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A B S T R A C T

The article proposes and justifies an optimal rank-based portmanteau test of multivariate
elliptical strict white noise against multivariate serial dependence. It is based on new stochastic
hyperplane-based ranks that are simpler and easier to compute than other usable hyperplane-
based competitors and still share with them many good properties such as their distribution-free
nature, affine invariance, efficiency, robustness and weak moment assumptions. The finite-
sample performance of the portmanteau test is illustrated empirically in a small Monte Carlo
simulation study.

. Introduction

Tests based on signs and ranks are popular in statistics, including multivariate statistics, because they do not require restrictive
istributional assumptions. As there exists no natural ordering of points in multivariate spaces, there have been many proposals of
ultivariate ranks and signs including component-wise ranks and signs [1], spatial ranks and signs [2,3], Oja ranks and signs [4], the

anks of pseudo-Mahalanobis distances [5], the recently proposed signs and ranks based on measure transportation [6,7], numerous
ariants of data depth [8] and other interesting concepts including [9].

Rank-based procedures already play an important role in testing randomness against serial dependence in univariate settings; see,
.g., [10–13]. Multivariate generalizations of rank tests of randomness have also been considered in [14–16], for example. Genest
nd Rémillard [17] derived nonparametric tests of independence and randomness by means of the empirical copula process. Hallin
nd Liu [18] proposed a portmanteau test based on the promising measure-transportation ranks that is suitable for general but
ow-dimensional time series due to the curse of dimensionality. Oja and Paindaveine [19], inspired by Hallin and Paindaveine
20], proposed a portmanteau test statistic for elliptical strict white noise that uses hyperplane-based ranks and signs, introduced
n [19,21,22]. They appear useful for elliptical distributions thanks to their simplicity, clear geometric interpretation, natural
nvariance, weak moment assumptions, complete avoidance of any shape matrix estimators and robustness to both radial and angular
utliers [19]. Unfortunately, the original concepts from [19] are too computationally demanding to be applicable beyond dimension
wo or three because their calculation is based on combinatorial counts, namely on ordinary/complete interdirections (leading to
igns) and ordinary/complete symmetrized lift-interdirections (leading to ranks).

∗ Corresponding author.
E-mail address: hudecova@karlin.mff.cuni.cz (Š. Hudecová).
vailable online 28 June 2024
047-259X/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ttps://doi.org/10.1016/j.jmva.2024.105344
eceived 19 March 2024; Received in revised form 25 June 2024; Accepted 26 June 2024

https://www.elsevier.com/locate/jmva
https://www.elsevier.com/locate/jmva
mailto:hudecova@karlin.mff.cuni.cz
https://doi.org/10.1016/j.jmva.2024.105344
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2024.105344&domain=pdf
https://doi.org/10.1016/j.jmva.2024.105344


Journal of Multivariate Analysis 204 (2024) 105344Š. Hudecová and M. Šiman

i
c

h
s

c
i
p
l

(
i

e
o
s
c

2

e

c

o
a
c
n

a
t
R
b

b
t
v

s
t
t

h

d

Recently, a couple of remedies to this problem have been proposed. First, Hudecová et al. [23] suggested to use incomplete
nterdirections and incomplete symmetrized lift-interdirections in the definitions of ranks and signs and thus to reduce the
omputational workload by means of incomplete 𝑈 -statistics. The resulting signs are then reasonably quick to compute but the

resulting ranks still suffer from the curse of dimensionality and become computationally intractable in R𝑝 for large 𝑝 due to the
symmetrization involved. Therefore, Hudecová and Šiman [24] proposed to use randomized lift-interdirections, i.e., to replace 2𝑝

yperplanes with a single one, which made the computation of ranks feasible in any dimension but still required as many random
ign vectors as hyperplanes.

This article goes a few steps further in the simplification process and introduces two new and simpler hyperplane-based rank
oncepts, each of them requiring only a single uniformly distributed sign vector. It is also proved that the use of the new ranks and
ncomplete interdirections in the portmanteau test of [20] or [19] does not asymptotically change its distribution and optimal
roperties. Therefore, the portmanteau test with the new ranks and incomplete interdirections can be applied easily even to
arge-dimensional time series.

The main contribution of this article is thus twofold: (a) defining two new simplified concepts of hyperplane-based ranks and
b) proving that these new ranks (or their predecessors) are usable for testing serial independence of multi-dimensional time series
n a rank-based portmanteau test.

