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Abstract

In the article, Besov-Orlicz regularity of sample paths of stochastic processes that are rep-
resented by multiple integrals of order n € N is treated. We assume that the considered
processes belong to the Holder space

C*([0, T]; L*(Q)) with « € (0,1),

and we give sufficient conditions for them to have paths in the exponential Besov-Orlicz
space
a . xZ/n
B%/moo(o, T) with Dyp(x) =e" — 1.

These results provide an extension of what is known for scalar Gaussian stochastic processes
to stochastic processes in an arbitrary finite Wiener chaos. As an application, the Besov-
Orlicz path regularity of fractionally filtered Hermite processes is studied. But while the
main focus is on the non-Gaussian case, some new path properties are obtained even for
fractional Brownian motions.

Keywords Besov-Orlicz space - Hermite process - multiple Wiener-Itd integral -
path regularity

Mathematics Subject Classification (2010) Primary 60G17; Secondary 60G22 - 60G18 -
60HO07

1 Introduction

It is well-known that the paths of the Wiener process belong to the Besov-Orlicz space
B;)é 200 (0, T) where @, (x) = e’ —1. The original proof of this result in [7] relies on intricate
equivalences for Besov norms but a different proof is also available in [11]. From this result,

one immediately obtains, for example, that Brownian paths belong to both the Besov space
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B}/ﬁo (0, T) for all p € [1, co) and the modulus Holder space clrlogr‘”z([o, T1) although

historically, these two results came first; see [6] and [15].

There is a number of generalizations of this result in various directions. In [22], it is
shown that any continuous local martingale with Lipschitz continuous quadratic variation
as well as solutions to stochastic differential equations with locally bounded non-linearities
have paths in the space B;,/z %oo (0, T). In [21], it is shown that such regularity is also retained
by stochastic convolutions (with values in 2-smooth Banach spaces) and the result is also
shown for strong solutions to stochastic p-Laplace systems in [30]. In [27], it is shown
that the fractional Brownian motion of Hurst parameter « € (0, 1) has paths in the Besov-
Orlicz space 3532, 000, T). There are also other Besov regularity results, e.g., for bifractional
Brownian motions [5] or Lévy processes [2, 8, 9].

The purpose of this article is to extend the results of [27] to non-Gaussian stochastic pro-
cesses. In particular, we consider stochastic processes that fit the following scheme: Let H
be a real separable Hilbert space and W = {W (h)},cny an H-isonormal Gaussian process.
For n € Ny, denote the multiple divergence operator of order n by W, and the completion
of the n' tensor power of H by H®". Let G = {G(®)}ier0,71, T > 0, be the process rep-
resented by G(t) = W, (A;), t € [0, T], with A € C¥([0, T]; H®") for some o € (0, 1).
For example, one can consider the family of fractional Brownian motions, Hermite (and, in
particular, Rosenblatt) processes, or the so-called fractionally filtered generalized Hermite
processes; see [3].

1.1 Main results

A main result of the present article is Theorem 3.3 which provides sufficient conditions
under which process G has paths in the Besov-Orlicz space

B%z/y,,oo((), T) where ®y/,(x) = &

These conditions are formulated in terms of the kernel A. In the scalar case, Theorem 3.3
extends [27, Theorem 5.1], where Gaussian processes are considered, to a non-Gaussian
setting. We thus make precise how the order of the Wiener chaos in which process G lives
influences the regularity of its paths. In particular, it is clear that the higher the order of the
Wiener chaos, the worse regularity of paths we get. Moreover, in Theorem 3.9, the result
is refined and the precise pathwise behavior of the integral of the increments is obtained.
Our results cover Gaussian processes (e.g. standard and fractional Brownian motions) but
also non-Gaussian processes (e.g. higher-order Hermite processes). For example, we show
that the Rosenblatt process with Hurst parameter « € (1/2, 1) has paths in the space
Bg, 50, 7).

1.2 Proof Method and Invalidity of the Strong Gebelein’s Inequality
in Higher-Order Wiener Chaoses

In order to establish such Besov-Orlicz regularity results, one would hope to proceed as in
[27] (or [5]). The proofs there rely on Gebelein’s inequality [10] (see also [4]):

Theorem 1.1 (Gebelein’s inequality) Let (£, )" be a centered Gaussian vector in R* with
E&2 = En? = 1. Then the inequality

[EfE g < loeql ILf ENlL2@llgmMIlrz g, ey
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where pg y is the correlation coefficient between & and n, holds for all functions f, g : R —
R such that Ef (£)% < oo, Eg(n)? < o0, and E f (&) = Eg(n) = 0.

However, while the original Gebelein’s inequality can be used in a Gaussian setting, in
our case, the process G(t) = W,(A;),t € [0, T], is not Gaussian for n > 2. It is there-
fore natural to ask whether some analogue of Gebelein’s inequality, that could be used for
investigating Besov-Orlicz regularity of the paths of G, holds even in higher-order Wiener
chaoses. In that respect, there is the following generalization of Gebelein’s inequality (see
[19, Theorem 2.3] and [17, Lemma 2.6]).

Theorem 1.2 (Generalized Gebelein’s inequality) Let W = {W(k), k € R} be an isonor-
mal Gaussian process over some real separable Hilbert space R, and let K1, Ry be
two Hilbert subspaces of R. Define Wi and Wy as the restrictions of W to K1 and £,
respectively. Then the inequality

[E[F1 B <01 F el F2llLe )
holds with
0 =sup{|(k1, k2) gl : k1 € Ry, k2 € Ra, llkillg = llk2llg =1}

for every centered random variables F| and F> that are measurable with respect to the o -
algebra generated by Wi and W, respectively, and for every Holder conjugate exponents
P, q. Moreover,

E[F P2l < 071 Fill 2| P2l 20
holds for d € N such that the projections of F to the first d — 1 chaoses are equal to zero
and the projection to the d™ chaos is non-trivial.

On the other hand, there is also the following negative result.

Counterexample 1.3 Let W be an R2-isonormal Gaussian process defined on (2, F, P)
where the o-algebra F is generated by W. Let {1, e} be an orthonormal basis of R> and
set X; = W(e;), i = 1,2. Then both X1 and X, are standard Gaussian random variables.
Define & = %(X% — 1) and n = X1X3. Then both & and n belong to the second Wiener

chaos of W (write

1, . X1 —X2\?

forn), B = En = 0, and EE?> = En? = 1. Then we have that
[EGE? —E&*)(° — En?)| = 4
but EéEn = 0, hence pg , = 0, and an inequality of the type (1) does not hold.

Altogether, despite that Gebelein’s inequality holds even in higher-order Wiener chaoses,
it turns out that it loses the necessary power already in the second Wiener chaos and
therefore, in order to prove Theorem 3.3, we need to proceed differently. Instead, we use
orthogonality of Wiener chaoses and tensor calculus. In particular, we work directly with the
Besov-Orlicz norm; we initially use the generalized product formula for multiple integrals
(given in Theorem 5.9) to obtain the Wiener chaos expansion of

Y{s=1GC+8) =GOy
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for an even integer £ in terms of tensor cancellations of the kernel A;, i.e.

Y5 =EY 54868+ (8 + ...+ £ (8)
—_— T~ = ——
e €N S €

where .7 denotes the k™ Wiener chaos of the isonormal process W. Subsequently, by using
several results regarding the cancellation operator (and, in particular, the key Lemma 5.6
that is used instead of Gebelein’s inequality), we show! that

E28)| + &) + ... + [En ()] K EY[;5 as §— 0+

so that
Yis~EYi, as 86— 0+.

From this, we obtain that
Yos S 8203

and the result follows.
1.3 Organisation of the Article

In Section 2, the definitions of Besov, Orlicz, and Besov-Orlicz spaces are recalled. In
Section 3, the main results of the article are collected. In particular, we state the main
Theorem 3.3 where, along some moment estimates, we give sufficient conditions for the
considered process to have paths in the Besov-Orlicz space Bgz/”’ (0, T) and sufficient
conditions for the process not to have paths in any of the Besov spaces By ,(0,T) for
p € [1,00] and ¢ € [1, 00). In addition, we also assess modular Holder continuity of the
process in Remark 3.4. Subsequently, we discuss the assumptions of Theorem 3.3 in Remark
3.5 and Remark 3.6 and compare the theorem to the known results in Remark 3.7. In there,
we also note that some alternative assumptions, that correspond to those in [27, Theorem
5.1], can be considered. The section is concluded by Theorem 3.9 which refines Theorem
3.3 and in which pathwise asymptotics of the integral increments of the considered process
is treated. In Section 4, the conditions are verified for fractionally filtered Hermite pro-
cesses with a product kernel. In Section 5, we review elements of tensor calculus, provide
several motivating examples and the necessary technical tools for the proofs of Theorem
3.3 and Theorem 3.9 (Lemma 5.3, Lemma 5.4, and Lemma 5.6 regarding the properties of
the cancellation operator and Theorem 5.9 that contains the generalized product formula for
multiple integrals). The proofs of Theorem 3.3, Theorem 3.3 with alternative assumptions,
and Theorem 3.9 are given at the end of the article in Sections 6.1, 6.2, and 6.3, respectively.

