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Abstract
In the article, Besov-Orlicz regularity of sample paths of stochastic processes that are rep-
resented by multiple integrals of order is treated. We assume that the considered
processes belong to the Hölder space

0 2 with 0 1

and we give sufficient conditions for them to have paths in the exponential Besov-Orlicz
space

2
0 with 2 e

2
1.

These results provide an extension of what is known for scalar Gaussian stochastic processes
to stochastic processes in an arbitrary finite Wiener chaos. As an application, the Besov-
Orlicz path regularity of fractionally filtered Hermite processes is studied. But while the
main focus is on the non-Gaussian case, some new path properties are obtained even for
fractional Brownian motions.

Keywords Besov-Orlicz space Hermite process multiple Wiener-Itô integral
path regularity
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1 Introduction
It is well-known that the paths of the Wiener process belong to the Besov-Orlicz space

1 2
2

0 where 2 e
2

1. The original proof of this result in [7] relies on intricate
equivalences for Besov norms but a different proof is also available in [11]. From this result,
one immediately obtains, for example, that Brownian paths belong to both the Besov space
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1 2 0 for all 1 and the modulus Hölder space log 1 2
0 although

historically, these two results came first; see [6] and [15].
There is a number of generalizations of this result in various directions. In [22], it is

shown that any continuous local martingale with Lipschitz continuous quadratic variation
as well as solutions to stochastic differential equations with locally bounded non-linearities
have paths in the space 1 2

2
0 . In [21], it is shown that such regularity is also retained

by stochastic convolutions (with values in 2-smooth Banach spaces) and the result is also
shown for strong solutions to stochastic -Laplace systems in [30]. In [27], it is shown
that the fractional Brownian motion of Hurst parameter 0 1 has paths in the Besov-
Orlicz space

2
0 . There are also other Besov regularity results, e.g., for bifractional

Brownian motions [5] or Lévy processes [2, 8, 9].
The purpose of this article is to extend the results of [27] to non-Gaussian stochastic pro-

cesses. In particular, we consider stochastic processes that fit the following scheme: Let
be a real separable Hilbert space and an -isonormal Gaussian process.
For 0, denote the multiple divergence operator of order by and the completion
of the th tensor power of by . Let 0 , 0, be the process rep-
resented by , 0 , with 0 for some 0 1 .
For example, one can consider the family of fractional Brownian motions, Hermite (and, in
particular, Rosenblatt) processes, or the so-called fractionally filtered generalized Hermite
processes; see [3].

1.1 Main results

A main result of the present article is Theorem 3.3 which provides sufficient conditions
under which process has paths in the Besov-Orlicz space

2
0 where 2 e

2
1.

These conditions are formulated in terms of the kernel . In the scalar case, Theorem 3.3
extends [27, Theorem 5.1], where Gaussian processes are considered, to a non-Gaussian
setting. We thus make precise how the order of the Wiener chaos in which process lives
influences the regularity of its paths. In particular, it is clear that the higher the order of the
Wiener chaos, the worse regularity of paths we get. Moreover, in Theorem 3.9, the result
is refined and the precise pathwise behavior of the integral of the increments is obtained.
Our results cover Gaussian processes (e.g. standard and fractional Brownian motions) but
also non-Gaussian processes (e.g. higher-order Hermite processes). For example, we show
that the Rosenblatt process with Hurst parameter 1 2 1 has paths in the space

1
0 .

1.2 Proof Method and Invalidity of the Strong Gebelein’s Inequality
in Higher-Order Wiener Chaoses

In order to establish such Besov-Orlicz regularity results, one would hope to proceed as in
[27] (or [5]). The proofs there rely on Gebelein’s inequality [10] (see also [4]):

Theorem 1.1 (Gebelein’s inequality) Let be a centered Gaussian vector in 2 with
2 2 1. Then the inequality

2 2 (1)
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Besov-Orlicz Path Regularity of Non-Gaussian Processes

where is the correlation coefficient between and , holds for all functions
such that 2 , 2 , and 0.

However, while the original Gebelein’s inequality can be used in a Gaussian setting, in
our case, the process , 0 , is not Gaussian for 2. It is there-
fore natural to ask whether some analogue of Gebelein’s inequality, that could be used for
investigating Besov-Orlicz regularity of the paths of , holds even in higher-order Wiener
chaoses. In that respect, there is the following generalization of Gebelein’s inequality (see
[19, Theorem 2.3] and [17, Lemma 2.6]).

Theorem 1.2 (Generalized Gebelein’s inequality) Let K be an isonor-
mal Gaussian process over some real separable Hilbert space K, and let K1, K2 be
two Hilbert subspaces of K. Define 1 and 2 as the restrictions of to K1 and K2,
respectively. Then the inequality

1 2 1 2

holds with

sup 1 2 K 1 K1 2 K2 1 K 2 K 1

for every centered random variables 1 and 2 that are measurable with respect to the -
algebra generated by 1 and 2, respectively, and for every Hölder conjugate exponents

. Moreover,

1 2 1 2 2 2

holds for such that the projections of 1 to the first 1 chaoses are equal to zero
and the projection to the th chaos is non-trivial.

On the other hand, there is also the following negative result.