Section 2 introduces necessary notation, terminology and definitions. Section 3 then investigates the new ranks, and Section 4
xplores their use with complete and incomplete interdirections in the canonical portmanteau test of [20]. The computational side
f the new ranks is illustrated in Section 5. The theoretical results are confirmed empirically in Section 6, which contains a small
imulation study. A real-data example is also included in Section 7. Finally, Section 8 comments on the achievements and collects
oncluding remarks. The proofs of all assertions are relegated to the technical appendix.

. Interdirections and lift-interdirections

The Euclidean norm of a vector 𝒙 will be denoted as ‖𝒙‖ =
√

𝒙⊤𝒙. Let 𝑿 be a 𝑝-dimensional random vector with continuous
lliptical distribution 𝜽,Σ,𝑓 with median vector 𝜽 ∈ R𝑝 and positive definite scatter matrix Σ ∈ R𝑝×𝑝; see [25, Chapter 2]. Then the

density of 𝑿 is proportional to (denoted ∝)

𝑓
(

√

(𝒙 − 𝜽)⊤Σ−1(𝒙 − 𝜽)
)

, 𝒙 ∈ R𝑝, (1)

where 𝑓 ∶ [0,∞) → [0,∞) is a function such that ∫ ∞
0 𝑧𝑝−1𝑓 (𝑧)𝑑𝑧 < ∞, and the random variable ‖Σ−1∕2(𝑿 − 𝜽)‖ has cumulative

distribution function 𝐹𝑟 with corresponding density 𝑓𝑟(𝑧) ∝ 𝑧𝑝−1𝑓 (𝑧)𝐼[𝑧 > 0]. An elliptical distribution with 𝜽 = 𝟎 and Σ = 𝐈𝑝
(identity matrix) is called spherical.

Let 𝑛 = {𝑿𝑡}𝑛𝑡=1, 𝑛 > 𝑝, be a sequence of random vectors such that each 𝑿𝑡 has the same elliptical distribution as 𝑿. Then 𝑛 is
alled a strict white noise if its elements of {𝑿𝑡}𝑛𝑡=1 are mutually independent and 𝜽 = 𝟎.

The class of elliptical distributions naturally induces the (oracle) Mahalanobis ranks and signs. The Mahalanobis rank 𝑅𝑀
𝑡 of the

bservation 𝑿𝑡 is defined as the rank of the squared distance 𝑑2𝑡 = (𝑿𝑡 − 𝜽)⊤Σ−1(𝑿𝑡 − 𝜽), while the spatial sign of 𝑿𝑡 is defined
s the unit vector 𝑼 𝑡 = Σ−1∕2(𝑿𝑡 − 𝜽)∕‖Σ−1∕2(𝑿𝑡 − 𝜽)‖. If the parameters 𝜽 and Σ are unknown, they have to be replaced with
onsistent estimates, which leads to the so-called pseudo-Mahalanobis ranks and signs that have been used in various multivariate
onparametric problems; see [16] for a discussion and further references.

It is well known that the estimator of the shape matrix Σ influences the properties of the pseudo-Mahalanobis ranks and signs
nd that its optimal choice and implementation may be a tricky question. If the test statistic depends only on the scalar products of
he signs, as in Section 4, then it is sufficient to estimate consistently only the angles between 𝑼 𝑡 and 𝑼 𝑠 for 𝑡 ≠ 𝑠 or their cosines.
andles [22] and Oja and Paindaveine [19] introduced hyperplane-based ranks and signs that avoid the estimation of Σ. They are
ased on certain counts of data-based hyperplanes.

If 𝑛 is a spherically distributed strict white noise, then the angle

𝛼(𝒚1, 𝒚2) = arccos

(

𝒚⊤1 𝒚2
‖𝒚1‖‖𝒚2‖

)

etween any two 𝒚1, 𝒚2 ∈ R𝑝 can be consistently estimated by the 𝜋-multiple of the relative frequency of hyperplanes going through
he origin and 𝑝 − 1 random vectors from 𝑛 that separate 𝒚1 and 𝒚2. The situation is clear for 𝑝 = 2, see Fig. 1(a), but the claim is
alid also for any 𝑝 > 2; see [5,22].