2 Preliminaries: Besov, Orlicz, and Besov-Orlicz Spaces

We begin by recalling some facts about Besov, Orlicz, and Besov-Orlicz spaces. For a
thorough exposition on Besov spaces, we refer the reader to, e.g., [26]. Orlicz spaces are
covered in, e.g., [24, 31] and Besov-Orlitz spaces in, e.g., [21, 23]. Let I < [0, co) be a
bounded interval and for 2 € R, we denote I(h) = {s € I : s+ h € I}. Fors € (0,1)

"More precisely, we show that the variances ]E[Sk(é)]2, k = 2,4,...,¢n, are negligible so that the mean-
square distance E(Yf, 5= EYﬁ 5)2 is small by orthogonality of Wiener chaoses.
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Besov-Orlicz Path Regularity of Non-Gaussian Processes 311

and p, g € [1, oo) (with the usual modifications for p = oo or ¢ = 00), the Besov space
B;y q (I) is defined as the linear space

B, () ={fe€LP):(f)py, u) < oo}
where
1
*© —s dr\“
(Npy ) = </ (7 sup | fC+h) = fOllLramyl? )
' 0 |h|<t t

and the space B;)’ q (I) is a Banach space when endowed with the norm

If 1By, = IfllLeay + (F) By, )

r.q
Besov spaces can be generalized as follows. A function N : [0, 00) — R is called a Young
function if it is non-negative, non-decreasing, continuous, convex, and satisfies A/ (0) = 0
and N (co—) = oo. For a Young function A/ and a measure space (D, D, i), where p is
a o -finite measure, the Orlicz space (with the Young function N) N (D) is defined as the
linear space

LN (D) = {f € L°D) : || fll v () < 00}

(NP =inf{/\ zO:AN(US‘)')u(dx) < 1}

is the so-called Luxemburg norm. Endowed with this norm, L~ (D) is a Banach space.
(Note that with this notation, LXP(D), p € [1, 00), is the usual Lebesgue space L?(D).)
Finally, for s € (0, 1), a Young function AV, and g € [1, co) (with the usual modification
for g = 00), the Besov-Orlicz space B, D is defined as the linear space

where

Bi (D =1{f € LN (Nay, ) < )
where
1
00 N dar\?
(f)Bj\/-q(I) = (/O [t |§zl\lp lfC+h)— f(')”LN([(h))]qt) .
! by

The space Bj\[’ q (1) is a Banach space when endowed with the norm
||f||B‘J"\[’q(1) = ||f||LN(1) + (f)Bj\[’q(I)-

(Note also, that with this notation, ch,,’q (I), p € [1, 00), is the usual Besov space B;,q .

Remark 2.1 There are equivalent (semi)norms that may be more convenient in certain prob-
lems. In particular, for s € (0,1) and p,q € [1,00) (with the usual modifications for
p = 00 or g = 00), the seminorm ( f) B () is equivalent to

sy, = | 227N C+27) = FOI, 0y,

Jj=0

by dyadic approximation; see, e.g., [14, Corollary 3.b.9]. Moreover, in the present article,
particular attention will be given to the exponential Orlicz and Besov-Orlicz spaces L?# (D)
and ngﬁ,oo([) for s € (0, 1) where ®@g, B > 0, is a Young function that satisfies ®g(x) =
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312 P. Coupek, M. Ondrejat

exﬁ — 1 for x € [tg, 00) with some 75 > 0. In this case, the (semi)norms ||f||L®ﬂ D) and
f )B;ﬁm( 1) are equivalent to

AW 26y = sup PP f Loy
p=1

and

fe+27 =10

5 = sup2/* )
[f]Bq)ﬂ,oo(I) jzll) LP6(127)))

respectively, by, e.g., [21, Proposition 2.3]. It follows that the norm | f| By o) is
equivalent to

|||f|||B;,ﬁm(1) =AMy sy + [f]B;,ﬂm(l)o

Remark 2.2 There are, of course, some relations between Besov and Besov-Orlicz spaces.
Let us briefly comment on the particular case of exponential Besov-Orlicz spaces as they
are central to the present article. If s € (0,1), 8 € (0,00), and p € [1, 00), then it is
immediate from the definitions of these spaces that there is the embedding

By, (1) € By, (1), q € [1, o],
and, in particular,

B;‘,ﬂ,oo(l) - B;‘,’OO(I).

On the other hand, it follows from [27, Corollary 5.3] or Corollary 4.2 below that if s €
0, 1), 8 €(0,2],and p € [1, c0), then

By, oo(I) £ By ((I), g €[l,00).

3 Main Results: Path Regularity

The main results of the article are collected in this section. Let H be a real separable Hilbert
space, W = {W(h)}nen be an H-isonormal Gaussian process, i.e. a centered Gaussian
process with the covariance

E[W(h1)W(h2)] = (h1, h2)H, hi,h2 € H,

defined on a complete probability space (2, F, P), and assume that the o-algebra F is
generated by process W. For k € Ny, we denote by

Wi : H®* = L*(Q)
the multiple divergence operator of order k defined via the duality
E (D*X, A) yer = E[XWi(A)], A € H®,

for all X € DK2 where D* denotes the k™ Malliavin derivative and D¥? its domain and
where H®K denotes the completion of the algebraic tensor power of the Hilbert space H. (If
U is another real separable Hilbert space, the tensor product U ® H is defined, throughout
this paper, as the completion of the algebraic tensor product of U and H with respect to the
inner product (u1 @ hy, ur @ ho)ver = (U1, u2)u{h1, ho)g, ur,ur € U, h1, hy € H.) We
refer to, e.g., [18] or [20] for details on Malliavin calculus and to [29] for details on tensor
products of Hilbert spaces.
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Letusfix T > 0,7 € N,and @ € (0, 1) for the rest of this section. Let G = {G (¢)}:¢[0,1]
be a jointly measurable process in the n'™ Wiener chaos of W represented by

G([) = Wn(Al)a re [07 T]a (2)

where A, € H®" is (the unique) symmetric tensor and ¢ — A, is a Bochner measurable
function from [0, T] to H®". We define

Ax,s = Ax+s - Ax

forx,s >0,x+s <T,and

n
Cot(,3) = 7072 A s ®1 Ay |2 wony + 57174 ) 1 Ars ®; Ayill o2 (3)
=2
forx,y > 0,s,t > Othatsatisfyx +s < T,y+1t < T.Here,®;, j =0,...,n,is the
cancellation operator defined by

M ® - Qh)Q@ k1 ® - ®ky) =h @ @hyQki® - Qky,
M® - Qhy)®j (k1 Q-+ ®ky) =(hi,ki)g...(hj,kjuhj11Q - @hp ®kjr1® - Qkn,
M ®@ - ®hy)®u k1 ®-- - ®ky) =<hlvk1>H"'<hnskﬂ)H

forh;,k; e H,i =1, ...,n. We also define

T—t T—s
F(s,1) = / / Cs,¢(x, y)dxdy
0 0

fors,t € (0, 7).
In the rest of the article, various combinations of assumptions (G1)—(G4) below are
considered and these assumptions are formulated now.

Assumption 3.1 There exist k € [1, 00), k' € (0, 00), k" € [1,00), and ¢ € (0, 1) such
that

(Gl) ||Axsllgon < «s®foreveryx >0,5s >0, x+s<T,
(G2) limin, o infyefor) sl Ay sllgron = K, |

(G3) Z;’ijo F(27/,277) < cowhere jo=min{j : 27/ < T},
(G4) F(s,t) <«"s®t® foreverys,t € (0,T).

Remark 3.2 Note that if process G satisfies condition (G1), then it has paths in the Besov
space

Bl (0. T)

for every p,q € [1,00] and r € (0, ). Indeed, by [18, Theorem 2.7.2] and Kolmogorov’s
continuity criterion, G has paths in the Holder space C" ([0, T']) for every r € (0, @) and
this is equivalent to the claim by the embedding of Besov spaces from [26, Theorem 3.3.1
and Proposition 3.2.4].

Consider now Young functions ®@g for § > 0 that satisfy @g(x) = &’ —1forx e

[tg, 00) with some 75 > 0. The main result of the paper follows. Its proof is postponed to
Section 6.1.
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Theorem 3.3 [f process G satisfies (G1) and (G3), then
¢ n
||G||B<‘;2/n’oo(0,T) € L7(Q)

and, in particular, it has paths in the Besov-Orlicz space Bg,z/n 0o (0, T) almost surely. If,

additionally, process G satisfies (G2), then its paths do not belong to the Besov space
Bgﬂ (0, T) forany p € [1,00] and q € [1, 0o) almost surely.