Counterexample 1.3 Let be an 2-isonormal Gaussian process defined on
where the -algebra is generated by . Let 1 2 be an orthonormal basis of 2 and
set , 1 2. Then both 1 and 2 are standard Gaussian random variables.
Define 1

2
2
1 1 and 1 2. Then both and belong to the second Wiener

chaos of (write

1

2
2
1 1

1

2
2
2 1 1 2

2

2

1 1 2

for ), 0, and 2 2 1. Then we have that
2 2 2 2 4

but 0, hence 0, and an inequality of the type (1) does not hold.

Altogether, despite that Gebelein’s inequality holds even in higher-order Wiener chaoses,
it turns out that it loses the necessary power already in the second Wiener chaos and
therefore, in order to prove Theorem 3.3, we need to proceed differently. Instead, we use
orthogonality of Wiener chaoses and tensor calculus. In particular, we work directly with the
Besov-Orlicz norm; we initially use the generalized product formula for multiple integrals
(given in Theorem 5.9) to obtain the Wiener chaos expansion of

0
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for an even integer in terms of tensor cancellations of the kernel , i.e.

H0

2

H2

4

H4 H

where H denotes the th Wiener chaos of the isonormal process . Subsequently, by using
several results regarding the cancellation operator (and, in particular, the key Lemma 5.6
that is used instead of Gebelein’s inequality), we show1 that

2 4 as 0

so that
as 0 .

From this, we obtain that
2

and the result follows.

1.3 Organisation of the Article

In Section 2, the definitions of Besov, Orlicz, and Besov-Orlicz spaces are recalled. In
Section 3, the main results of the article are collected. In particular, we state the main
Theorem 3.3 where, along some moment estimates, we give sufficient conditions for the
considered process to have paths in the Besov-Orlicz space

2
0 and sufficient

conditions for the process not to have paths in any of the Besov spaces 0 for
1 and 1 . In addition, we also assess modular Hölder continuity of the

process in Remark 3.4. Subsequently, we discuss the assumptions of Theorem 3.3 in Remark
3.5 and Remark 3.6 and compare the theorem to the known results in Remark 3.7. In there,
we also note that some alternative assumptions, that correspond to those in [27, Theorem
5.1], can be considered. The section is concluded by Theorem 3.9 which refines Theorem
3.3 and in which pathwise asymptotics of the integral increments of the considered process
is treated. In Section 4, the conditions are verified for fractionally filtered Hermite pro-
cesses with a product kernel. In Section 5, we review elements of tensor calculus, provide
several motivating examples and the necessary technical tools for the proofs of Theorem
3.3 and Theorem 3.9 (Lemma 5.3, Lemma 5.4, and Lemma 5.6 regarding the properties of
the cancellation operator and Theorem 5.9 that contains the generalized product formula for
multiple integrals). The proofs of Theorem 3.3, Theorem 3.3 with alternative assumptions,
and Theorem 3.9 are given at the end of the article in Sections 6.1, 6.2, and 6.3, respectively.

2 Preliminaries: Besov, Orlicz, and Besov-Orlicz Spaces

We begin by recalling some facts about Besov, Orlicz, and Besov-Orlicz spaces. For a
thorough exposition on Besov spaces, we refer the reader to, e.g., [26]. Orlicz spaces are
covered in, e.g., [24, 31] and Besov-Orlitz spaces in, e.g., [21, 23]. Let 0 be a
bounded interval and for , we denote . For 0 1

1More precisely, we show that the variances 2, 2 4 , are negligible so that the mean-
square distance 2 is small by orthogonality of Wiener chaoses.
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Besov-Orlicz Path Regularity of Non-Gaussian Processes

and 1 (with the usual modifications for or ), the Besov space
is defined as the linear space

where

0
sup

d
1

and the space is a Banach space when endowed with the norm

.

Besov spaces can be generalized as follows. A function 0 is called a Young
function if it is non-negative, non-decreasing, continuous, convex, and satisfies 0 0
and . For a Young function and a measure space , where is
a -finite measure, the Orlicz space (with the Young function ) is defined as the
linear space

0

where

inf 0 d 1

is the so-called Luxemburg norm. Endowed with this norm, is a Banach space.
(Note that with this notation, , 1 , is the usual Lebesgue space .)
Finally, for 0 1 , a Young function , and 1 (with the usual modification
for ), the Besov-Orlicz space is defined as the linear space

where

0
sup

d
1

.

The space is a Banach space when endowed with the norm

.

(Note also, that with this notation, , 1 , is the usual Besov space .)

Remark 2.1 There are equivalent (semi)norms that may be more convenient in certain prob-
lems. In particular, for 0 1 and 1 (with the usual modifications for

or ), the seminorm is equivalent to

0

2 2
2

1

by dyadic approximation; see, e.g., [14, Corollary 3.b.9]. Moreover, in the present article,
particular attention will be given to the exponential Orlicz and Besov-Orlicz spaces
and for 0 1 where , 0, is a Young function that satisfies
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e 1 for with some 0. In this case, the (semi)norms and
are equivalent to

sup
1

1

and

sup
1

2 2
2

respectively, by, e.g., [21, Proposition 2.3]. It follows that the norm is

equivalent to

.

Remark 2.2 There are, of course, some relations between Besov and Besov-Orlicz spaces.
Let us briefly comment on the particular case of exponential Besov-Orlicz spaces as they
are central to the present article. If 0 1 , 0 , and 1 , then it is
immediate from the definitions of these spaces that there is the embedding

1

and, in particular,

.

On the other hand, it follows from [27, Corollary 5.3] or Corollary 4.2 below that if
0 1 , 0 2 , and 1 , then

1 .

