) \ {{0}}),

the fact that F from (4.33) is distribution determining implies that ν = δ0 if
and only if

∫︁
ψmon(x, Y ) dν(x) = 0 for all Y ∈ Hfin(SΛ) \ {{0}}. By (4.36),

the latter statement is equivalent to survival of the dual process. Using the fact
that ν is an extremal invariant measure [Liggett, 1985, Theorem III.2.3], it is
easy to see (compare [Swart, 2022, Lemma 5.10]) that if ν ̸= δ0, then ν and
δ0 are mutually singular. Together, these observations imply the statements of
Proposition 4.20.

Thanks to the fact that we have constructed the dual process in Theorem 4.9
also for infinite initial states and have shown that it has an upper invariant law,
we can now formulate an analogue result to Proposition 4.20 with the roles of X
and Y reversed. Note that we only need X to be started in finite initial states,
so we may drop the usual summability condition (1.7).

Theorem 4.22 (Upper invariant law of the dual process). Assume the summabil-
ity condition (1.18), and that every map m ∈ G is monotone and satisfies (1.22).
Let Y be a random variable whose law is µ, the upper invariant law of the dual
process Y from Theorem 4.9. Then Y = ∅ a.s. if X from below Theorem 1.6 dies
out and Y ̸= ∅ a.s. if X survives.

In parallel to the proof above, we again first show that µ can be characterized
by how it integrates ψmon. As we will work with the collection F from (4.35),
we will have to consider X started in multiple initial states at once. Due to
this fact we will exclusively work on the probability space, where the graphical
representation ω is defined. The probability measure of this probability space is
again denoted by P.

Lemma 4.23 (Characterizing µ). Assume the summability condition (1.18), and
that every map m ∈ G is monotone and satisfies (1.22). Then the upper invariant
law µ of the dual process Y from Theorem 4.9 is uniquely characterized by the
relation∫︂ n∏︂

k=1
ψmon(xk, Y ) dµ(Y ) = P[X0,t(xk) ̸= 0 ∀t ≥ 0, k = 1, . . . , n]

(n ∈ N, x1, . . . , xn ∈ SΛ
fin),

(4.38)

where (Xs,u)s≤u is the stochastic flow from (1.20).
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Proof. Since, by Proposition 1.5 and Theorem 1.6, each random map Xs,u (s ≤ u)
defined by (1.20) is (a.s.) a concatenation of finitely many maps, it (a.s.) maps 0
to itself. Hence, have that

P[X0,t(xk) ̸= 0 ∀k = 1, . . . , n] ↘ P[X0,s(xk) ̸= 0 ∀s ≥ 0, k = 1, . . . , n] as t → ∞.
(4.39)

The duality of the stochastic flows, i.e., (4.11), implies for t ≥ 0 that

E
[︂∏︂n

k=1ψmon(xk,Yt,0(Ysec))
]︂

= E
[︂∏︂n

k=1ψmon(X0,t(xk), Ysec)
]︂

= P[X0,t(xk) ̸= 0 ∀k = 1, . . . , n],

where (Yu,s)u≥s is the backward stochastic flow from (4.12). Together with (4.39)
this implies (4.38). Analogously to the proof of Lemma 4.21, the fact that (4.38)
uniquely characterizes µ follows from the fact that F from (4.35) is distribution
determining.

Again, the proof of Theorem 4.22 follows readily.

Proof of Theorem 4.22. Let δ∅ denote the Dirac measure on ∅ ∈ H−(SΛ). As
∫︂ n∏︂

k=1
ψmon(xk, Y ) dδ∅(Y ) = 0 (x1, . . . , xn ∈ SΛ

fin),

the fact that F from (4.35) is distribution determining implies that µ = δ∅ if
and only if

∫︁ ∏︁n
k=1ψmon(xk, Y ) dµ(Y ) = 0 for all x1, . . . , xn ∈ SΛ

fin. By (4.38), the
latter statement is equivalent to

P
[︂
X0,t(xk) ̸= 0 ∀t ≥ 0, k = 1, . . . , n

]︂
= 0 (n ∈ N, x1, . . . , xn ∈ SΛ

fin),

which in turn is equivalent to

P[X0,t(x) ̸= 0 ∀t ≥ 0] = 0 (x ∈ SΛ
fin).

The rest of the proof is now the same as the proof of Proposition 4.20, where one
can argue as in [Swart, 2022, Lemma 5.8] to see that µ is an extremal invariant
law and then as in [Swart, 2022, Lemma 5.10] to see that µ ̸= δ∅ implies that µ
and δ∅ are mutually singular.