Remark 3.4 By the results contained in [21, Section 2.4.1], exponential Besov-Orlicz spaces
can be embedded into certain modular Holder spaces. In particular, there is the embedding

Bg,,, (0, T) € €11 ([0, T1)

where C™1102712 ([0, T) denotes the space of functions g : [0, T] — R such that
lg(s) —g@®)| < cls —t|"|log|s —f||%, 5,0 €[0,T],0<|s—t] <1/2,

holds with some ¢ € (0, o0). Therefore, the paths of the process G from Theorem 3.3

lie in the space Crellogr|2 ([0, T]) almost surely. This can be also inferred directly from
[28, Corollary 5.5].

Remark 3.5 Note that every a-self-similar process G of the form (2) that has stationary
increments satisfies conditions (G1) and (G2). Indeed, in this case, we have

1Arson = = E[G(x +5) — GO = ~ E[G(s) = GOP. = ~ E[G()2s™
OINHET T T on! "l

for every x > 0, s > 0, x + s < T where stationarity of increments of G, the fact that
G (0) = 0 holds almost surely, and self-similarity of G were used successively.

Remark 3.6 Note also that it follows from the proof of Theorem 3.3 that we are permitted
to take a square of the first term in the definition of function Cy ;(x, y) in formula (3). This
allows to obtain better results for Gaussian processes. Of course, as there is the estimate

sizati%[”Ax,s &1 Ay,t”%.,@(Zn—Z) = Kzsiatia”Ax,s &1 Ay,t”H®(2"*2)
forx,y > 0ands,t > Osuchthatx +s < 7T,y +1t < T by (Gl) and Lemma 5.4 below,

we have

T—t T—s T—t T—s
F(s,1) = / / Cs.i(x, y)dxdy < KZ/ / g (x, y)dxdy = F'(s, 1)
0 0 0 0 ’
for s, t € (0, T) where
n
Chi(x, ) =577 [|Ars ®; Ayl goei-2)
Jj=1

so that it is sufficient that condition (G3) is verified with F’ in place of F.

Remark 3.7 Note moreover that there is a discrete version of condition (G3) in Theorem
3.3. In particular, Theorem 3.3 remains valid if condition (G3) is replaced by
(G3’) There exists a function K : [0, T1% = [0, co) such that

Cs,s(x’ y) <K, |x - y|)
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holds for x, y > 0, s > Othatsatisfy x+s < T,y+s < T, (x, x+s)N(y, y+s) =0,

and
00 J‘sj
D87 > K@y lm—m'|8)) < oo
j=1 mm'=1
m#m'
holds with

8;=T27 and J5; =2/ —1.

The modified proof can be found in Section 6.2. In the Gaussian case, the above condition
(G3') is implied by the conditions in [27, Theorem 5.1] and, consequently, Theorem 3.3
provides an extension of that result in the scalar case to the general setting.

Clearly, to verify condition (G3) it suffices to find ¢ € (0, 1) and «” > 0 such that
F(s,s) < «"s* holds for every s € (0,T). If this condition is slightly strengthened,
we obtain the exact pathwise asymptotics of the integral increments of G. The proof is
postponed to Section 6.3.

Notation 3.8 We write

FOe®@e) as x—at+ it 0<liminfL® < limsup LY
x—a+ g(x) x—at+ &)

< o0

Theorem 3.9 [f process G satisfies (G1), (G2), and (G4), then, in addition to the assertions
of Theorem 3.3 being true, we have that

IGC+s)—GOlero.7-s) € OGY) as s—> 0+ as
holds for every p € [1, 00) and
IG( +s) — G(.)||L¢2/,1(07T_s) €e®E% as s— 04+ as.
Remark 3.10 Although condition (G4) is by no means sharp, it suffices for the demon-

stration of the method in Theorem 3.9 and it covers all our examples. Therefore, only this
criterion is given here for simplicity of the exposition.

Notation 3.11 Throughout the article, we write A < B (and A 2 B) whenever there exists
a finite positive constant C such that A < CB (and A > CB) whose precise value is not
important. This constant can change from line to line. We also write A Sx B (and A 2k B)
to indicate the dependence of constant C on a different quantity K. If both relations A < B
and A 2 B hold, then we simply write A < B.

4 Example: Fractionally Filtered Generalized Hermite Processes
In this section, the results are applied to a specific class of stochastic processes that con-
tains some well-studied examples such as fractional Brownian motions, Rosenblatt, or, more

generally, Hermite processes. Let n € N and let 81 and B be real numbers such that

1
0<51+%(52—1)+1<1 and  1—-<p<l. 4)
n
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Let us set H = L2(R),
n
a=ﬂ1+§(52—1)+1,

and

n
At(xl,---,xn)=/kfl(u)n¢ﬂ2(u—xi)du, Xi,...,xp Rt e[0,T], (5)
R i=1

for the function k' : R — R defined by

e ) = {1<o,,](u), B =0,

6
Fle—wi =i, p#o, ©

where (u)i' = uPifu > 0 and (u)ﬁ' = 0 otherwise, and for some measurable function
¢P2 : R — R that satisfies the estimate

/ 192 ()¢ (x + wldx SuP™' uso0. )
R

In this situation, the following result is obtained.

Corollary 4.1 Process G defined by (2) with kernel A defined by (5) for which assump-
tions (4), (6), and (7) hold satisfies conditions (G1) and (G4), and, consequently, it holds
that
(p n
||G||Bg2/n’oo(0,T) € L™/(Q).

Proof We only treat the case of 81 # 0; the case f; = 0 follows by similar arguments.
Denote

K(u) = / P2 ()P (x + u)dx.
R

Then K is a symmetric locally bounded function on R\ {0} and with the notation introduced
in Section 3, we have that

1Axs 172y = /Rz KB (u)kP (0) K (Ju — v])"dudv
holds for every x > 0 and s > 0 such that x + s < T. As there is the inequality
/ |k£3] (”)ka] WK (Ju — v)["dudv < 5% 8)
R2

by assumptions (4), (6), and (7), it follows that process G is well-defined and satisfies
condition (G1). In order to verify condition (G4) notice first that

(s + v)f1, v e (—s,0],
B 0
s, 1>Y,
TETER E ve ©.s
vPL, B1 <0,
svPr—1 v € [s,00),

where the approximation constants do not depend on either s or v. Now, denote
X" = A <nlx ™ + Leznlxl?, x e R\ {0},
for y1, y2 € R. It follows from the above approximation that

/R |k§‘(—v)||u _ U|0,n(52*1)dv = sl+min{ﬁ1,0}|u|0,n(ﬂ271)+max{ﬂ|,0}

@ Springer



Besov-Orlicz Path Regularity of Non-Gaussian Processes 317

for u € R\ {0}, from which we obtain the estimate
Q(s.1) = /R i K @) |KE )| — v]*" P2~ Ddpdy < sHmintPr0} HminiAL0] - (g)

fors, t € (0, T). We are in position to verify condition (G4) now. By Remark 3.6, it suffices
to find & € (0, 1) such that

T—t T—s N
/0 /0 D N Acs ®; Ayl 2 gao-indedy < st
j=1

for s, t € (0, T). We have that

4 ®) Avallqgansy = [ K CORP ek r0kf

K(ri — 3" K (2 — )" K(Iry — 2+ x — y) K (Ir3 — ra +x — y))/ dr
and, consequently, that
IAx,s ®; Ayll72gon2i

1—4
< /R (1K 0K ok ok IR (= rs DK (2 = raDI")

i
(K DR KB K IR (1 = 72 6 = YDI"IK (s = ra - = yDI") " dr

_i

n

1
< ( /R Ik O r)KE (K ) LK (i = 3 DI IK (2 — r4m”dr)

i

: ([R KE kP 2R )k )l IK iy = r2 4 x = 3DI"IK (3 = ra o+ — y|>|"dr)

_i
1 n

= (/JRZ IKEY ) | |KEY o) 1 K (e — UI)I"dudv> (/Rz Ik ) 16 )I1K (Ju — vl)l"dudv)

2j

: (fR K @Ik @11 (= v+ x —y|)|"dudv) "

hold for every x,y > Oand s, > Osuchthatx +s <T,y+¢ <T,and j € {1,...,n}
by using Holder’s inequality to obtain the second estimate. Hence, the successive use of the
above estimate, inequality (8), Jensen’s inequality, assumption (7), and estimate (9) yields

T—t pT—s
/ / lAxs ®; Ayl L2ren-2jydxdy
0 0

j i T T
s2(1=4) @ (1-4) (/ f / KB GNP ()11 K (= v+ x — y|)|"dudvdxdy>
0 0 R

010D,

a+[14+min{f;,0}—a] L (ot 14min{g; 0)—all

I
n

N

N

AN

fors,t € (0,T)and j € {1,...,n}. As 1 + min{B, 0} — « > 0 by (4), condition (G4) is
verified and the claim of the corollary is obtained by appealing to Theorem 3.3. O
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318 P. Coupek, M. Ondrejat

The following family of stochastic processes, called the fractionally filtered Hermite
process, provides prototypical examples to which our results apply. In particular, let z,’? -

{ZE 1P (t)}re[0,1) be the stochastic process defined by

n )5727
zﬁl’ﬁz(t)=cn,,31,ﬂ2/R [/ﬂ{kf‘(u)]‘[(u—xi)f ldu]dwx, t €0, 1],
i=1

where fR,, (---)dW, is the multiple Wiener-1t6 integral with respect to the Wiener process
{W;}ier and ¢, g, ., is a suitable normalizing constant. We remark that

Bi.B2
[ ] Zl

4 Zg'ﬂ ? is a Rosenblatt process with Hurst parameter @ = f; € (%, 1),

is a fractional Brownian motion with Hurst parameter « = 81 + ﬂ—zz + % € (0,1),

e and zg’ﬁz is a Hermite process of order n and Hurst parameter « = %(/32— D+1e (%, 1)

upon suitable choices of the constant ¢, g, ,; see, €.g., [3] or [16].