3 Main Results: Path Regularity

The main results of the article are collected in this section. Let be a real separable Hilbert
space, be an -isonormal Gaussian process, i.e. a centered Gaussian
process with the covariance

1 2 1 2 1 2

defined on a complete probability space , and assume that the -algebra is
generated by process . For 0, we denote by

2

the multiple divergence operator of order defined via the duality

for all 2 where denotes the th Malliavin derivative and 2 its domain and
where denotes the completion of the algebraic tensor power of the Hilbert space . (If

is another real separable Hilbert space, the tensor product is defined, throughout
this paper, as the completion of the algebraic tensor product of and with respect to the
inner product 1 1 2 2 1 2 1 2 , 1 2 , 1 2 .) We
refer to, e.g., [18] or [20] for details on Malliavin calculus and to [29] for details on tensor
products of Hilbert spaces.
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Let us fix 0, , and 0 1 for the rest of this section. Let 0
be a jointly measurable process in the th Wiener chaos of represented by

0 (2)

where is (the unique) symmetric tensor and is a Bochner measurable
function from 0 to . We define

for 0, , and

2 2
1

2
2 2

2

2 2 (3)

for 0, 0 that satisfy , . Here, , 0 , is the
cancellation operator defined by

1 0 1 1 1

1 1 1 1 1 1

1 1 1 1

for , 1 . We also define

0 0
d d

for 0 .
In the rest of the article, various combinations of assumptions (G1)–(G4) below are

considered and these assumptions are formulated now.

Assumption 3.1 There exist 1 , 0 , 1 , and 0 1 such
that

(G1) for every 0, 0, ,
(G2) lim inf 0 inf 0 ,
(G3)

0
2 2 where 0 min 2 ,

(G4) for every 0 .

Remark 3.2 Note that if process satisfies condition (G1), then it has paths in the Besov
space

0

for every 1 and 0 . Indeed, by [18, Theorem 2.7.2] and Kolmogorov’s
continuity criterion, has paths in the Hölder space 0 for every 0 and
this is equivalent to the claim by the embedding of Besov spaces from [26, Theorem 3.3.1
and Proposition 3.2.4].

Consider now Young functions for 0 that satisfy 1 for
with some 0. The main result of the paper follows. Its proof is postponed to

Section 6.1.
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Theorem 3.3 If process satisfies (G1) and (G3), then

2
0

2

and, in particular, it has paths in the Besov-Orlicz space
2

0 almost surely. If,
additionally, process satisfies (G2), then its paths do not belong to the Besov space

0 for any 1 and 1 almost surely.

Remark 3.4 By the results contained in [21, Section 2.4.1], exponential Besov-Orlicz spaces
can be embedded into certain modular Hölder spaces. In particular, there is the embedding

2
0 log 2 0

where log 2 0 denotes the space of functions 0 such that

log 2 0 0 1 2

holds with some 0 . Therefore, the paths of the process from Theorem 3.3

lie in the space log 2 0 almost surely. This can be also inferred directly from
[28, Corollary 5.5].

Remark 3.5 Note that every -self-similar process of the form (2) that has stationary
increments satisfies conditions (G1) and (G2). Indeed, in this case, we have

2 1 2 1
0 2 1

1 2 2

for every 0, 0, where stationarity of increments of , the fact that
0 0 holds almost surely, and self-similarity of were used successively.

Remark 3.6 Note also that it follows from the proof of Theorem 3.3 that we are permitted
to take a square of the first term in the definition of function in formula (3). This
allows to obtain better results for Gaussian processes. Of course, as there is the estimate

2 2
1

2
2 2

2
1 2 2

for 0 and 0 such that , by (G1) and Lemma 5.4 below,
we have

0 0
d d 2

0 0
d d

for 0 where

1

2 2

so that it is sufficient that condition (G3) is verified with in place of .

Remark 3.7 Note moreover that there is a discrete version of condition (G3) in Theorem
3.3. In particular, Theorem 3.3 remains valid if condition (G3) is replaced by

(G3 ) There exists a function 0 2 0 such that
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holds for 0, 0 that satisfy , , ,
and

1

2

1

holds with

2 and 2 1.

The modified proof can be found in Section 6.2. In the Gaussian case, the above condition
(G3 ) is implied by the conditions in [27, Theorem 5.1] and, consequently, Theorem 3.3
provides an extension of that result in the scalar case to the general setting.

Clearly, to verify condition (G3) it suffices to find 0 1 and 0 such that
2 holds for every 0 . If this condition is slightly strengthened,

we obtain the exact pathwise asymptotics of the integral increments of . The proof is
postponed to Section 6.3.

Notation 3.8 We write

as if 0 lim inf lim sup .

Theorem 3.9 If process satisfies (G1), (G2), and (G4), then, in addition to the assertions
of Theorem 3.3 being true, we have that

0 as 0 a.s.

holds for every 1 and

2 0 as 0 a.s.

Remark 3.10 Although condition (G4) is by no means sharp, it suffices for the demon-
stration of the method in Theorem 3.9 and it covers all our examples. Therefore, only this
criterion is given here for simplicity of the exposition.

Notation 3.11 Throughout the article, we write (and ) whenever there exists
a finite positive constant such that (and ) whose precise value is not
important. This constant can change from line to line. We also write (and )
to indicate the dependence of constant on a different quantity . If both relations
and hold, then we simply write .