Similarly, it can be shown that the number of hyperplanes going through 𝑝 observations from spherically distributed 𝑛 and
eparating 𝒚 and −𝒚 tends to a monotonically increasing function of the norm of 𝒚 ∈ R𝑝, which is indicated in Fig. 1(b). Consequently,
he ranks of such numbers are tied to the Mahalanobis ranks of the corresponding points induced by the spherical distribution, i.e., to
he ranks of the norms of those points in this case.

Both the hyperplane-based notions can even be extended to the elliptical white noise thanks to the affine equivariance of the
yperplanes. The concepts and statements are formalized in the following paragraphs.

Any ordered 𝑘-tuple 𝒒(𝑛, 𝑘) = (𝑞1,… , 𝑞𝑘) of distinct integer indices 1 ≤ 𝑞1 < ⋯ < 𝑞𝑘 ≤ 𝑛 can be associated with the subsample
𝒒(𝑛,𝑘) = {𝑿𝑞1 ,… ,𝑿𝑞𝑘}. The set of all

(𝑛
𝑘

)

possible 𝑘-tuples 𝒒(𝑛, 𝑘) will be denoted by (𝑛, 𝑘). Any subsample 𝒒(𝑛,𝑝−1) almost surely
efines the hyperplane 𝐻𝒒(𝑛,𝑝−1) ⊂ R𝑝 containing all of its observations and the origin, namely:

𝐻𝒒(𝑛,𝑝−1) = {𝒙 ∶ det
(

M𝒒(𝑛,𝑝−1)(𝒙)
)

= 𝒅𝒒(𝑛,𝑝−1)⊤𝒙 = 0},
2
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Fig. 1. Panel (a) shows that the angle between 𝒚1 and 𝒚2 is equal to the 𝜋-multiple of the probability that a spherically-distributed random observation lies
n the highlighted area, which is the probability that a hyperplane going through the origin and the random point separates the two points 𝒚1 and 𝒚2. This

idea extends to dimension 𝑝 > 2. Panel (b) illustrates the idea of lift-interdirections for a simulated random sample with 𝜽 = 𝟎 and 𝑛 = 20, which leads to 190
data-generated hyperplanes in total. The point 𝒚 is close to the center and, therefore, there are only 51 hyperplanes passing through 𝑝 = 2 observations that
separate 𝒚 and −𝒚. The number of such hyperplanes increases with the distance of the point from the center. For instance, 𝒚̃ and −𝒚̃ are already separated by
61 of the hyperplanes.

here 𝒅𝒒(𝑛,𝑝−1) = (𝑑𝒒(𝑛,𝑝−1)1 ,… , 𝑑𝒒(𝑛,𝑝−1)𝑝 )⊤ and 𝑑𝒒(𝑛,𝑝−1)𝑗 , 𝑗 ∈ {1,… , 𝑝}, is the cofactor of the 𝑗th element in the last column of the
atrix

M𝒒(𝑛,𝑝−1)(𝒙) = (𝑿𝑞1 ,𝑿𝑞2 ,… ,𝑿𝑞𝑝−1 ,𝒙).

Similarly, any subsample 𝒒(𝑛,𝑝) almost surely defines the hyperplane 𝐻𝒒(𝑛,𝑝) ⊂ R𝑝 containing its observations, namely:

𝐻𝒒(𝑛,𝑝) = {𝒙 ∶ det
(

M𝒒(𝑛,𝑝)(𝒙)
)

= 𝑑𝒒(𝑛,𝑝)0 + 𝒅𝒒(𝑛,𝑝)⊤𝒙 = 0},

here 𝒅𝒒(𝑛,𝑝) = (𝑑𝒒(𝑛,𝑝)1 ,… , 𝑑𝒒(𝑛,𝑝)𝑝 )⊤ and 𝑑𝒒(𝑛,𝑝)𝑗 , 𝑗 ∈ {0,… , 𝑝}, is the cofactor of the (𝑗 + 1)th element in the last column of the matrix

M𝒒(𝑛,𝑝)(𝒙) =
(

(1,𝑿⊤
𝑞1
)⊤, (1,𝑿⊤

𝑞2
)⊤,… , (1,𝑿⊤

𝑞𝑝
)⊤, (1,𝒙⊤)⊤

)

.