Corollary 4.2 The fractionally filtered Hermite process zf"ﬂ 2 satisfies

BB o P2/n
Iz, ||B¢2/".OO(O,1)€L (€),

o
Do/, 00

does not have sample paths in the Besov space B;’,‘,q (0, 1) with p € [1,00] and g € [1, 00)
almost surely. Moreover, we have that

so that it has sample paths in the Besov-Orlicz space B (0, 1) almost surely, but it

1222 5) = P () Lo 01-s) € O®) as s — O+
holds for every p € [1, 00) almost surely and
1251724 8) = 2B PO oy ) € O as s — 0+

holds almost surely.

Proof 1t follows from [3, Theorem 3.27] that zf 182 i a well-defined a-self-similar process
with stationary increments. Thus, conditions (G1) and (G2) are verified by appealing to
Remark 3.5. Condition (G4) holds by Corollary 4.1 upon verifying (7) with

8 1 By
¢ 2(x)=c;,l,ﬂ|,52(x)ﬁ ) x eR.
Subsequently, the claim follows by Theorem 3.9. O

Remark 4.3 The fact that sample paths of the fractional Brownian motion zf 1.h2 belong

to the Besov-Orlicz space Bgljo/?/ 212

353;ﬂ2/2+1/2(0’ 1) for any p € [1,00] and ¢ € [1, c0) almost surely has already been
established in [27, Corollary 5.3]. Moreover, it is shown in [27, Corollary 5.8] that

(0,1) and do not belong to the Besov space

B1.B2 _ B1.B2
E”Zl ||B§';£2/2+1/2(0,1) ~ E|Z1 (D).

The above Corollary 4.2 complements these results by providing an upper bound on the
asymptotic behavior of the moments of the Besov-Orlicz norm and the almost sure asymp-
totic behavior of the integral modulus of continuity of the fractional Brownian motion.
As far as Rosenblatt processes, other higher-order Hermite processes, and, more generally,
sub-n"-Gaussian chaos processes are concerned, there also exist results on their finer path
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Besov-Orlicz Path Regularity of Non-Gaussian Processes 319

properties. In particular, an almost sure estimate of the supremal modulus of continuity of
the sample paths of sub-n"-Gaussian chaos fields is established in [28, Corollary 5.5] and
almost sure upper and lower bounds on the asymptotic behavior of local oscillations of Her-
mite processes are provided in [1, formulae (1.7) and (1.8)]. The lower bounds then allow to
obtain almost sure non-differentiability of the paths of Hermite processes; see [1, Theorem

1.1] and [13, Corollary 1.7]. In contrast, it is shown in Corollary 4.2 that the sample paths of
n(f2—1)/2+1 ©, 1)
4)2/’1’00 ’

almost surely. The supremal modulus of continuity of these processes, known already from

the Hermite process z?,‘ﬁ ? belong to the exponential Besov-Orlicz space B

[28, Corollary 5.5], can be recovered as a consequence of this fact - we obtain that zg’ﬂ 2 has

paths in the modular Holder space clr P g 2 ([0, 1]) almost surely by Remark 3.4
- but additionally, the result is improved in the sense that Corollary 4.2 provides a smaller
space to which Hermite paths belong. Moreover, we obtain an upper bound on the asymp-
totic behavior of the moments of the Besov-Orlicz norm and the asymptotic behavior of the
integral modulus of continuity of the Hermite process.

Remark 4.4 In [3], the following family of processes is considered. Define the kernel A by

o0
A,(xl,...,x,,):/ K)o —x1, ..., u—x)du, x1,....,x, €R, tel[0,T],
X1 V...Vx,
(10

where k! is the function defined by formula (6) and where ¢?2 : R% — R is a non-zero
function for which there exists y, € —”—erl, —7%) such that

¢,1’2 (Ax) — )\)’z(p)’z (x)

holds for every x € R’ and every A > 0 and such that
f 972 ()97 (1 + x)|dx < oo.
R}

The corresponding process G is a well-defined y -self-similar process with stationary incre-
ments (here y = y1+y2+5+1) providedthat —1 < —pp—5—1 <y < —pp—5 < %; see
[3, Theorem 3.27]. This family of stochastic processes generalizes the one treated above;
however, without assuming the product structure in (10) as in (5), it remains unclear whether
our results can be applied in this case.

5 Tensor Calculus: Cancellations of Tensors and Expansion Formula

In this section, we review elements of tensor calculus and an explicit formula for Wiener
chaos expansion of products of random variables. We adopt the following

Convention 5.1 When working in the field of integers, [a, b] shall denote the set {i €

Z : a < iandi < b}. When working in the field of reals, [a, b] shall denote the set
{treR:a<randt < b}.
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320 P. Coupek, M. Ondrejat

5.1 Cancellation of Tensors
5.1.1 Motivating Example

Consider a product of Hilbert spaces
H® x H® x H® x H®' x H®*

define sets of indices corresponding to the coordinates of this space

L ={1,2,3,45}, ©L={6738910}, I3={11,12,13}, L4 ={14}, Is={15,16,17, 18},
and consider a set V of unordered pairs of indices that obey the following rules:

(1) Every index is in one pair at most.
(2) No index is paired with an index from the same set nor with itself.

For example, one can consider
V = {{3, 6}, {5, 10}, {9, 11}, {13, 14}}.

The example can be graphically visualized as in Fig. 1.
For the element

(h1®h2@h3®hs®hs) X (he®@h7®@hg®@hg®@h10) X (h11®h12@h13) X h1a X (h15®@h16®h17®h18),

the (V-)cancellation is done as follows: The vectors with indices form-
ing a pair in V are multiplied and the remaining vectors are shrunken, i.e.

— } —
h1 ®@hy ®h3 @hgy @ hs X he ® h @ hg @ 1o @ hio X /111 @ h12 @ 1113 X 11 X h1s @ hig @ h17 @ hig
NG TN Rt Ut Uil L)
I I I Iy Is

which results in

(h3, he)m (hs, hio) u(ho, hi1)u{h13, hia) Hh1 @2 @74 @h71Qhg®@h12®h15Q@h16@N17Q@h 3.

Fig. 1 Example of tensor cancellation
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The cancellation extends to a 5-linear operator from H® x H®> x H®3 x H®! x H®*
to H®19; see also Corollary 5.5 below.

5.1.2 General Case

Consider an integer £ > 2, positive integers dj, ..., d; and decompose {1,..., N} to
subsequent intervals I, ..., I, of lengths dy, . .., dy, respectively, where N = dy+- - - +d,.
Definition 5.2 A set V of unordered pairs of numbers in {1, ..., N} is said to be a set of
admissible pairs for intervals Iy, ..., I, if it is either empty, or if it can be enumerated as
V= {{my,n}, ..., {mp, ng}} (11)
for some integer k > 1 where
(F1) my,...,mg,ny,...,n;are all distinct, i.e. |{m1, ..., mg,ny,...,ni}| =2k, and
(F2) mj and n; do not belong to the same interval Iy, ..., I, forevery j € {1, ..., k}.
For a set V of admissible pairs for intervals Iy, ..., I with |V| = k, we define V, =
{1,...,N}ifV=0orifV #£0,
Vi=A{l,...,N}\{my1,...,mg,ny, ..., ng}. (12)
If 2k < N, we enumerate V, in an increasing order as
{o1,...,on—2k}. (13)
The cancellation operator is then defined for 41, ..., hy € H as follows: If V = ¢, then
RV(®i1€]1hi1’ RN} ®i[€]{hi[) = h()] Q- ® hON = hl Q- ® hN»
if 0 < 2k < N, then
k
RV(®i1611hi1 LR ®i[€[@hi;{) = l_l(hmja hnj)Hh()l ® e ® h”N—Zk’
j=1
and if 2k = N, then
k
RV ®ienhiy. - ®ierhiy) = [ [thm; -
j=1

Due to symmetry, the definition of RV is independent of the enumeration of the set V and
RV extends to a unique ¢-linear operator

RV H®N ... x g®di _ pgON-21V).

see also Corollary 5.5 below.