4.6 Additive duality revisited
Recall that a lattice, defined in Chapter 2.4.1, is a special type of partially ordered
set, based on which there already existed a known duality theory for interacting
particle systems (compare Theorem 2.15). It turns out that, if the local state
space is a lattice, then the dual process Y = (Yt)t≥0 from Theorem 4.9 can be
identified with an interacting particle system and the pathwise duality from The-
orem 4.10 reduces to the one from Theorem 2.15 (and Proposition 2.16). This
fact was already observed in [Sturm and Swart, 2018]. However, to provide a com-
plete picture of monotone pathwise duality, we show this fact in this subchapter
by means developed in the previous ones.
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4.6.1 General lattices
Recall from Chapter 2.4.1 that each finite lattice has a least and a greatest ele-
ment. Moreover, recall the definition of an additive map. Clearly, each additive
map between lattices is also monotone. Assume that S is equipped with a partial
order ≤ so that (S,≤) is a lattice. In the following result (Xs,u)s≤u denotes the
stochastic flow from (1.20) and ( ˆ︁S,≤) denotes the dual of the partially ordered
set (S,≤) (compare Chapter 2.4.1).

Proposition 4.24 (Additive systems pathwise duality). Let there exist a partial
order ≤ on the local state space S so that (S,≤) is a lattice. Assume the summa-
bility condition (1.18), and that every map m ∈ G is additive. Then there (a.s.)
exists a backward stochastic flow (Zu,s)u≥s, consisting of random maps from ˆ︁SΛ

to itself, satisfying the relation

ψadd(Xs,u(x), ŷ) = ψadd(x,Zu,s(ŷ)) (s ≤ u, x ∈ SΛ
fin, ŷ ∈ ˆ︁SΛ). (4.40)

Proof. Recall that, by Lemma 2.12, the summability condition (1.18) implies
(2.14), i.e., the usual summability condition (1.7) for the dual process Y from
Theorem 2.15. Exchanging the roles of S and ˆ︁S, the claim follows from (the
results leading up to) Theorem 2.15, the construction in Chapter 1.3 and the fact
that x ≰ y if and only if ŷ ≰ x̂ (x, y ∈ SΛ).

We will show that the backward stochastic flow (Zu,s)u≥s can, in fact, be
identified with the backward stochastic flow (Yu,s)u≥s from (4.12). A non-empty,
decreasing subset I ⊂ SΛ is called an ideal if it is closed under taking the join,
i.e., if x ∨ y ∈ I for all x, y ∈ I. A principal ideal is an ideal that has a greatest
element. Let

Hpi(SΛ) :=
{︂
Y ∈ H(SΛ) : (Y ↑)c is a principal ideal

}︂
Note that Hpi(SΛ) ⊂ H−(SΛ). The following proposition identifies the partially
ordered set Hpi(SΛ) with the dual lattice ˆ︁SΛ and shows that in this identification
the monotone duality function from (4.10) reduces to the additive duality function
from (2.17). Note that the three occurrences of ≤ below denote three different
partial orders: The first one is the underlying one on S, the second one is the
product order based on the first one, and the third one is one defied via (4.7)
(and Proposition 4.2).

Proposition 4.25 (Isomorphism to the dual lattice). If (S,≤) is a lattice, the
partially ordered topological space ( ˆ︁SΛ,≤) is isomorphic to (Hpi(SΛ),≤) via the
monotone homeomorphism ϕ : ˆ︁SΛ → Hpi(SΛ) defined as

ϕ(ŷ) :=
[︂
({y}↓)c

]︂◦
(ŷ ∈ ˆ︁SΛ). (4.41)

Moreover,

ψadd(x, ŷ) = ψmon(x, ϕ(ŷ)) (x ∈ SΛ, ŷ ∈ ˆ︁SΛ). (4.42)

Proof. Let Ipi(SΛ) := {A ⊂ SΛ : Ac is a principal ideal} and note that Ipi(SΛ) ⊂
I(SΛ) as for all y ∈ SΛ the set {y}↓ is closed by Lemma 4.4 and decreasing
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by definition. It is obvious that the map ŷ ↦→ ({y}↓)c is a bijection from ˆ︁SΛ

to Ipi(SΛ) and it follows from Proposition 4.1 that also ϕ : ˆ︁SΛ → Hpi(SΛ) is a
bijection.