4 Example: Fractionally Filtered Generalized Hermite Processes

In this section, the results are applied to a specific class of stochastic processes that con-
tains some well-studied examples such as fractional Brownian motions, Rosenblatt, or, more
generally, Hermite processes. Let and let 1 and 2 be real numbers such that

0 1
2

2 1 1 1 and 1
1

2 1. (4)
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Let us set 2 ,

1
2

2 1 1

and

1
1

1

2 d 1 0 (5)

for the function 1 defined by

1 1 0 1 0
1
1

1 1
1 0

(6)

where 1 1 if 0 and 1 0 otherwise, and for some measurable function
2 that satisfies the estimate

2 2 d 2 1 0. (7)

In this situation, the following result is obtained.

Corollary 4.1 Process defined by (2) with kernel defined by (5) for which assump-
tions (4), (6), and (7) hold satisfies conditions (G1) and (G4), and, consequently, it holds
that

2
0

2 .

Proof We only treat the case of 1 0; the case 1 0 follows by similar arguments.
Denote

2 2 d .

Then is a symmetric locally bounded function on 0 and with the notation introduced
in Section 3, we have that

2
2

2

1 1 d d

holds for every 0 and 0 such that . As there is the inequality

2

1 1 d d 2 (8)

by assumptions (4), (6), and (7), it follows that process is well-defined and satisfies
condition (G1). In order to verify condition (G4) notice first that

1

1 0
1 1 0
1 1 0

0

1 1

where the approximation constants do not depend on either or . Now, denote

1 2 1 1
1 1 1

2 0

for 1 2 . It follows from the above approximation that

1 0 2 1 d 1 min 1 0 0 2 1 max 1 0
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for 0 , from which we obtain the estimate

2

1 1 0 2 1 d d 1 min 1 0 1 min 1 0 . (9)

for 0 . We are in position to verify condition (G4) now. By Remark 3.6, it suffices
to find 0 1 such that

0 0 1

2 2 d d

for 0 . We have that

2
2 2 2

4

1
1

1
2

1
3

1
4

1 3 2 4 1 2 3 4 d

and, consequently, that

2
2 2 2

4

1
1

1
2

1
3

1
4 1 3 2 4

1

1
1

1
2

1
3

1
4 1 2 3 4 d

4

1
1

1
2

1
3

1
4 1 3 2 4 d

1

4

1
1

1
2

1
3

1
4 1 2 3 4 d

2

1 1 d d
1

2

1 1 d d
1

2

1 1 d d

2

hold for every 0 and 0 such that , , and 1
by using Hölder’s inequality to obtain the second estimate. Hence, the successive use of the
above estimate, inequality (8), Jensen’s inequality, assumption (7), and estimate (9) yields

0 0
2 2 2 d d

1 1

0 0 2

1 1 d d d d

1 1

1 min 1 0 1 min 1 0

for 0 and 1 . As 1 min 1 0 0 by (4), condition (G4) is
verified and the claim of the corollary is obtained by appealing to Theorem 3.3.
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The following family of stochastic processes, called the fractionally filtered Hermite
process, provides prototypical examples to which our results apply. In particular, let 1 2

1 2
0 1 be the stochastic process defined by

1 2
1 2

1

1

2
2 1

d d 0 1

where d is the multiple Wiener-Itô integral with respect to the Wiener process
and 1 2 is a suitable normalizing constant. We remark that

1 2
1 is a fractional Brownian motion with Hurst parameter 1

2
2

1
2 0 1 ,

0 2
2 is a Rosenblatt process with Hurst parameter 2

1
2 1 ,

and 0 2 is a Hermite process of order and Hurst parameter 2 2 1 1 1
2 1

upon suitable choices of the constant 1 2 ; see, e.g., [3] or [16].

Corollary 4.2 The fractionally filtered Hermite process 1 2 satisfies

1 2

2
0 1

2

so that it has sample paths in the Besov-Orlicz space
2

0 1 almost surely, but it
does not have sample paths in the Besov space 0 1 with 1 and 1
almost surely. Moreover, we have that

1 2 1 2
0 1 as 0

holds for every 1 almost surely and

1 2 1 2
2 0 1 as 0

holds almost surely.

Proof It follows from [3, Theorem 3.27] that 1 2 is a well-defined -self-similar process
with stationary increments. Thus, conditions (G1) and (G2) are verified by appealing to
Remark 3.5. Condition (G4) holds by Corollary 4.1 upon verifying (7) with

2
1

1 2

2
2 1

.

Subsequently, the claim follows by Theorem 3.9.

Remark 4.3 The fact that sample paths of the fractional Brownian motion 1 2
1 belong

to the Besov-Orlicz space 1 2 2 1 2
2

0 1 and do not belong to the Besov space
1 2 2 1 2 0 1 for any 1 and 1 almost surely has already been

established in [27, Corollary 5.3]. Moreover, it is shown in [27, Corollary 5.8] that

1 2
1 1 2 2 1 2

2
0 1

1 2
1 1 .