5.2 Permutations

It is often convenient to use a relation between cancellations and permutations. Under the

assumptions made in Section 5.1.2, let us assume additionally that 77 is a permutation on
{1,...,d;} forevery j € {1,..., £} and define

w@)=s;+m;—s;), i€l jefl,... e,
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322 P. Coupek, M. Ondrejat

where I; =s;+{l,...,d;}for j € {1, ..., £}. Thenm is a permutation on {1, ..., N} such
thatrr|1j is a permutation on /; forevery j € {1, ..., £}. We define V™ =@ if V = { and

VT ={{m(m), w(n)}, ..., {wlme), w(ne)}}

otherwise, with the notation from (11). It is clear that V™ is admissible for the intervals
Ii,...,I;.If 2k < N, let o be the permutation on {1, ..., N — 2k} such that w c 0 0 0 is
increasing. Then

RV (A1,...,A) = PaRY (Py A1, ..., P, Ap), Ay e H®, ... Ay e H®,
(14)
where the permutation operator Py : H®" — H®" is defined in a standard manner by

Po(h1 ® - Qhy)=hg Q---®hg, if neN
and by
Py(t)y=t if n=0.
If 2k = N, then (14) still holds with o = @ and Py = 1.

5.3 Composition of Cancellations
5.3.1 Motivating Example - Continued

Let us start again by a sequel of the previous example in Section 5.1.1 after cancellation.
We renumerate the remaining indices in the ascending order and we add a new interval
Is = {11, 12, 13} with two more pairs V' = {{2, 11}, {9, 13}} obeying rules (F1) and (F2).
This situation is now depicted in Fig. 2.

In the original picture (with the original enumeration), the new indices are enumerated
as Is = {19, 20, 21} and the new pairs correspond to the set V" = {{2, 19}, {17, 21}} as
shown in Fig. 3.

Fig.2 Example of tensor cancellation with composition - new enumeration
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Fig. 3 Example of tensor cancellation with composition - original enumeration

The extended cancellation RVYY" : H®S x H®S x H®3 x H®! x H® x H®3 — H®°
then satisfies

RV (A1, Ay, As, A4, As, Ag) = RV (RY (A1, Az, A3, Aa, As), Ag)

as

h ®h ®h3®ha @hs xhe @ h7 ®hg @ ho @ g X 11 @ hi2 ® hi3 X hia xhis ® hie @ 117 @ hig X 1119 ® hao @ /o)
I I I Iy Is Is

results in

(h3, he)u (hs, hio)u (ho, hit) g (h13, hiaym (ho, ho)u (7, hot) e
hi ®@hs @®h7 @hg @h12® his @ hie ® hig ® hao.

5.3.2 General Case

Under the assumptions in Section 5.1.2, assume additionally that 2k < N, consider two
intervals

[ ={1,....N—=2}, I,={N—2k+1,....N—2+dp).

and consider the interval Ip+; = {N + 1,..., N 4 dg41} which completes I, ..., I; to
a subsequent decomposition of {1,..., N’} where N/ = N +dyr1 = dy + -+ + dy11.
Consider a set of admissible pairs V' for intervals / { and Ié. IfV =0, weset V' =@. If
V' is non-empty, we enumerate it

V= ({mynl) e dmi )
in such a way that {m/, ..., m;,} € Ij and {n}, ..., n},} C I, and we define
UL = Oyl oo Mgl = Oy s Mkl =17+ 2K, o Mg = mpy + 2k
and
V" = {{mig1, ngs1ds - imggr, ngr -
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Lemma 5.3 The set of pairs V U V" is admissible for the intervals Iy, ..., I;+1 and
RV (Ar, .. A = RV (RY (A1, ..., Ag), Aryr)
holds for every Ay € H® | ... Agyq € H®+1,
Proof 1f V' = ¢, then the assertion is trivial. If V' # ¢y but V = ¢, then I] = {1,..., N},
I = Ipy1, V! = V” so the assertion is obvious. Now assume that V 7 @ and V’ # (. The

admissibility of the pairs V U V" is rather straightforward since it is a mere renumeration
and, as for the identity, it suffices to show that it holds for elementary tensors, i.e. that

R (hoy ® -~ ® hoy_y . hins1 ® -+ ® Wiy,

= (hmk+1 s hnkH) s <hmk+k” hnkJrk/)ho’l’ Q- ® h()/// % 2k’(15)
where 0” is the increasing enumeration of {1, ..., N'}\ {my, ..., myip,n1, ..., ngap ). If
we define
f=h ! =h ! =h n =h
1 = Noys s BN 2k = Noy_gks "N —2k4+1 = WN+1Ls - - s BN 2kt dy | = TN+dpys

then the left-hand-side of (15) is equal to

/ / / / / /
(W By )l By iy @ @By (16)
where o’ is the increasing enumeration of {1, ..., N' — 2k} \ {m/, ..., m},.n|,....n}}.
Since m; <N -2k < n’j, we have h:n,j = hf’m} = hm,,; and h;,} = h,,/j+2k = hn,, ;- Let

us also define
L=(1,...,on-2k, N+ 1,..., N +dpy1).
Then
L:{1,...,N =2k} — {1,...,NY\{my,...,mg,ny,...ng

is an increasing bijection and it can be checked that
{Mikg1, .o Mpskrs Nict 1 - - -, N} N Rog (L(0) = 0.
Thus it is seen that
L) :{1,...,N =2k =2k'} = {1,...,N}\{m1,...,mpqp, 01, ... npypr}

is an increasing bijection But such bijection is exactly one, hence 0" = L(o’ ). Now, h} =
hp fori e {1,. — 2k} soh, _hL(O)_hn forevery j € {1,..., N — 2k —2k'}

which proves that (16) coincides w1th the right-hand side of (15). O

We will prove the following two results using the composition Lemma 5.3.
Lemma54 IfA; € H® ... A, € H®, then

v
IR" (Ay, ..., Al gew-2vy < ALl ged, ... [|Aell god, -

Proof Let us proceed by induction on £ > 2. Let U be an admissible set of pairs for intervals
I, ..., Iy+1 and define

V={mmnleU: m¢lIy andn ¢ Ip11}, V'=U\V,
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with cardinalities |V| = k and |V"| = k/, respectively. We distinguish two cases. First, if
V" = (), then define V' = (. If V" # {4, then necessarily 2k < N where N =d; +---+d;
and N' = N + dy41, so we can enumerate

V" = {{mpgr, nigr}s oo Mg, g}
such that myy j < N < ngy; forevery j € [1, k']. Since U is admissible, my41, - .., Myip
belong to Vi, hence we can define m; = or;klﬂ, €[l,N —2k]=1I{ and n’] =npy; —2k €

[N =2k + 1, N — 2k +dyy1] = I3 for j € [1,K', and V' = {{m';.n';}. j € [1, K']}. After
this construction, Lemma 5.3 is applicable. If V" = @, then U = V and
RY(A1, ..., A1) =RV(A1,.... A) ® Ay
holds if 2k < N or
RY(AL ..., Acy) = RV(A1, ..., A Aryy
holds if 2k = N.If V" # (3, then
RV(AL ..., A = RV (RY (AL, ..., A, A,

so the claim follows by the induction step. Let therefore £ = 2. Since RY(Ay, Ay) = A ®
Ay, it suffices to assume that V # (. Express

1 2
A= Z ail,...,idl € ®--® Cigy s Ar = Z aidl“v'"v"dﬁdz Cig 11 R - ® Cigy a
i1ensid; id)+15e-0d) +dy
for some orthonormal system {eg} in H and let V = {{j,di + j} : j € {1,...,k}} for
some positive integer k < min {d;, d»}. Then, if k < min {d, d>}, we have that

RY (A1, Ay) = Z“il,j(xiz,lejl Q- Qejy_ Bey @ ®ey,

ijl

so the estimate

2

IRY (A1, AD I s ar-20 =Z(Za,{ja£l> < lAilGea 142150, (D)
o\

follows by the Cauchy-Schwarz inequality. If k' = min {d;, d»}, the same estimation is

obtained analogously. In the general case, the result is obtaind from (14) and (17) by

reordering the set V' via a suitable permutation. O

Corollary 5.5 The operator RY extends to a continuous L-linear operator
RV : H® ... g® _, gOW-2IV],
Now we are going to study the behaviour of the operator R further. Recall the numbers
S, ...,se from Section 5.2 that were defined in such a way that
L=si1+{1,....di},.... Lk =s¢ +{1,...,de},
holds, consider the set V, from (12), and define
v =vun) —sp,... VO = (VNI — s

In this way, *(j) C {1,...,d;} forevery j € {1,..., £} and these sets are actually the
traces of V, on I}, but renumbered such that each interval begins with 1. Finally, define

Vi=(idj+i}y:iev?),  je{l,.... 0.
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Lemma 5.6 If A1, By € H® ..., Ay, By € H®%, then

KRV (A1, ..., A0), RV (Bi, ..., Bo)) goov-avp|
< IRV (A1, BD) | gav—2myp - .- IRV (Ae, BO) |l -2y

Proof If V = (J, then

(RV(A1,...,A)), RV(B1,..., B)) yovavy = (A1 ®- ®Ar, Bl @ - ® By) yov-2v))
= (A1, B1)yed; - .- (A, Be) e
= RY(A1, B1)... RV (Ay, By).