To see that ϕ is monotone, let ŷ, ŷ′ ∈ ˆ︁SΛ with ŷ ≤ ŷ′. Then

y′ ≤ y in SΛ ⇒ {y′}↓ ⊂ {y}↓ ⇒ ({y}↓)c ⊂ ({y′}↓)c.

But the last assertion above says by definition that ϕ(ŷ) ≤ ϕ(ŷ′) in H(SΛ). Hence,
ϕ is monotone.

To prove the continuity of ϕ and ϕ−1, we argue as follows. Let y, y′ ∈ SΛ.
Then for all x ∈ {y}↓ there exists an x′ ∈ {y′}↓ satisfying x(i) = x′(i) for all i ∈ Λ
with y(i) = y′(i), which implies d(x, x′) ≤ d(y, y′). Likewise, for all x′ ∈ {y′}↓

there exists an x ∈ {y}↓ such that d(x, x′) ≤ d(y, y′). Hence

dH({y}↓, {y′}↓) ≤ d(y, y′) (y, y′ ∈ SΛ),

implying the (Lipschitz) continuity of y ↦→ {y}↓ and consequently also of ϕ. Here
we use that the maps

SΛ ∋ y ↦→ ŷ ∈ ˆ︁SΛ and H−(SΛ) ∋ Y ↦→ (Y ↑)c ∈ K+(SΛ)

are, due to the definitions of the corresponding metrics, isometries. On the other
hand, d(y, y′) ≥ 1/3k implies that there exists an i ∈ γ−1({1, . . . , k}) such that
y(i) ̸= y′(i). Hence {y}↓

γ−1({1,...,k}) ̸= {y′}↓
γ−1({1,...,k}), where, for A ⊂ SΛ and

∆ ⊂ Λ, A∆ := {a∆ : a ∈ A}, where a∆ is the restriction of a to ∆, defined in
Chapter 1.1. It follows that there exists either an x ∈ {y}↓ with d(x, {y′}↓) ≥ 1/3k
or an x′ ∈ {y′}↓ with d(x′, {y}↓) ≥ 1/3k. Hence, dH({y}↓, {y′}↓) ≥ 1/3k. From
this one concludes the continuity of ϕ−1.

Finally, (4.42) follows directly from the definitions of ψadd and ϕ as

ψadd(x, ŷ) = 1({y}↓)c(x) = 1ϕ(ŷ)↑(x) = ψmon(x, ϕ(ŷ)) (x ∈ SΛ, ŷ ∈ ˆ︁SΛ),

where we used Proposition 4.1 in the second equality.

The subspace Hpi(SΛ) and the function ϕ from (4.41) are rather abstract. If S
is a distributive lattice, we can give an alternative description of Hpi(SΛ). How-
ever, in order not to distract from the main goal of this subchapter, we postpone
these reformulations for distributive lattices in general and totally ordered lattices
in particular until Chapter 4.6.2. The final result of this subchapter says that
for additive interacting particle systems, the backward stochastic flow (Yu,s)u≥s
defined in (4.12) preserves the space Hpi(SΛ).

Proposition 4.26 (Preserved subspace). Let there exist a partial order ≤ on the
local state space S so that (S,≤) is a lattice. Assume the summability condition
(1.18), and that every map m ∈ G is additive. Then, almost surely,

Yu,s(Y ) ∈ Hpi(SΛ) (u ≥ s, Y ∈ Hpi(SΛ)),

where (Yu,s)u≥u denotes the backward stochastic flow from (4.12).
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Proof. Let Y ∈ Hpi(SΛ) and u ≤ s. Due to (1.18), Yu,s from (4.12) and Zu,s

from Proposition 4.24 are almost surely well-defined. One now computes that

ψmon(x,Yu,s(Y )) = ψmon(Xs,u(x), Y ) = ψadd(Xs,u(x), ϕ−1(Y ))
= ψadd

(︂
x,Zu,s(ϕ−1(Y ))

)︂
= ψmon

(︂
x, ϕ

(︂
Zu,s(ϕ−1(Y ))

)︂)︂ (4.43)

for all x ∈ SΛ
fin. Here we used (4.11) in the first equality, (4.42) in the second and

fourth equality, and (4.40) in the third equality. By Lemma 4.12, (4.43) implies
that

Yu,s(Y ) = ϕ
(︂
Zu,s(ϕ−1(Y ))

)︂
and, using that ϕ is a homeomorphism from ˆ︁SΛ to Hpi(SΛ), we conclude that
Yu,s(Y ) ∈ Hpi(SΛ).