The above Corollary 4.2 complements these results by providing an upper bound on the
asymptotic behavior of the moments of the Besov-Orlicz norm and the almost sure asymp-
totic behavior of the integral modulus of continuity of the fractional Brownian motion.
As far as Rosenblatt processes, other higher-order Hermite processes, and, more generally,
sub- th-Gaussian chaos processes are concerned, there also exist results on their finer path
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properties. In particular, an almost sure estimate of the supremal modulus of continuity of
the sample paths of sub- th-Gaussian chaos fields is established in [28, Corollary 5.5] and
almost sure upper and lower bounds on the asymptotic behavior of local oscillations of Her-
mite processes are provided in [1, formulae (1.7) and (1.8)]. The lower bounds then allow to
obtain almost sure non-differentiability of the paths of Hermite processes; see [1, Theorem
1.1] and [13, Corollary 1.7]. In contrast, it is shown in Corollary 4.2 that the sample paths of
the Hermite process 0 2 belong to the exponential Besov-Orlicz space 2 1 2 1

2
0 1

almost surely. The supremal modulus of continuity of these processes, known already from
[28, Corollary 5.5], can be recovered as a consequence of this fact - we obtain that 0 2 has
paths in the modular Hölder space 2 1 2 1 log 2

0 1 almost surely by Remark 3.4
- but additionally, the result is improved in the sense that Corollary 4.2 provides a smaller
space to which Hermite paths belong. Moreover, we obtain an upper bound on the asymp-
totic behavior of the moments of the Besov-Orlicz norm and the asymptotic behavior of the
integral modulus of continuity of the Hermite process.

Remark 4.4 In [3], the following family of processes is considered. Define the kernel by

1
1

1 2
1 d 1 0

(10)

where 1 is the function defined by formula (6) and where 2 is a non-zero
function for which there exists 2

1
2 2 such that

2 2 2

holds for every and every 0 and such that

2 2 1 d .

The corresponding process is a well-defined -self-similar process with stationary incre-
ments (here 1 2 2 1) provided that 1 2 2 1 1 2 2

1
2 ; see

[3, Theorem 3.27]. This family of stochastic processes generalizes the one treated above;
however, without assuming the product structure in (10) as in (5), it remains unclear whether
our results can be applied in this case.

5 Tensor Calculus: Cancellations of Tensors and Expansion Formula

In this section, we review elements of tensor calculus and an explicit formula for Wiener
chaos expansion of products of random variables. We adopt the following

Convention 5.1 When working in the field of integers, shall denote the set
and . When working in the field of reals, shall denote the set

and .
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5.1 Cancellation of Tensors

5.1.1 Motivating Example

Consider a product of Hilbert spaces
5 5 3 1 4

define sets of indices corresponding to the coordinates of this space

1 1 2 3 4 5 2 6 7 8 9 10 3 11 12 13 4 14 5 15 16 17 18

and consider a set of unordered pairs of indices that obey the following rules:

(1) Every index is in one pair at most.
(2) No index is paired with an index from the same set nor with itself.

For example, one can consider

3 6 5 10 9 11 13 14 .

The example can be graphically visualized as in Fig. 1.
For the element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

the ( -)cancellation is done as follows: The vectors with indices form-
ing a pair in are multiplied and the remaining vectors are shrunken, i.e.

1 2 3 4 5

1

6 7 8 9 10

2

11 12 13

3

14

4

15 16 17 18

5

which results in

3 6 5 10 9 11 13 14 1 2 4 7 8 12 15 16 17 18.

Fig. 1 Example of tensor cancellation

320



Besov-Orlicz Path Regularity of Non-Gaussian Processes

The cancellation extends to a 5-linear operator from 5 5 3 1 4

to 10; see also Corollary 5.5 below.

5.1.2 General Case

Consider an integer 2, positive integers 1 and decompose 1 to
subsequent intervals 1 of lengths 1 , respectively, where 1 .

Definition 5.2 A set of unordered pairs of numbers in 1 is said to be a set of
admissible pairs for intervals 1 if it is either empty, or if it can be enumerated as

1 1 (11)

for some integer 1 where

(F1) 1 1 are all distinct, i.e. 1 1 2 , and
(F2) and do not belong to the same interval 1 for every 1 .

For a set of admissible pairs for intervals 1 with , we define
1 if or, if ,

1 1 1 . (12)

If 2 , we enumerate in an increasing order as

1 2 . (13)

The cancellation operator is then defined for 1 as follows: If , then

1 1 1 1 1

if 0 2 , then

1 1 1

1
1 2

and if 2 , then

1 1 1

1

.

Due to symmetry, the definition of is independent of the enumeration of the set and
extends to a unique -linear operator

1 2

see also Corollary 5.5 below.

5.2 Permutations

It is often convenient to use a relation between cancellations and permutations. Under the
assumptions made in Section 5.1.2, let us assume additionally that is a permutation on
1 for every 1 and define

1
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where 1 for 1 . Then is a permutation on 1 such
that is a permutation on for every 1 . We define if and

1 1

otherwise, with the notation from (11). It is clear that is admissible for the intervals
1 . If 2 , let be the permutation on 1 2 such that is

increasing. Then

1 1 1 1
1

(14)
where the permutation operator is defined in a standard manner by

1 1 if

and by

if 0.

If 2 , then (14) still holds with and 1.

5.3 Composition of Cancellations

5.3.1 Motivating Example - Continued

Let us start again by a sequel of the previous example in Section 5.1.1 after cancellation.
We renumerate the remaining indices in the ascending order and we add a new interval

6 11 12 13 with two more pairs 2 11 9 13 obeying rules (F1) and (F2).
This situation is now depicted in Fig. 2.

In the original picture (with the original enumeration), the new indices are enumerated
as 6 19 20 21 and the new pairs correspond to the set 2 19 17 21 as
shown in Fig. 3.