The signs

𝑆𝒒(𝑛,𝑝−1)(𝒙) = sign(𝒅𝒒(𝑛,𝑝−1)⊤𝒙), 𝑆𝒒(𝑛,𝑝)(𝒙) = sign(𝑑𝒒(𝑛,𝑝)0 + 𝒅𝒒(𝑛,𝑝)⊤𝒙)

then indicate the position of 𝒙 ∈ R𝑝 with respect to 𝐻𝒒(𝑛,𝑝−1) and 𝐻𝒒(𝑛,𝑝), respectively.
Any couple of points 𝒚1, 𝒚2 ∈ R𝑝 may be associated with two fundamental affine-invariant hyperplane-based counts, namely

interdirection

𝐶𝒚1 ,𝒚2 = 𝐶𝒚1 ,𝒚2 (𝑛) =
∑

𝒒∈𝐶

(

1 − 𝑆𝒒(𝒚1)𝑆𝒒(𝒚2)
)

∕2, 𝐶 ⊂ (𝑛, 𝑝 − 1),

which is the number of hyperplanes in R𝑝 passing through the origin and 𝑝 − 1 observations and separating 𝒚1 and 𝒚2, and
lift-interdirection

𝐿𝒚1 ,𝒚2 = 𝐿𝒚1 ,𝒚2 (𝑛) =
∑

𝒒∈𝐿

(

1 − 𝑆𝒒(𝒚1)𝑆𝒒(𝒚2)
)

∕2, 𝐿 ⊂ (𝑛, 𝑝),

which is the number of hyperplanes in R𝑝 passing through 𝑝 observations and separating 𝒚1 and 𝒚2. Any point 𝒚 ∈ R𝑝 (with its
reflection −𝒚) also gives rise to a symmetrized lift-interdirection

𝐿𝒚 = 𝐿𝒚(𝑛) =
1
2
∑

𝒒∈𝐿

∑

𝒔∈(𝒒)

(

1 − sign(𝑑𝒒(𝑛,𝑝)0𝒔 + 𝒅𝒒(𝑛,𝑝)
𝒔

⊤
𝒚) sign(𝑑𝒒(𝑛,𝑝)0𝒔 − 𝒅𝒒(𝑛,𝑝)

𝒔
⊤
𝒚)
)

(2)

where (𝑑𝒒(𝑛,𝑝)0𝒔 ,𝒅𝒒(𝑛,𝑝)
𝒔

⊤
)⊤ is the vector of cofactors of the last column of matrix

M𝒒(𝑛,𝑝)
𝒔 (𝒙) = ((1, 𝑠1𝑿⊤

𝑞1
)⊤, (1, 𝑠2𝑿⊤

𝑞2
)⊤,… , (1, 𝑠𝑝𝑿⊤

𝑞𝑝
)⊤, (1,𝒙⊤)⊤),

(𝒒) ⊂ {−1, 1}𝑝 for any 𝒒 ∈ 𝐿, and {−1, 1}𝑝 is the set of size 2𝑝 consisting of all 𝑝-dimensional vectors 𝒔 = (𝑠1,… , 𝑠𝑝)⊤ with
individual coordinates equal to either 1 or −1. Roughly speaking, the symmetrized lift-interdirection counts all the hyperplanes in
3
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R𝑝 that separate 𝒚 and −𝒚 and pass through 𝑝 distinct random points where each of the points is either an original observation or
ts reflection. The sets 𝐶 and 𝐿 are called design sets.

These hyperplane-based characteristics proved useful for statistical inference regarding elliptical distributions with 𝜽 = 𝟎 when

𝜋𝐶𝑿𝑡 ,𝑿𝑠
(𝑛)∕|𝐶 |

is a consistent estimator of the angle 𝛼(𝑼 𝑡,𝑼 𝑠) between 𝑼 𝑡 and 𝑼 𝑠, and when the normalized ranks 𝑅𝑡∕(𝑛 + 1) of 𝐿𝑿𝑡 ,−𝑿𝑡
(𝑛) or

𝐿𝑿𝒕
(𝑛) in corresponding samples of the particular quantities are asymptotically equivalent to the normalized (oracle) Mahalanobis

anks 𝑅𝑀
𝑡 ∕(𝑛 + 1).