By grace of Proposition 4.25 and Proposition 4.26, if S is lattice we can
identify the restriction of (Yu,s)u≥s to Hpi(SΛ) with the backward stochastic flow
(Zu,s)u≥s from (4.40). It follows that we can identify the Feller process Y from
Theorem 4.9 with an interacting particle system on ˆ︁SΛ with generator ˆ︁G from
(1.34).

4.6.2 Distributive lattices
An unpleasant feature of Proposition 4.25 is that the definitions of the space
Hpi(SΛ) and the bijection ϕ are rather abstract. In this last subchapter we show
that in the special case that S is a distributive lattice one can give a much more
concrete description of these objects.

Recall from Chapter 3.3 that a lattice (L,≤) is distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (a, b, c ∈ L).

For example, partially ordered sets of the form L = {0, . . . , N}n (equipped with
the product order) are distributive lattices (N, n ∈ N). We call an element a ∈ L
(join-)irreducible if

a = b ∨ c implies b = a or c = a

for b, c ∈ L.5
Assume that the local state space S is equipped with a partial order ≤ so

that (S,≤) is a distributive lattice. We define Sir := {a ∈ S : a is irreducible}
and SΛ

ir := {x ∈ SΛ : x is irreducible}. It is easy to see that

SΛ
ir =

{︂
δai : i ∈ Λ, a ∈ Sir

}︂
. (4.44)

We define H1(SΛ) := {Y ⊂ SΛ
ir : Y ◦ = Y }. The following result is the promised

less abstract characterization of Hpi(SΛ) in case that (S,≤) is a distributive
lattice.

5Often one excludes the least element 0 from the set of (join-)irreducible elements. However,
for our purposes it is convenient to include it.
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Proposition 4.27 (Ideals on distributive lattices). Assume that (S,≤) is a dis-
tributive lattice and let Y ∈ H(SΛ). Then (Y ↑)c ⊂ SΛ is a principal ideal if and
only if Y ∈ H1(SΛ), i.e., Hpi(SΛ) = H1(SΛ).

For the proof of Proposition 4.27 we need the following lemma. Recall that
an ideal of a lattice (L,≤) is a non-empty, decreasing subset I ⊂ L that is closed
under taking the join.

Lemma 4.28 (Closed ideals). Assume that (S,≤) is a lattice. An ideal of the
lattice (SΛ,≤) is closed in SΛ if and only if it is principal.

Proof. Let I ⊂ SΛ be an ideal. If I is a principal ideal, i.e., I = {y}↓ for some
y ∈ SΛ, then I is closed by Lemma 4.4.

Conversely, assume that I is closed. Recall that a net in I is an indexed
collection of elements (yα)α∈Γ of I whose index set Γ is equipped with a partial
order ≤ such that for each α, β ∈ Γ, there exists a γ ∈ Γ such that α, β ≤ γ. In
particular, if we let yx := x denote the identity map, then (yx)x∈I is a net in I.
Since I is a closed subset of the compact space SΛ, it is compact, which implies
that each net in I has a convergent subnet. Let (yx)x∈I′ be a convergent subnet
of the net we have just described and let y be its limit. The definition of a subnet
means that for each x ∈ I there exists an x′ ∈ I ′ such that all x′′ ∈ I ′ with x′′ ≥ x′

satisfy x′′ ≥ x. Using this and the fact that the set {z ∈ I : z ≥ x} is closed, we
see that y ≥ x for all x ∈ I. It follows that I = {y}↓, i.e., I is principal.

Recall that, by Proposition 4.1, for any Y ∈ H(SΛ) the subset (Y ↑)c ⊂ SΛ

is closed in SΛ. Hence, by Lemma 4.28, the proof of Proposition 4.27 reduces to
showing that (Y ↑)c ⊂ SΛ is an ideal if and only if Y ∈ H1(SΛ).

Proof of Proposition 4.27. Let Y /∈ H1(SΛ). Then, by (4.44), there exists a y ∈ Y
with either two non-zero coordinates, i.e., there exist i, j ∈ Λ with i ̸= j and
y(i) ̸= 0 ̸= y(j) or with y(l) ∈ S \ Sir for some l ∈ Λ. In both cases the
minimality of Y implies that (Y ↑)c cannot be an ideal. More precisely, in the
first case we have y = yi⇝0 ∨ yj⇝0 ∈ Y ↑, where, for k ∈ Λ, yk⇝0 denotes the
configuration obtained from y by changing the k-th coordinate to 0 defined in
(4.31), while the minimality of Y implies that yi⇝0, yj⇝0 /∈ Y ↑. In the second case
we can write y(l) = b ∨ c with b ̸= y(l) ̸= c, change the value of y at l once to b
and once to c and run a similar argument as in the first case.