Fig. 2 Example of tensor cancellation with composition - new enumeration
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Fig. 3 Example of tensor cancellation with composition - original enumeration

The extended cancellation 5 5 3 1 4 3 9

then satisfies

1 2 3 4 5 6 1 2 3 4 5 6

as

1 2 3 4 5

1

6 7 8 9 10

2

11 12 13

3

14

4

15 16 17 18

5

19 20 21

6

results in

3 6 5 10 9 11 13 14 2 19 17 21

1 4 7 8 12 15 16 18 20.

5.3.2 General Case

Under the assumptions in Section 5.1.2, assume additionally that 2 , consider two
intervals

1 1 2 2 2 1 2 1

and consider the interval 1 1 1 which completes 1 to
a subsequent decomposition of 1 where 1 1 1.
Consider a set of admissible pairs for intervals 1 and 2. If , we set . If

is non-empty, we enumerate it

1 1

in such a way that 1 1 and 1 2, and we define

1
1

1 1 2 2

and

1 1 .
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Lemma 5.3 The set of pairs is admissible for the intervals 1 1 and

1 1 1 1

holds for every 1 1 1 1 .

Proof If , then the assertion is trivial. If but , then 1 1 ,

2 1, so the assertion is obvious. Now assume that and . The
admissibility of the pairs is rather straightforward since it is a mere renumeration
and, as for the identity, it suffices to show that it holds for elementary tensors, i.e. that

1 2 1 1

1 1 1 2 2
(15)

where is the increasing enumeration of 1 1 1 . If
we define

1 1 2 2 2 1 1 2 1 1

then the left-hand-side of (15) is equal to

1 1 1 2 2
(16)

where is the increasing enumeration of 1 2 1 1 .
Since 2 , we have and 2 . Let

us also define

1 2 1 1 .

Then

1 2 1 1 1

is an increasing bijection and it can be checked that

1 1 Rng .

Thus it is seen that

1 2 2 1 1 1

is an increasing bijection. But such bijection is exactly one, hence . Now,
for 1 2 so for every 1 2 2

which proves that (16) coincides with the right-hand side of (15).

We will prove the following two results using the composition Lemma 5.3.

Lemma 5.4 If 1 1 , then

1 2 1 1 .

Proof Let us proceed by induction on 2. Let be an admissible set of pairs for intervals
1 1 and define

1 and 1
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with cardinalities and , respectively. We distinguish two cases. First, if
, then define . If , then necessarily 2 where 1

and 1, so we can enumerate

1 1

such that for every 1 . Since is admissible, 1
belong to , hence we can define 1 1 2 1 and 2

2 1 2 1 2 for 1 , and 1 . After
this construction, Lemma 5.3 is applicable. If , then and

1 1 1 1

holds if 2 or

1 1 1 1

holds if 2 . If , then

1 1 1 1

so the claim follows by the induction step. Let therefore 2. Since 1 2 1
2, it suffices to assume that . Express

1

1 1

1
1 1 1 1 2

1 1 1 2

2
1 1 1 2 1 1 1 2

for some orthonormal system in and let 1 1 for
some positive integer min 1 2 . Then, if min 1 2 , we have that

1 2
1 2

1 1 1 2

so the estimate

1 2
2

1 2 2
1 2

2

1
2

1 2
2

2
(17)

follows by the Cauchy-Schwarz inequality. If min 1 2 , the same estimation is
obtained analogously. In the general case, the result is obtaind from (14) and (17) by
reordering the set via a suitable permutation.

Corollary 5.5 The operator extends to a continuous -linear operator

1 2 .

Now we are going to study the behaviour of the operator further. Recall the numbers
1 from Section 5.2 that were defined in such a way that

1 1 1 1 1

holds, consider the set from (12), and define
1

1 1 .

In this way, 1 for every 1 and these sets are actually the
traces of on , but renumbered such that each interval begins with 1. Finally, define

1 .
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Lemma 5.6 If 1 1 1 , then

1 1 2

1
1 1 2 1 2 .

Proof If , then

1 1 2 1 1 2

1 1 1

1
1 1 .

Assume therefore that . First assume additionally that, for every 1 ,
the sets are either empty or 1 for some . We can cover both
cases simultaneously by admitting that 0 . Now, consider an expansion

1

1 1

1

1 1

for some orthonormal system in . Then

1

1
1

1 1
1

1

1
1

1 1
1 .

Define, for 1 ,

1 1

1

1 1 1 1

if 1 1 (and if 1) and with obvious modifications if 0 . Then,
with the convention that a product over the empty set equals 1, we have

1 1 2

1
1 1

1 1

1 1 1 1

1

1 1 1 1

1

1
1 1

1

1 1

1 1

1
1 1

1

since
1 1 1 1 .
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Let 1
1 , 2

2 be the assignment. Then 1 2 by (F2) and each of the
4 variables 1 1 1 1 appears only once in the formula
above, so we can apply the Cauchy-Schwarz inequality in the form

2 2 (18)

successively on the variables 1 1 1 1 . Eventually,
after the last application of (18), we obtain

1 1 2
1

2 2

1
1 1 1 .

If but is general, we reorganize by a permutation to have the form from the
above step and use (14) to get

1 1 2

1
1

1 1 1
1

1 1 2

1 1
1

1 1
1

1 2 1
1 1 2

1 1
1

1
1 1

1
1

2 1 1
1 1

2

1
1 1 2 1 2 .

since and where

1 1

for every 1 .