The ordinary/complete concepts of [19,22] correspond to 𝐶 = (𝑛, 𝑝 − 1), 𝐿 = (𝑛, 𝑝), and (𝒒) = {−1, 1}𝑝, 𝒒 ∈ 𝐿. Then
𝒚1 ,𝒚2 (𝑛) (resp. 𝐿𝒚1 ,𝒚2 (𝑛)) counts all the hyperplanes separating 𝒚1 from 𝒚2 that pass through the origin and 𝑝−1 observations (resp.

hrough 𝑝 observations). Furthermore, 𝐿𝒚(𝑛) is then a symmetrized version of 𝐿𝒚,−𝒚(𝑛) that is desirably invariant with respect to
the reflections of the observations around the origin.

The sets (𝑛, 𝑝−1) and (𝑛, 𝑝) generate too many hyperplanes and effectively prohibit the computation of original characteristics
in multidimensional spaces. Nevertheless, one can consider only some hyperplanes and still obtain meaningful results. This option
leads to incomplete modifications with possibly random 𝐶 ⊂ (𝑛, 𝑝−1), 𝐿 ⊂ (𝑛, 𝑝), and (𝒒) = {−1, 1}𝑝, 𝒒 ∈ 𝐿. They have been
nalyzed by means of the theory of incomplete U-statistics in [23]. Unfortunately, the use of all sign vectors in the symmetrization
till makes the computation of incomplete 𝐿𝒚(𝑛) too demanding for large 𝑝 because the number of all sign vectors grows with 𝑝

exponentially. As a possible remedy, Hudecová and Šiman [24] proposed to consider randomized lift-interdirections, corresponding
to 𝐿 ⊂ (𝑛, 𝑝) and (𝒒) = {𝑺𝒒},𝑺𝒒 ∈ {−1, 1}𝑝, where 𝑺𝒒 is chosen for each 𝒒 independently of 𝒒, 𝑛, 𝐶 and 𝐿 at random from
he uniform distribution on {−1, 1}𝑝. They are not U-statistics any more and use only one random hyperplane instead of 2𝑝 ones,
hich speeds their computation.

Proposition 1 summarizes some relevant and useful results established in [19,22–24]. It shows that the hyperplane-based ranks
nd signs have the desirable properties even if the design sets (𝑛, 𝑝 − 1) and (𝑛, 𝑝) are substantially reduced in size.

roposition 1. Let 𝑛 = {𝑿1,… ,𝑿𝑛} be a 𝑝-dimensional strict white noise from elliptical distribution 𝟎,Σ,𝑓 , and assume that the design
ets 𝐶 and 𝐿 are independent, and also independent of 𝑛. Let 𝑅1,… , 𝑅𝑛 be the ranks of 𝐿𝑿𝑡 ,−𝑿𝑡

(𝑛) or 𝐿𝑿𝒕
(𝑛), 𝑡 ∈ {1,… , 𝑛}.

(i) Let 𝐶 = (𝑛, 𝑝 − 1), 𝐿 = (𝑛, 𝑝), and (𝒒) = {−1, 1}𝑝. Then

𝜋
𝐶𝒚1 ,𝒚2 (𝑛)

|𝐶 |
= 𝛼(𝒚1, 𝒚2) + 𝑜𝑃 (1),

𝑅𝑡
𝑛 + 1

=
𝑅𝑀
𝑡

𝑛 + 1
+ 𝑜𝑃 (1) (3)

as 𝑛 → ∞.
(ii) Let 𝐶 be sampled from (𝑛, 𝑝 − 1) randomly with or without replacement such that |𝐶 |∕𝑛 → ∞, let 𝐿 be sampled from (𝑛, 𝑝)

randomly with or without replacement such that |𝐿|∕𝑛 → ∞, and let (𝒒) = {−1, 1}𝑝 or (𝒒) = {𝑺𝒒}, 𝒒 ∈ 𝐿, where 𝑺𝒒 is
randomly sampled from the uniform distribution on {−1, 1}𝑝 independently of 𝒒 and 𝑛. Then (3) holds for 𝑛 → ∞.

Unfortunately, even the randomized lift-interdirections need as many random sign vectors as hyperplanes, which can be
nconvenient in high dimensions.