Let now Y ∈ H1(SΛ). Then (Y ↑)c is non-empty and decreasing. Hence, if
(Y ↑)c were not an ideal we could find x1, x2 ∈ (Y ↑)c such that x1 ∨ x2 ∈ Y ↑, i.e.,
there would exist a y ∈ Y with the property that y ≤ x1∨x2. As the distributivity
of S implies the distributivity of SΛ, we could conclude that

y = y ∧ (x1 ∨ x2) = (y ∧ x1) ∨ (y ∧ x2).

As y is irreducible it would follow that either y ∧ x1 = y or y ∧ x2 = y. But the
former implies that that y ≤ x1 while the later implies y ≤ x2, contradicting that
x1, x2 ∈ (Y ↑)c.

To close the subchapter, we compute the bijection ϕ from (4.41) explicitly for
the important example S = {0, . . . , N} (N ∈ N) equipped with the natural total
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order 0 < 1 < · · · < N . We set ˆ︁S = {0, . . . , N} and ŷ := N − y for y ∈ SΛ

(defined pointwise). One has that

({y}↓)c =
{︂
x ∈ SΛ : ∃i ∈ Λ s.t. y(i) < x(i)

}︂
(y ∈ SΛ),

and hence

ϕ(ŷ) =
{︂
δ
y(i)+1
i : i ∈ Λ s.t. y(i) ̸= N

}︂
=

{︂
δ
N+1−ŷ(i)
i : i ∈ supp(ŷ)

}︂
(ŷ ∈ ˆ︁SΛ).

Compare also [Foxall, 2016, Example 1].
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Conclusion
This thesis studies three types of pathwise dualities of interacting particle sys-
tems based on monoids, modules over a semiring, and partially ordered sets,
respectively. In all three cases, first the local state space S is equipped with an
additional structure (the one of a monoid, a semiring, and a partially ordered set,
respectively), that then induces an additional structure on the global state space
SΛ. Any interacting particle system whose generator has a random mapping rep-
resentation as in (1.8), where G, the countable collection of local maps, consists
only of maps that preserve the structure on SΛ, is shown to have a pathwise dual
process (see Theorem 2.9, Theorem 3.6, and Theorem 4.10).

The construction in the case that SΛ is equipped with the structure of a
monoid (Chapter 2) and in the case that SΛ is equipped with the structure
of a module over a semiring (Chapter 3) are very similar. In both cases, the
dual process has the form of an interacting particle system restricted to SΛ

fin, a
countable space whose exact definition depends on the choice of the (additive)
monoid with which the local state space S is equipped. The system on this
reduced state space becomes a continuous-time Markov chain. This construction
contains the well-known examples of additive duality and cancellative duality as
special cases (see Chapter 2.4), and also yields new dualities.

The construction in the case that SΛ is equipped with the structure of a
partially ordered set (Chapter 4) differs considerable from the other two. In this
case the dual process is not of the form described above. Its state space H(SΛ)
consists of all subsets of SΛ

fin that are equal to their set of minimal elements. The
definition of SΛ

fin in this case depends on the least element of the partial order
that the local state space S is equipped with. It is important to note that a
continuous-time Markov chain Y = (Yt)t≥0 on Hfin(SΛ), a countable subspace of
H(SΛ), that is dual to a monotone interacting particle system, had already been
constructed by Gray [1986] and Sturm and Swart [2018]. The main contribution of
Chapter 4 is to provide an extended construction of Y on H−(SΛ), an uncountable
subspace of H(SΛ), where Y becomes a Feller process. This allows one to change
the roles of primary and dual process with respect to the guiding principle of
duality formulated in the introduction: One can study Y started in an infinite
initial configuration through the original monotone interacting particle system
restricted to SΛ

fin, where it again becomes a continuous-time Markov chain. The
extended construction of the process Y allows one to study its upper invariant law
and connect its non-triviality to the survival of the original interacting particle
system (see Chapter 4.5).