5.4 Expansion Formula

Let be an -isonormal Gaussian process and 2 , 0, be the
divergence operators as in Section 3. We adopt the following

Notation 5.7 Let 2 be an integer, let 1 be positive integers, let 1
, and decompose 1 to subsequent intervals 1 of lengths 1 ,

respectively. We denote by 1 the system of all admissible sets of pairs for the the
intervals 1 (Definition 5.2) and by

1
its subsystem consisting of such that

.

Remark 5.8 We have the following estimate of the cardinality

1 2 2
(19)

see, e.g., [12, Chapter 1.5, page 16].
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Theorem 5.9 Let 2 be an integer, let 1 be positive integers, let 1
, and decompose 1 to subsequent intervals 1 of lengths 1

respectively. Then

1 1

1

2 1

holds for every 1 1 .

Remark 5.10 In [12, Theorem 7.33], the theorem is proved in a different language. Below,
we provide a proof based on the tensor calculus.

Proof of Theorem 5.9 We have that

1 1 1

1

2 1 1 1 2

2

1 2

0

1 2
1 2 2 1 1 1 1 1 2

1 2

1 2

0 1 2

1 2
1 2 2 1 1 1 2

1 2

1 2

0 1 2

1 2
1 2 2

1 1
1 2

1 2

0
1 2

1 2 2 1 2

1 2

1 2 2 1 2

holds almost surely where 1 1 1 1 , denotes the set of permu-
tations on a set , and denotes the symmetric tensor product. The first equality follows by,
e.g., [20, Proposition 1.1.3], the third equality follows from the fact that
for every such that is a permutation of , and the fourth equality follows
from the fact that

1 2 1 1 1 2

holds for every
1 2

. We finish the proof by induction on for

1 1 1 2 1 1 1 2 3 1 2 1 1 2 3

By induction hypothesis, it holds, almost surely, that

1 1

1 1

2 1 1

and we must distinguish two cases. If 2 , then, by Lemma 5.3,

2 1 1

1

2 1 (20)
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almost surely where 1 contains all those elements of 1 that complete
by pairs for which or belongs to . More rigorously, must satisfy

1 and 1 1 .

If 2 , then (20) holds as well but Lemma 5.3 is not needed here as

1 . And indeed,

2 1 1 1 1

2 1

1

2 1

almost surely. Thus,

1 1

1 1 1

2 1

1

2 1

holds almost surely since 1 1 1 is a partition of 1 .

6 Proofs

6.1 Proof of Theorem 3.3

Let 2 be an even integer and define . Then, according to Theorem 5.9,

2

0

2 0

holds almost surely where

1

0

for 1 1 , 1 . By Lemma 5.4, assumption (G1), and
inequality (19), there is the estimate

2
2 2

(21)

from which it follows that the function is integrable and if we define

0 0

then
2

0

2 0
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holds almost surely where

0
d

1

0
d 0 .

Now, for 2 , we have

2

2 2
2

(22)

by estimate (21), and for 2 , we have

2

1

0 2

1

0 0
2 d d

1
2

1

0 0

1 2 2 1 2 2 d d

1
2

by using Lemma 5.6. Now, we have in fact that 2 as is even which means that
the set defined by (12) contains at least two elements. It follows that either there are

1 , , such that and or there is 1 such that
contains at least two elements. Consequently, the estimate

1 2 2 1 2 2 2 2 2 (23)

is obtained from (G1) by Lemma 5.4. Indeed, if there are 1 , , such that
and , then we can estimate

1 2 2 1 2 2

1 2 2

2 2

1 2 2

2 2

and if there is 1 such that 2, we can estimate

1 2 2 1 2 2

2 2 2

2 2
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by using Lemma 5.4 in both cases. Taking both these possibilities into account, the estimate
1 2 2 1 2 2

2 2

1

2 2

2

1 1

2

2 2 (24)

is obtained. Now, it follows by a second use of Lemma 5.4 that the square of the sum on the
right-hand side of the above inequality can be estimated by

2 1
2

2 2 2 1
2

2 2 .

Inserting this estimate into inequality (24) yields
1 2 2 1 2 2

2 2 2
1

2
2 2

2 1 1 1

2

2 2

from which inequality (23) is obtained by using assumption (G1). Now, inequality (23)
yields, together with (19), the estimate

2
2 2

2
1
2

1
2 .

Hence,

2
2 1

0

2

2

2 1

0

2
2

2 1

0

2 2
2

2 2 2
2 1

0

2

22 2 2

2 2 2 2 (25)
since

sup
0

2

22 2
1. (26)

Now, if 2 , then we have

2 1 2 2 2 (27)
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by the equivalence of moments on a finite Wiener chaos [18, Corollary 2.8.14]. Thus the
estimate

2 1 2 2 2 2 2 2 2

is obtained from (25). Let us define 2 in the range 0 and

0 2 2 1 2 2

1

.