. New stochastic lift-interdirections and ranks

This article proposes two conceptually and computationally simpler alternatives to incomplete and randomized lift-interdirections:
1. Semi-randomized lift-interdirections, defined as

𝐿̃𝒔
𝒚 = 1

2
∑

𝒒∈𝐿

(

1 − sign(𝑑𝒒(𝑛,𝑝)0𝒔 + 𝒅𝒒(𝑛,𝑝)
𝒔

⊤
𝒚) sign(𝑑𝒒(𝑛,𝑝)0𝒔 − 𝒅𝒒(𝑛,𝑝)

𝒔
⊤
𝒚)
)

,

where 𝐿 = (𝑛, 𝑝) or 𝐿 is sampled from (𝑛, 𝑝) randomly with or without replacement and 𝒔 is uniformly distributed on {−1, 1}𝑝.
In other words, 𝐿̃𝒔

𝒚 is defined as (2) but with (𝒒) = {𝒔}, where 𝒔 is uniformly distributed on {−1, 1}𝑝 and common to all 𝒒 ∈ 𝐿.
2. Reflective lift-interdirections 𝐿̄𝒔

𝒚 , defined as complete or incomplete lift-interdirections computed from sample 𝒔
𝑛 = {𝑠1𝑿1,… ,

𝑠𝑛𝑿𝑛}, where 𝒔 = (𝑠1,… , 𝑠𝑛)⊤ ∈ {−1, 1}𝑛 is a uniformly distributed random vector on {−1, 1}𝑛.
It is apparent that both the semi-randomized and reflective lift-interdirections further reduce the computational burden. For

example, the original ranks from [19], based on the symmetrized lift-interdirections, could be computed in a reasonable time only
for data dimension 𝑝 up to three or so, but the ranks based on these two new concepts of lift-interdirections may be computed
even for 𝑝 ∼ 1000 if 𝑛 is reasonably small. It turns out that even the normalized ranks of 𝐿̃𝒔

𝑿𝑡
as well as the normalized ranks of

𝐿̄𝒔
𝑿𝑡

are asymptotically equivalent to the normalized Mahalanobis ranks 𝑅𝑀
𝑡 ∕(𝑛+ 1) and that they can be used in the sign-and-rank

portmanteau test of [20] without changing its asymptotic behavior or optimal properties.

Proposition 2. Let 𝑛 = {𝑿1,… ,𝑿𝑛} be a 𝑝-dimensional strict white noise from elliptical distribution 𝟎,Σ,𝑓 that is independent both of
the random sign vector 𝒔 used in the definition of reflective or semi-randomized lift-interdirections and of the design set 𝑄𝐿 chosen equal
to (𝑛, 𝑝) or randomly with or without replacement, |𝐿|∕𝑛 → ∞. If 𝑅̂𝑡, 𝑡 ∈ {1,… , 𝑛}, are the ranks of reflective or semi-randomized
lift-interdirections, then, as 𝑛 → ∞,

𝑅̂𝑡
𝑛 + 1

=
𝑅𝑀
𝑡

𝑛 + 1
+ 𝑜𝑃 (1). (4)

The proof of Proposition 2 is relegated to Appendix.
4
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4. Portmanteau test

Testing for serial independence is one of the basic problems in time series analysis. The benchmark tool for that is the multivariate
jung–Box portmanteau test, proposed by Hosking [26], based on the test statistic

𝑆𝐿𝐵 = 𝑛(𝑛 + 2)
𝑚
∑

𝑗=1

1
𝑛 − 𝑗

Tr[Ĉ𝑗Ĉ−1
0 Ĉ⊤

𝑗 Ĉ
−1
0 ],

where

Ĉ𝑗 =
1
𝑛

𝑛
∑

𝑡=𝑗+1
(𝑿𝑡 − 𝑿̄)(𝑿𝑡−𝑗 − 𝑿̄)⊤, 𝑗 ∈ {0,… , 𝑚},

are the sample autocovariance matrices and 𝑚 ≥ 1 is a pre-specified integer, the so-called threshold parameter. The test statistic 𝑆𝐿𝐵
is asymptotically 𝜒2

𝑝2𝑚
distributed under the null hypothesis 0 ∶ {𝑿𝑡} is a strict white noise, if the required moments of the noise

re finite. The null hypothesis is rejected at significance level 𝛼 when 𝑆𝐿𝐵 exceeds the (1 − 𝛼)-quantile of the 𝜒2
𝑝2𝑚

distribution.
Hallin and Paindaveine [20] investigated the problem of testing 0, where 𝑿𝑡 follows an elliptical distribution 𝟎,Σ,𝑓 and 𝑓

atisfies the following assumption.

ssumption 1. The function 𝑓 from (1) satisfies ∫ ∞
0 𝑧𝑝+1𝑓 (𝑧)𝑑𝑧 < ∞, and

√

𝑓 admits a weak derivative (
√

𝑓 )′ such that
∞
0 [(

√

𝑓 )′(𝑧)]2𝑧𝑝−1𝑑𝑧 < ∞.