As already mentioned, the introduction of the general duality theory for mon-
oids in Chapter 2 and modules over a semiring in Chapter 3 made it possible to
compute new dualities of interacting particle systems with respect to new duality
functions (see Chapter 2.5 and Chapter 3.4). To study the “usefulness” of these
duality functions the notion of (weak) informativeness was introduced in Chap-
ter 1.5. Informativeness was studied for the duality functions arising from monoid
duality in Chapter 2.6 and for those arising from module duality in Chapter 3.5.
All duality functions arising from monoid duality have been classified as either
weakly informative or not weakly informative, with the majority being weakly
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informative. For the duality function arising from module duality the situation
turned out to be more complicated. For some duality functions the methods
of this thesis were not able to decide whether they are weakly informative or
not. The duality function ψmon from (4.10) is always informative, and a similar
property also holds if one exchanges the roles of both processes (see Chapter 4.4).

Chapter 2.7 presents a typical application of duality: One of the newly estab-
lished monoid dualities is used to compute all homogeneous (i.e., shift-invariant)
invariant measures of the double contact process, a variant of the well-known
contact process. Moreover, (weak) convergence to the greatest of these invariant
measures (with respect to the stochastic order) is established if the double con-
tact process is started in a homogeneous initial law that has the property that
neither of its two marginals is the Dirac measure on the all-zero configuration
(see Theorem 2.25).
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A. Appendix
In this appendix we collect examples that rule out the weak informativeness of
those duality functions from Chapter 2 and Chapter 3 that were highlighted in
the corresponding tables with a red color. The examples were computed using
the method presented in Chapter 2.6. Let, throughout the appendix, i, j ∈ Λ
with i ̸= j.

A.1 Duality functions from Chapter 2

A.1.1 Duality functions from Table 2.2
ψ3: The duality function ψ3 was already considered in detail in Chapter 2.6.

ψ6: Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 + 1/2δx4 be random variables
with values in {0, 1, 2}Λ, where x1, x2, x3, x4 ∈ {0, 1, 2}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

0 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

0 if k = j,

0 else,

for k ∈ Λ. Then

ψ6(X, y) d= ψ6(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(0, 1), (0, 2)},
Z2 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2)},
2 else,

for y ∈ {0, 1, 2}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ2 and Z2 ∼ 1/2δ1 + 1/2δ2 are

random variables with values in {0, 1, 2}.

A.1.2 Duality functions from Table 2.5
ψ9: Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 + 1/2δx4 be random variables

with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈ {0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,
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for k ∈ Λ. Then

ψ9(X, y) d= ψ9(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z1 if y(i, j) = (1, 0),
Z2 if y(i, j) ∈ {(0, 1), (2, 0)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ1 + 1/2δ2 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {1, 2, 3}.

ψ10: Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 + 1/2δx4 be random variables
with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈ {0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

1 if k = j,

0 else,
for k ∈ Λ. Then

ψ10(X, y) d= ψ10(X ′, y) d=

⎧⎪⎪⎨⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(1, 0), (0, 1)},
2 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with

values in {1, 2}.

ψ13: Let X and X ′ be random variables defined as in the previous example.
Then

ψ13(X, y) d= ψ10(X, y) d= ψ10(X ′, y) d= ψ13(X ′, y).

ψ22: Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 + 1/2δx4 be random variables
with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈ {0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,
for k ∈ Λ. Then

ψ22(X, y) d= ψ22(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(1, 0), (0, 1)},
2 if y(i, j) ∈ {(0, 2), (1, 3), (2, 3),

(2, 0), (3, 1), (3, 2)},
3 else,
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for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with

values in {1, 2}.

ψ24: Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 + 1/2δx4 be random variables
with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈ {0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

0 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

0 if k = j,

0 else,

for k ∈ Λ. Then

ψ24(X, y) d= ψ24(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
3 if y(i, j) ∈ {(3, 0), (3, 1), (3, 2), (3, 3)},
Z1 if y(i, j) ∈ {(0, 1), (0, 2), (0, 3)},
Z2 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ3 and Z2 ∼ 1/2δ1 + 1/2δ2 are

random variables with values in {0, 1, 2, 3}.

A.2 Duality functions from Chapter 3
In Chapter 3 the duality function of interest is ψ from (3.5). Its exact definition
depends on the underlying semiring (S,+, ·, ). In each of the following examples a
different semiring is assumed, indicated by its position in Table 3.2 and Table 3.3.
We refer to the entries of Table 3.2 and Table 3.3 in the following from: Entry x-y
refers to the y-th entry in row x of either Table 3.2 or Table 3.3. We additionally
indicate to which monoids from Chapter 2 the additive and the multiplicative
monoid of the underlying semiring are (anti-) isomorphic to.