Then
1

0

1
2 where the sum on the right-hand side is finite by

(G3). Consequently, the constant is almost surely finite and the inequality

2 1 2 2 (28)

holds for every 0 and every even 2 almost surely. Moreover, there is the almost
sure convergence

lim 0 (29)

for every even 2. Now

2

2 2
2

by (22) and (26) which, together with (28), yields that

1 1 2 2 (30)

holds for every 0, every even 2, and every 2 almost surely. By interpolation,

0 1 1 2 2 (31)

is obtained for every 0, every 1, and every 2 almost surely and, consequently,

2
0 1 1 2

holds for every 2 almost surely and

2
0

1

1 2

holds for every 2. The first assertion then follows from the above estimate by noticing
that 0 2 holds by [18, Corollary 2.8.14] and by appealing to [25, Corollary
26] and Remark 2.1. In order to prove the second assertion of the theorem, assume that
process additionally satisfies condition (G2). Note first that we have

2 2
2
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for every even 2 by Jensen’s inequality. By using this estimate, Fatou’s lemma, and
assumption (G2) successively, we obtain that

lim inf 2 lim inf
0

d 2 0

holds for every even 2 from which it follows, by appealing to (29), that also

lim inf 2 0

holds for every even 2 almost surely and this yields that

lim inf
1

0 (32)

holds for every even 2 almost surely. By interpolation, the inequality

2

1
3

1

2
3

4

holds almost surely and, by using estimates (30) and (32), we obtain that

lim inf 1 0

holds almost surely. As a consequence, we have for 1 that

1 0

0

1 0

1

diverges almost surely so that the paths of do not belong to the space 1 0 . The sec-
ond assertion of the theorem follows by the embedding of Besov spaces from [26, Theorem
3.3.1].

6.2 Proof of Theorem 3.3 with condition (G3’)

The proof follows the same strategy as the proof in Section 6.1. The difference comes in the
estimate of 2 for 2. In particular, let be such that
. Then we have
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2

1

0
d

2

1
1

1

0
1 1 d

2

1

1

0 1

1 1

2

d

1

1

0 1 1

1 1

1 1 2

1
2

d

1

1

0 1 1 1

1 1 2 2

1
2

d

by using Lemma 5.6. Now, we have in fact that 2 as is even which means that
the set defined by (12) contains at least two elements. It follows that either there are

1 , , such that and or there is 1 such that
contains at least two elements. Consequently, the estimate

1

1 1 2 2
2 2

for 1 , , is obtained from assumption (G1) and the assumption that

holds for 0 and 0 such that , , and
by Lemma 5.4. This, together with (19), yields

2
2 2

1
2

where

2 4

1

and hence
2 2 2 2 .

as in (25). It now follows for 2 by (27) that

2 1 2 2 2 2 2
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and if we define 2 , 2 1 (so that ), and

2 2 1 2 2

1

then
1 1

2 where the finiteness of the sum follows from the
assumption

1

2

1

.

The rest of the proof follows as in Section 6.1 (with 0 1).

6.3 Proof of Theorem 3.9

We shall use the same notation as in the proof of Theorem 3.3 in Section 6.1. In there, the
upper bounds are already obtained under assumption (G3). (Indeed, the map

0 is sub-additive and lower semi-continuous so that it follows from (31)
that 0 2 holds for every 0 and 1 almost
surely.) To obtain the lower bounds, it suffices to consider the case 1. The lower bound
for this case follows from (32) by interpolation once it is shown that the process

0

where is a positive even integer, has a continuous version. To this end, let be a positive
even integer, define , and let be an integer such that 0 2 . Let also
0 . Proceeding similarly as in the proof of Theorem 3.3, we obtain

2
2 1

0

2 2
2 . (33)

The norm of the difference can be estimated as

2

1

0
d

0
d

2

and, upon denoting

for 0 and 0 for simplicity, the chain continues as

1

0
d

2

d
2

. (34)
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Denote the first and the second term in the sum by 1 and 2, respectively. We have

2 sup 2 sup

by using Lemma 5.4 and assumption (G1) successively. The focus is on term 1 now. Write

2
1

0 0
2 d d

2
0 0

2 d d

2

0 0
2 d d (35)

Denote for simplicity and assume for now that 2 . From (35), we also have

2
1

2 1
0 0

2 d d

2 2

0 0
2 d d

2

0 0
2 d d .

Now, denote

1 2 1 1 1 2

th position

2 2

for 1 2 0 0 max 1 2 , 1 ; and denote also its th element,
1 , by

1 2
. Then for 0 , we have

2

1 1

2

1 1

2 2

by Lemmas 5.4 and 5.6 since for at least one index 1 , i.e.
1 . Now, denote the product in the brackets above by and define

1 2 1 2

1
1 1 2 2 2 2
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for 1 2 0 and 1 2 0 that satisfy 1 1 , 2 2 . If is, for example,
such that and , we have the estimate

2

2

2 2 1 1 2

by realizing that holds and using (G1). By similar arguments, the
estimates

2 2 1

1 2

1 2

1 2

1 2 2

1

1

1

1

depending on the precise value of can be obtained but in any case, we have the estimate

0 0
d d 2 1 2

because assumption (G4) implies

2

0

1

0
1 2 1 2 d 1d 2

2
1

2
2 1 2 0 .

Thus, the inequality

0 0
2 d d 2 1 2

is shown. Similarly, the estimates

0 0
2 d d 2

0 0
2 d d 2

are shown to hold by appealing to Lemma 5.4, Lemma 5.6, and assumptions (G1) and (G4).
Consequently,

2
1 1 2 1 min 1 2
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as 2 . Now, if 0 2 , proceeding as above via Lemmas 5.4 and 5.6,
equality (35) yields

2
1

2 2 2 1

0 0
d d

2 2 1

0 0
d d

2 2 2 1

0 0
d d

so that
2
1 1

holds by (G1) and (G4). Thus we obtain

2 2 1 min 1
2

from (34). Consequently, it follows from (33) by Kolmogorov’s continuity theorem that
process has a continuous version.
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