Assume therefore that V' # (. First assume additionally that, for every j € {1, ..., ¢},

the sets V*(j ) are either empty or V*(j ) = {rj +1,...,d;} for some X ;. We can cover both
cases simultaneously by admitting that A ; € {0, ..., d;}. Now, consider an expansion

Aj = Z aijl 'jet] & - ®ezd ) Bj = Z b,'Jl 'jel] & - ®eld

for some orthonormal system {e,, } in H. Then

t
aimﬁ-inﬂ ® (ei,xyﬂyﬂ ®---® eisy+dy)

14 k

RV(Ay.....A) =) ( a;jww,.xwa) I
a=1 p=1 y=1

k

[

i

12 12
v _ o . e
R7(Bi.....By) = Z (l_[ Isg 15 isa+da) B’Mﬂ*‘”ﬁ (e"v+)~y+' ®--® e‘*r*"y) :
i \a=I p=1 y=1
Define, fora € {1, ..., £},
o . . . _ o o
o (ll""’l)w’ .]1""’.])»&) - Z ai] ..... ila,uka+l ..... udabj] ..... j)"a,u)\a+l ..... Udy,

Upg+15-0s Udy

if Ay € {1,dy, — 1} (and if d,, > 1) and with obvious modifications if A, € {0, dy}. Then,
with the convention that a product over the empty set equals 1, we have

(RV(A1,...,Ap), RV (B1, ..., B))) yow-av)

14 dy k
_ 2 : a o . .
- Z 1_[ aiWJr],...,isaera bjsa+]~-»<»j.va+da l_[ 8’5a+cs]m+z' l_[ lmﬂ ’nﬂ Jmﬁ ]nﬂ
i j \e=l c=hg+1 B=1

4 k
2 2 (Il i H
Ql.saJrl ~~~~~ Lsq4-h s Jsq 1503 Jsaq+ha ’mﬁ lnfg jmﬂ In}g

Usylseeodsy 4oy Jsp+1seeeJsp 44 =1

Esg1seeslsgtig JsgtloeesJsgthg

12 k
Z HQlJa-H wrlsg i Jsq+ 1 Jsatha 1_[ imging j’"ﬂ Jng

a=1

lm] ’jm] 5“'71.}11]( ']Mk
iy sdny seeesing s Jng

since
{s¢ +1: 1< <Ay, 1 Sa=<ty={my,...,my,ny,..., 0k}
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Let s, + 1L =my, sq2 + 12 = n, be the assignment. Then &} # a2 by (F2) and each of the
4k variables iy, jmys -+ s Imys Jmgs> ings Jnys - - -5 ings Jn, appears only once in the formula
above, so we can apply the Cauchy-Schwarz inequality in the form

33 fugeduw < I flleaanlIglean (18)
neM veM
successively on the variables (ip,, in,)s (imys Jny)s - - > Gmps ing)s (Umy» Jn,). Eventually,

after the last application of (18), we obtain

(RV(A1, ..., A, RV (B1, ..., B))gswvawy < o lle, -- - 10 le,
= R (A1, Bl yed ... IR (Ag. Bl yod -

If V # @ but is general, we reorganize by a permutation 7 to have the form from the
above step and use (14) to get

(RV(A1, ..., A)), RV (Bi, ..., Bo) yov-2v)
= (Rvﬂ (Pnl—] Al ..., Pﬂ[—l Ayp), RV” (Pnl—l By, ..., Png—] Bo)) yew-2vr )

< IR (P Ar, Pt BO)ll ooy - IRYE (Pt Ay Pt Boll o)

= IR (P41, P By CNRYE(P 1A P BO

l e )
HON=2[(V{) 1] HOW=2|(Vp) L))

= RV (A1, BDll gowv—2mp - .. IRV (Ae, Bo) | yonv—2vp -

since V") = nj[V*(j)] and VI = (Vj)”J" where
wh= (@), . widy) dj + i), dj 4 (d))
forevery j € {1, ..., ¢} O
5.4 Expansion Formula

Let W be an H-isonormal Gaussian process and W, : H®" — LZ(Q), n € Ny, be the
divergence operators as in Section 3. We adopt the following

Notation 5.7 Let £ > 2 be an integer, let dy, ..., d; be positive integers, let N = d; +
-+ ++dy, and decompose {1, ..., N} to subsequent intervals Iy, ..., Iy of lengths dy, ..., dy,
respectively. We denote by &, ;, the system of all admissible sets of pairs V for the the
intervals 11, ..., Iy (Definition 5.2) and by 5;‘] """ 1, its subsystem consisting of V' such that
V| =k.

Remark 5.8 We have the following estimate of the cardinality

N!

; Nt
€n..1,| = 2kRN(N — 2k)!

(19)
see, e.g., [12, Chapter 1.5, page 16].
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Theorem 5.9 Let ¢ > 2 be an integer, let dy, ..., dy be positive integers, let N = dy +
-« -+dy, and decompose {1, ..., N} to subsequent intervals Iy, ..., I; of lengths dy, ..., dy
respectively. Then

Wa (A1) ... Wa,(A) = > Wy (RY(A1,..., Ap)

Veer, . .i,

holds for every Aj € H® | ..., Ay € H®%,

Remark 5.10 In [12, Theorem 7.33], the theorem is proved in a different language. Below,
we provide a proof based on the tensor calculus.

Proof of Theorem 5.9 We have that

Wa, (h1 @ - ® ha))Wa, (hay11 ® -+ - @ hay tay)

Aj A
d]Adz d d
1 2 ~ ~ ~ ~
=2 k!<k ) (k )Wdl+dz—2k(RV"(h1® o ®hay hay 1@ - Ohdytay))
k=0

diAdy

k! dy dy Vv,
Yoy m<k>(k>wd1+d2_2k(1ek(h,,,®~~~®hm,,hal®--~®hadz>>

nePll U€P12 k=0

diAdy

Po(dr)(d2 {71,010k}
Z Z g d1!d2!(k><k>Wd1+d2_2k(R o P AL 42)

neP,l rreP,2

d]Adz
=Y Y Wara-n(RY (A1, A2)

— k
k=0 Veer 1,

= Y Wara2vi(RY (A1, A2)
Veer.

holds almost surely where Vi = {(1,d; + 1), ..., (k, d1 +k)}, P denotes the set of permu-
tations on a set 7, and ® denotes the symmetric tensor product. The first equality follows by,
e.g., [20, Proposition 1.1.3], the third equality follows from the fact that W, (A) = W, (B)
for every A, B € H®" such that B is a permutation of A, and the fourth equality follows
from the fact that

{(r,0) € Py, x Pyt {{mi, o1}, oo Ak, ok} = VI = ki d — k)N (d2 — K)!
holds for every V € £ 5‘] _1,- We finish the proof by induction on ¢ for
Al =h® - -®hg), Az =ha+1Q - -®hdj+dy, A3 = hij+d,+18" - Ohdy+dy+ds>

By induction hypothesis, it holds, almost surely, that

Wi, (A1) ... Wy, (Ap) = Z WN—de—2|V|(RV(A1, o A1) W, (Ay)
and we must distinguish two cases. If 2| V| < N — dy, then, by Lemma 5.3,

Wy —d—2v|(RV (A1, ..., A1) Wy, (Ag) = Z Wy (RY(A1, ..., Ap)  (20)
ve&yy,..i, (V)
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almost surely where &y, 7,(V) contains all those elements U of &, .. j, that complete V
by pairs {m, n} for which m or n belongs to I,. More rigorously, U must satisfy

.....

I VCU, and U\V e gllU"'UleflJe'

.....