A.2.1 Duality functions from Table 3.2
2-1: add. ∼= M3, mult. ∼= M4. In this case ψ from (3.5) is the duality function

ψ3 considered in Chapter 2.6.

3-1: add. ∼= M4, mult. ∼= M4. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

0 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

0 if k = j,

0 else,
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for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2)},
Z1 if y(i, j) ∈ {(0, 1), (0, 2)},
Z2 else,

for y ∈ {0, 1, 2}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ1 + 1/2δ2 are

random variables with values in {0, 1, 2}.

3-2: add. ∼= M6, mult. ∼= M4. In this case ψ from (3.5) is the duality function
ψ6 considered in Appendix A.1.

A.2.2 Duality functions from Table 3.3
1-1: add. ∼= M8, mult. ∼= M14. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +

1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,

for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(0, 1), (1, 0)},
Z2 if y(i, j) ∈ {(0, 2), (2, 0)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ1 + 1/2δ2 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {1, 2, 3}.

1-2: add. ∼= M8, mult. ∼= M15. Let X and X ′ be random variables defined as in
the previous example. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (1, 0)},
2 if y(i, j) ∈ {(0, 2), (2, 0)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with

values in {1, 2}.
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1-3: add. ∼= M8, mult. ∼= M16. Let X and X ′ be random variables defined as in
the previous two examples. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎨⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (0, 2), (1, 0), (2, 0)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with

values in {1, 2}.

1-4: add. ∼= M9, mult. ∼= M14. In this case ψ from (3.5) is the duality function
ψ9 considered in Appendix A.1.

1-5: add. ∼= M10, mult. ∼= M13. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

1 if k = j,

0 else,

for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (1, 0)},
2 if y(i, j) ∈ {(0, 2), (2, 0), (2, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ3 is a random variable with

values in {1, 3}.

2-1: add. ∼= M10, mult. ∼= M15. Let X and X ′ be random variables defined as
in the previous example. Then ψ(X, y) and ψ(X ′, y) are distributed for all
y ∈ {0, 1, 2, 3}Λ

fin as in the previous example.

2-5: add. ∼= M11, mult. ∼= M15. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

1 if k = j,

0 else,

115



for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) = (0, 1),
Z2 if y(i, j) ∈ {(0, 2), (1, 0), (1, 2)},
2 if y(i, j) ∈ {(2, 0), (2, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ1 + 1/2δ3 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {1, 2, 3}.

3-2: add. ∼= M13, mult. ∼= M13. Let X and X ′ be random variables defined as
in the example for entry 1-5. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (1, 0), (1, 2), (2, 1)},
2 if y(i, j) ∈ {(0, 2), (2, 0), (2, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ3 is a random variable with

values in {1, 3}.

3-3: add. ∼= M13, mult. ∼= M15. Let X and X ′ be random variables defined as
in the example for entry 1-5. Then ψ(X, y) and ψ(X ′, y) are distributed
for all y ∈ {0, 1, 2, 3}Λ

fin as in the previous example.

3-4: add. ∼= M14, mult. ∼= M15. Let X and X ′ be random variables defined as
in the example for entry 1-1. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z if y(i, j) ∈ {(0, 1), (1, 0)},
2 if y(i, j) ∈ {(0, 2), (1, 1), (1, 2),

(2, 0), (2, 1), (2, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z ∼ 1/2δ1 + 1/2δ2 is a random variable with

values in {1, 2}.

3-5: add. ∼= M15, mult. ∼= M8. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
0 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
0 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = i,

1 if k = j,

0 else,
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for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎨⎪⎪⎩
Z1 if y(i, j) ∈ {(3, 0), (3, 1), (3, 2)},
Z2 if y(i, j) ∈ {(0, 3), (1, 3), (2, 3), (3, 3)},
0 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ1 + 1/2δ2 are

random variables with values in {0, 1, 2}.

4-3: add. ∼= M15, mult. ∼= M13. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

0 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

1 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

0 if k = j,

0 else,

for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) ∈ {(0, 0), (0, 1)},
Z1 if y(i, j) ∈ {(0, 2), (0, 3)},
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
Z2 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.

4-4: add. ∼= M15, mult. ∼= M13. Let X and X ′ be random variables defined as
in the previous example. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) ∈ {(0, 0), (0, 1)},
Z1 if y(i, j) ∈ {(0, 2), (0, 3)},
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
2 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
Z2 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.

5-1: add. ∼= M15, mult. ∼= M14. Let X and X ′ be random variables defined as
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in the previous two examples. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(0, 1), (0, 2), (0, 3)},
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
Z2 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
Z3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1, Z2 ∼ 1/2δ1 + 1/2δ2 and

Z2 ∼ 1/2δ2 + 1/2δ3 are random variables with values in {0, 1, 2, 3}.

5-2: add. ∼= M15, mult. ∼= M15. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

2 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

2 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
3 if k = i,

1 if k = j,

0 else,

for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) = (0, 1),
2 if y(i, j) = (0, 2),
Z2 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2),

(2, 0), (2, 1), (2, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ1 + 1/2δ2 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {1, 2, 3}.

5-4: add. ∼= M15, mult. ∼= M15. Let X and X ′ be random variables defined as
in the example for entry 4-3 (and entry 5-1). Then ψ(X, y) and ψ(X ′, y)
are distributed for all y ∈ {0, 1, 2, 3}Λ

fin as in the example for entry 5-1.

5-5: add. ∼= M15, mult. ∼= M15. Let X and X ′ be random variables defined as
in the example for entry 4-3. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(0, 1), (0, 2), (0, 3)},
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
2 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
Z2 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.
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6-1: add. ∼= M15, mult. ∼= N1. Let X and X ′ be random variables defined as in
the example for entry 4-3. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) ∈ {(0, 0), (0, 1), (0, 2)},
Z1 if y(i, j) = (0, 3),
1 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
2 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
Z2 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1 and Z2 ∼ 1/2δ2 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.

6-2: add. ∼= M15, mult. ∼= N2. Let X and X ′ be random variables defined as in
the example for entry 4-3. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(0, 1), (0, 2), (0, 3)},
Z2 if y(i, j) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)},
Z3 if y(i, j) ∈ {(2, 0), (2, 1), (2, 2), (2, 3)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ1, Z2 ∼ 1/2δ1 + 1/2δ3 and

Z3 ∼ 1/2δ2 + 1/2δ3 are random variables with values in {0, 1, 2, 3}.

6-4: add. ∼= M20, mult. ∼= M13. Let X ∼ 1/2δx1 + 1/2δx2 and X ′ ∼ 1/2δx3 +
1/2δx4 be random variables with values in {0, 1, 2, 3}Λ, where x1, x2, x3, x4 ∈
{0, 1, 2, 3}Λ are given as

x1(k) :=

⎧⎪⎪⎨⎪⎪⎩
0 if k = i,

1 if k = j,

0 else,
x2(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

3 if k = j,

0 else,

x3(k) :=

⎧⎪⎪⎨⎪⎪⎩
0 if k = i,

3 if k = j,

0 else,
x4(k) :=

⎧⎪⎪⎨⎪⎪⎩
2 if k = i,

1 if k = j,

0 else,

for k ∈ Λ. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) ∈ {(0, 0), (2, 0)},
Z1 if y(i, j) ∈ {(1, 0), (3, 0)},
Z2 if y(i, j) ∈ {(0, 1), (1, 1), (2, 1), (3, 1)},
2 if y(i, j) ∈ {(0, 2), (1, 2), (2, 2), (3, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ2 and Z2 ∼ 1/2δ1 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.
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6-5: add. ∼= M20, mult. ∼= M15. Let X and X ′ be random variables defined as
in the previous example. Then

ψ(X, y) d= ψ(X ′, y) d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y(i, j) = (0, 0),
Z1 if y(i, j) ∈ {(1, 0), (2, 0), (3, 0)},
Z2 if y(i, j) ∈ {(0, 1), (1, 1), (2, 1), (3, 1)},
2 if y(i, j) ∈ {(0, 2), (1, 2), (2, 2), (3, 2)},
3 else,

for y ∈ {0, 1, 2, 3}Λ
fin, where Z1 ∼ 1/2δ0 + 1/2δ2 and Z2 ∼ 1/2δ1 + 1/2δ3 are

random variables with values in {0, 1, 2, 3}.

7-2: add. ∼= M22, mult. ∼= M15. In this case ψ from (3.5) is the duality function
ψ22 considered in Appendix A.1.

7-4: add. ∼= M24, mult. ∼= M16. In this case ψ from (3.5) is the duality function
ψ24 considered in Appendix A.1.
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