If 2|V| = N — dg, then (20) holds as well but Lemma 5.3 is not needed here as
En,..1;(V) ={V}. And indeed,

Wy—di—2v|(RV (A1, ..., Aem))Wa (A) = RV (A1, ..., Aim1) Wy, (Ag)
= Wyn_gv|(RY (A1, ..., Ap))

= > WyauRY(AL....Ap)
ve&y,..1,(V)

almost surely. Thus,

Wa, (A1) ... Wy, (Ap)

> S Wyau(RY(ALL ... Ap)

Veer, ..y Ue€r, ..., (V)

> Waoaw(RY(ALL ... Ap)

holds almost surely since {&;,,... [, (V) : V € &,,....1,_,} is a partition of &, p,. O

,,,,,

6 Proofs
6.1 Proof of Theorem 3.3

Let ¢ > 2 be an even integer and define N = ¢n. Then, according to Theorem 5.9,

N/2
[G(s +8) — G ZWN w@d®),  sel0.T -4l

holds almost surely where

k
d¥ = 3 RV(Ass.....Aus).  sel0.T -4l

forI; = {(j—Dn+1,...,jn}, j =1,...,¢ By Lemma 5.4, assumption (G1), and
inequality (19), there is the estimate

l
Nk at

||d‘ s lgew-2 < m

2

from which it follows that the function s +— dy(ka) is integrable and if we define
Yes = 1GC+8) —GOllieors: € 0,1),

then
N/2

Yis = Z WN—Zk(dgEk)), §e(0,7),
k=0
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holds almost surely where

T-6 T-6
d§k>=/0 dNds = Z/O RV(Ags, ... Ags)ds,  8€(0,T).

VES;‘I ..... I
Now, for k = %, we have
N N!
1) < Tk 22)
27 (9!
by estimate (21), and for k < % we have

k
1481 yrowv-20

T-5
3 H [ R s Ay s
0
1g

Veé‘fl

T-8 pT-46
> (/ / (RV(Ags0 ...  Ass), RV (Ars, ..., A,,5)>H®(Nfzk)dsdr)
0 0

k
Veer 1,

T-5 T-6
) ( [ [ 1R s Ao - IR (A Az,5)||H®<2n—2Wu)dsdt>
0 0

Veé’fl

IA

HRW-20

1
2

1
2

IA

by using Lemma 5.6. Now, we have in fact that k < N — 2 as N is even which means that
the set V. defined by (12) contains at least two elements. It follows that either there are
i,i’ €e{l,...,€},i #1i,suchthat V; # @ and V;s # @ or thereisi € {1, ..., £} such that
Vi contains at least two elements. Consequently, the estimate

IRV (As.s, Ars)ll yoen-avp - - IRV (A5, Ars) | goen-avyy < 202482 Cs (s, 1) (23)

is obtained from (G1) by Lemma 5.4. Indeed, if there are i, i’ € {1, ..., £},i # i’, such that
Vi # @ and V;r # @, then we can estimate

IR (As.5, Ars)ll yocnaviy -+ IRV (Ass, Ars)ll yocnav
<[|As,5ll on 1 Ars |l gon <301 1As5®) Arsll ye@n—2j)
IR (As.s, Ars)ll yocn-2v,n  -o- IRV (As.s, Ars)ll goen2avpn,
<01 14558 Arsll yen-2) <l As.sll gen llArsll gon

and if there is i € {1, ..., £} such that |V;| > 2, we can estimate

V Vi Vi
IR (As.5, Ar.s) | pon-avip - - - IR (Ag,s, Ars)ll goen-2vi) -+ R (As,5, Ars) | geen-21ve)

<l Assllgon lAr sl gon SZ’}:Z HAs,zS@jAI,S“H@(Zn—Zj) <l Assll gon | Ar sl gon
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by using Lemma 5.4 in both cases. Taking both these possibilities into account, the estimate
IRV (Ass, Aro)ll goen-amin - IRV (As.5, Ars) gocn-2ve

2
n
-2 -2
< AsslanllArs) e (Z IAss ®; At.a||H®<znz/->)

j=1

n
Hll Ag sl gan 1 Ars 1y (Z IAss ®; Ars |H®anm) (24)

j=2

is obtained. Now, it follows by a second use of Lemma 5.4 that the square of the sum on the
right-hand side of the above inequality can be estimated by

n

201 Ass ®1 Arslyoeiy +200 = DIl As sllgon | Arsligen Y IAss ®; Arsllgaea-2i.
j=2
Inserting this estimate into inequality (24) yields
IRV (As.s, Ars)ll yoenamp - . IRV (Ag s, Ars) |l goen-aven

< 20| A5 sl em 1AL 51l an I As 5 ®1 Arsll o2y

+2n — D Ag 515 1Ans 1 en Z A5 ®; Aysll goen-2i
j=2

from which inequality (23) is obtained by using assumption (G1). Now, inequality (23)
yields, together with (19), the estimate
!

(k) : Lt cat 1
lds Il pov-20 < PN — 20! 2k)!(2n)2K §%[F (8, 8)]2.
Hence,
- ’
E(/,—EY/)? =E | Wy
k=0
51 72
= Y E Wy
k=0
51 .
< YN = 201d5 1 o0
k=0
i k) (N
20 2l N
< 2nk XS NI (8, 8) Z W<2k>
k=0
< 202882 (en)\ F (8, 8)2°" (25)
since
(2k)! | @6
Sup ——>—5 = 1.
tah 22 (k1)2
Now, if g € (2, 00), then we have
ElYf s —EYi 7 <Ni@g -1 [E(YH EY{ 5t 27
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by the equivalence of moments on a finite Wiener chaos [18, Corollary 2.8.14]. Thus the
estimate

Y, ~EYfl < (tmiq — 1T @metisaien 2 (F s, )
is obtained from (25). Let us define §; = 27/ in the range{j: j > jo} ={j: 6; < T}and

1
00 ¢ ¢ 974
C= Z Z |YZ,5j EY@,éj'

Sl \ @otq — 13 820/20 (En) ()

1
Then [E C?]e <, [Zj‘; W F 6,6 j)]% where the sum on the right-hand side is finite by
(G3). Consequently, the constant C is almost surely finite and the inequality

Vs, —EY, | < €088 (g — 1)F V20 En)(en)! (28)

holds for every j > jo and every even ¢ > 2 almost surely. Moreover, there is the almost
sure convergence

. —al |yl ¢
jlinoloéj“ |Y“j —]EYM],| =0 29)
for every even £ > 2. Now
N n)!
EYl, =d? < #Tﬂ@‘ﬂ < Tk's%4/(tn)!
(e J 27([7;1)‘ J J

by (22) and (26) which, together with (28), yields that
Yes; Snw (C+T+1)8%g —17e2 (30)
holds for every j > jo, every even £ > 2, and every ¢ > 2 almost surely. By interpolation,
IGC+87) = GOlLr.r-5) Snw (C+T +1)8%(g — D2p2 31)
is obtained for every j > jo, every p > 1, and every g > 2 almost surely and, consequently,
(Glrg, 07 Sne (C+T+1D(g—DE

holds for every ¢ > 2 almost surely and

1

q n
E[G]%Dt 0,T) Sn,K,T,F (q - 1)7
[’1'52/71*DO ’

holds for every g > 2. The first assertion then follows from the above estimate by noticing
that G(0) € L% () holds by [18, Corollary 2.8.14] and by appealing to [25, Corollary
26] and Remark 2.1. In order to prove the second assertion of the theorem, assume that
process G additionally satisfies condition (G2). Note first that we have

4
2 £
E|G(s 4 8)) — G(s)[" = E|Wy(Ass)" = (IE |Wn(As,aj)|2)2 = ()2 [| A5, I jen
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for every even £ > 2 by Jensen’s inequality. By using this estimate, Fatou’s lemma, and
assumption (G2) successively, we obtain that

hmmfa—“fﬂzy > (n))? liminf Y 57 “t) A N nl)z
0.5; s6||H®n ds >T()"(mhH2 >0
0

]*)OO _]4)00

holds for every even £ > 2 from which it follows, by appealing to (29), that also

liminf 8, ‘“Yg(S > T ()% > 0

j—o0o

holds for every even £ > 2 almost surely and this yields that

liminf ;Y s; > Ti'nl >0 (32)

]—)OO

holds for every even £ > 2 almost surely. By interpolation, the inequality

12
Yos. SYP Y2
2,85 = T1,8;74,8;

holds almost surely and, by using estimates (30) and (32), we obtain that

11m1nf8 “Yy 5, >0
Jj—00

holds almost surely. As a consequence, we have for g > 1 that

(Glag, 0.y = | 228, °IGC+8) = GOIi07 )

J=Jo

diverges almost surely so that the paths of G do not belong to the space BY I (0, T). The sec-
ond assertion of the theorem follows by the embedding of Besov spaces from [26, Theorem
3.3.1].

6.2 Proof of Theorem 3.3 with condition (G3’)

The proof follows the same strategy as the proof in Section 6.1. The difference comes in the
estimate of ||a'§k) |l yov—2x) for k < N /2. In particular, let Js € N be such that A5 = TJ—;B >

8. Then we have
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k
||d§ )||H®(N 2%)

< H/ RY(Ags, ..., Ass)ds
Ve gk ..... , H®WN-2k)
|
= > MZ_/ R7(AG=Drs+srs.85 - - > A(j=Dhs+shs,8)ds
VeE}"l ..... I 170 HOW—20)
< Z )na/ ZR (AG=Drs+525,85 - - s A(G=Das+s25.8) ds
VeSk ..... I HO(N-26)
Js Js
< Z )»a/ <Z Z HRY (An—1)rstsh.5 - -+ » Aan—Tyastsis.8)s
Vegk ..... I m=1m'=1
1
RY (A~ 1)astsis.85 -+ s Aln/—D)agtshs.5)) HEN-20 |> ds
Js Js %
< )»5/ (Z > nllR (AGn—1)astsrs.8: Aim'=D)rs+srs,8) | goen- 2V>> ds

VEE" I m=1m'=1i=1

by using Lemma 5.6. Now, we have in fact that k < N — 2 as N is even which means that
the set Vi defined by (12) contains at least two elements. It follows that either there are
i,i’ €e{l,...,€},i #i',suchthat V; # @ and V;; # @ or thereisi € {1,..., £} such that
V; contains at least two elements. Consequently, the estimate

¢

Vi 20 Q2al
[ TURY (Awm-1ys 52550 Aaw—1yagtsng. )| goca—avin S k28K (S, lm — m/|rs)
i=1

form,m’ € {1, ..., Js},m # m’, is obtained from assumption (G1) and the assumption that
Cs,s(x7 y) < K(s,|x =y

holds forx, y > 0Oands > Osuchthatx+s < T,y+s < T,and (x,x+s)N(y, y+s) =
by Lemma 5.4. This, together with (19), yields

d al
||d ||H®(N w S 72]%'(1\, 2k)'6 [F(S)]z
where
Js
F@) =25 | nc*Js+ Y K@, |m—m'|rs)
m,m’'=1
m#m’
and hence

E(Yy s —EY{ )* S k282 (tn) 2 F (5).
as in (25). It now follows for g > 2 by (27) that

q
2

E|Y)s —EYL519 < (em)% (g — 1) kasapem) 525 [F (912,
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and if we define §; = T2/, J,sj =2/ — 1 (so that As; = ), and

Q=

Y ¢ g
|Yz,5, _EYz,ﬁj|

C =
,szm @) (g — 1)'F 84 /20 (En) (En)!

1 ~
then [ECZF N jeN F(@ j)]% where the finiteness of the sum follows from the
assumption

00 Is;
D87 Y KBy lm—m'|s)) < oo
j=1  mm'=1
m#m’
The rest of the proof follows as in Section 6.1 (with jo = 1). O

6.3 Proof of Theorem 3.9

We shall use the same notation as in the proof of Theorem 3.3 in Section 6.1. In there, the
upper bounds are already obtained under assumption (G3). (Indeed, the map § — [|G(- +
8) — G()llLr,7—s5) 1s sub-additive and lower semi-continuous so that it follows from (31)
that |G(- + 8) — G()llLr,7-5) Swa"‘p% holds for every § € (0,T) and p > 1 almost
surely.) To obtain the lower bounds, it suffices to consider the case p = 1. The lower bound
for this case follows from (32) by interpolation once it is shown that the process

1%y =y, —EBYLL rel0T),

where £ is a positive even integer, has a continuous version. To this end, let £ be a positive
N

even integer, define N = ¢n, and let k be an integer such that 0 < k < > - Let also
0 < s <t < T. Proceeding similarly as in the proof of Theorem 3.3, we obtain
¥-1
—at 5k _
ELfG (1) — fg°@P = > (V=201 d® — s~ a0 |2 0. (33)
k=0

The norm of the difference can be estimated as
A e

= X

T—t T—s
/ f“RV(Ax,[,...,Ax,[)dx—/ sTURY (Ayy, ..., Ay g)dx

VeEr ., ° 0 e
and, upon denoting
Az,r = (Az,rv cees Az.r)
[ ——
£x
forr € (0, T) and z € (0, T — r) for simplicity, the chain continues as
T—t
< > { / [17* RV (Ac) — s * RV (A; 5)ldx
k 0 HON-2k)
Vegll,....q
T—s
+ ’ f sTYRY (A )dx } (34)
T—t HON-2k)
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Denote the first and the second term in the sum by /; and I», respectively. We have

—at —at ¢ ¢
L<s™(t—s) sup [Acslgow-—an <57 —s5)  sup  |Axsllyen <Kk (=)

xe(T—1,T—s) xe(T—1,T—s) -

by using Lemma 5.4 and assumption (G1) successively. The focus is on term /; now. Write
T—t T—t
1} = f / (RY(Ax1), RV (Ay.1)) yov—ndxdy
0 0
T—t T—t
—2(st)”** f / (RY(Ax.0), RY (Ay5)) oy dxdy
0 0

T—t T—t
+S—2ae/ / (RV(Ay.5), RV(Ay ) gorv-20dxdy (35)
0 0

Denote A = % for simplicity and assume for now that % < s < t. From (35), we also have

T—t T—t
1= 21— f / (RY(Ay.0), RY (A1) gav-20dxdy
0 0
T—t T—t
A VR f f (RV(Axys), RV (Ay ) yowv-w dxdy
0 0

T—t T—t
g2y et / / (RV(Ax1) — RV (Ars), RV (Ay) — RV (A 5)) yov-andxdy.
0 0

Now, denote

Alz,rl,rz = (Az,r1 ER) Az,r1 ’ Az,r1 - Az,rp Az,rp cees Az,rz)
— —
it position
forry,r € (0, T), z € (0, T —max{ri, r2}),i € {1, ..., £}; and denote also its m™ element,

me{l,..., ¢}, by [A;,rl,rz]m' Then for x, y € (0, T —¢t), we have

(R () = RY (40,00, RY (Ay,0) = RY (Ay,)) e |
t

<3[RV AL, . RV (A e

i=1 j=1
¢ ¢ A ‘
=D AL @Al il [T (AL dn| o 104D dnlen
i=1 j=1 m#m
by Lemmas 5.4 and 5.6 since V; # @ for at least one index m € {1,...,¢},1ie. [ €
{1, ..., £}. Now, denote the product in the brackets above by J ;f 7 (x, ¥) and define

n
Crin(@1,22) =Y Az r ®f Azy sl gaca-2
j=1
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for z1,z2 > 0 and rq, r» > O that §atisfy 21+r <T,z0+r < T.If mis, for example,

such that [A! 1 = Ax,s and [A;.,M],h = Ay, we have the estimate

X,t1,8

”m(x M < Corl, DAl Av s ligan 1 Ay — Ax sl gen

WAyl Ay sl Ay — Ay sl on
< (A =02 Cry(x, y)

by realizing that Ay ; — Ay s = Axs.—s holds and using (G1). By similar arguments, the
estimates

(1—1)%C(x, y)

(1= 2)%Cp5(x, y)

(1 —1)2Cy i (x, y)

(1= 2)2072C o (x, y)
I y) = W (1= )R G (x + 5. )
(1= )%Cross(x +5,y)
(1= )% Cp s (x, y +5)
(1= )%y s (x, y +5)
C‘,,S,,,s x+s,y+s9)

depending on the precise value of 712 can be obtained but in any case, we have the estimate

T—t T—t
/(; /(; l ) m(x y)dxdy < t2(¥l+£(1 )\.)20[

because assumption (G4) implies

T—rp T—r; £ 3
~ ats ot+s5
/ / Crirn(z1,22)dz1dza Sy 2y 7, ri,r2 € (0, 7).
0

Thus, the inequality

dxdy S [2(¥Z+8(1 _ }“)20(

T—t pT—t
/0 /0 (Y (40) = RY (A, RY (Ay,0) = RY (Ay.0) goov-20

is shown. Similarly, the estimates

/T—t /T—t

0 0
/Tt /Tt
0 0

are shown to hold by appealing to Lemma 5.4, Lemma 5.6, and assumptions (G1) and (G4).
Consequently,

(RY(Ays), RV(Ay. ) pev—a | dxdy < s2¢¢+e

(R(Ax.), RY (Ay 1) pav-a | dxdy < r2t+e

I ST =29 71— 0> S rf (1 — pymintha)
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as % < s < t.Now, if 0 < 5 < %, proceeding as above via Lemmas 5.4 and 5.6,

equality (35) yields
T—t pT—t
112 < tizaZ(Kztza)Fl [ / Cy .t (x, y)dxdy
0 0
T—t pT—t
+2t‘“£s_°‘z(i<2t°‘sa)e_1/ / Ci s(x, y)dxdy
0 0

T—t pT—t
g0l (26200~ f / Cs,s(x, y)dxdy
0 0

so that
12<f <t =2
holds by (G1) and (G4). Thus we obtain

e=ta® — <41 — pymintie)

~

s~ d® || yorv-an

from (34). Consequently, it follows from (33) by Kolmogorov’s continuity theorem that
process fG’O‘ has a continuous version. O
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