They showed that a test based on
𝑚
∑

𝑗=1

1
𝑛 − 𝑗

𝑛
∑

𝑡,𝑠=𝑗+1
𝜑𝑓 (𝑑𝑡)𝜑𝑓 (𝑑𝑠)𝑑𝑡−𝑗𝑑𝑠−𝑗𝑼⊤

𝑡 𝑼 𝑠𝑼⊤
𝑡−𝑗𝑼 𝑠−𝑗 ,

with 𝜑𝑓 = −2(
√

𝑓 )′∕
√

𝑓 , is optimal for testing the null hypothesis against a nontrivial VARMA(𝑞1, 𝑞2) model with max(𝑞1, 𝑞2) = 𝑚
and error distribution 𝟎,Σ,𝑓

This suggests that sign-and-rank variants of the test will have to use some score function(s) and replace 𝑑𝑡, 𝑑𝑠, 𝑑𝑡−𝑗 , 𝑑𝑠−𝑗 , 𝑼⊤
𝑡 𝑼 𝑠

nd 𝑼⊤
𝑡−𝑗𝑼 𝑠−𝑗 with some counterparts based on the signs and ranks.

Oja and Paindaveine [19] proposed such a portmanteau test for elliptical strict white noise based on ordinary/complete
nterdirections and ordinary/complete symmetrized lift-interdirections. However, the computational complexity makes the test
pplicable only to low-dimensional data. The following proposition generalizes the test to use other types of interdirections and
ift-interdirections, including those fast to compute in any dimension.

roposition 3. Let 𝑛 = {𝑿1,… ,𝑿𝑛} be a 𝑝-dimensional strict white noise from elliptical distribution 𝟎,Σ,𝑓 and consider its (possibly
ncomplete) interdirections 𝐶𝑿𝑡 ,𝑿𝑠

(𝑛) and one of the following types of incomplete lift-interdirections: symmetrized, randomized, semi-
andomized or reflective. Let the design sets 𝐿, 𝐶 and the sign vectors involved in the definition of lift-interdirections be mutually
ndependent, independent of 𝑛, and satisfying the conditions of Proposition 1 (ii) for 𝑄𝐶 and the conditions of Proposition 1 (ii) or
roposition 2 for the rest. Let R̂𝑡, 𝑡 ∈ {1,… , 𝑛}, be the ranks of lift-interdirections and let 𝑎𝑿𝑡 ,𝑿𝑠

= 𝜋𝐶𝑿𝑡 ,𝑿𝑠
(𝑛)∕|𝐶 |. Let 𝐾1 ∶ (0,∞) → R

nd 𝐾2 ∶ (0,∞) → R be two continuous score functions that satisfy

1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝐾𝑗

( 𝑖
𝑛 + 1

)

|

|

|

2+𝛿
→ ∫

1

0

|

|

|

𝐾𝑗 (𝑢)
|

|

|

2+𝛿
𝑑𝑢 < ∞, 𝑗 = 1, 2,

for some 𝛿 > 0. Then, for a fixed threshold 𝑚 ∈ N and for 𝑛 → ∞,

𝑆𝑃 =
𝑝2

E𝐾2
1 (𝑉 ) E𝐾2

2 (𝑉 )

𝑚
∑

𝑖=1

1
𝑛 − 𝑖

𝑛
∑

𝑠,𝑡=𝑖+1
𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾1

(

R̂𝑡
𝑛 + 1

)

× 𝐾2

(

R̂𝑠−𝑖
𝑛 + 1

)

𝐾2

(

R̂𝑡−𝑖
𝑛 + 1

)

cos(𝑎𝑿𝑠 ,𝑿𝑡
) cos(𝑎𝑿𝑠−𝑖 ,𝑿𝑡−𝑖

) ⇝ 𝜒2
𝑝2𝑚

(5)

where 𝑉 is uniformly distributed on [0, 1] and ⇝ stands for the convergence in distribution.

The proof of Proposition 3 can be found in Appendix.
According to Proposition 3, the stochastic sign-vector occurring in the definition of the (complete or incomplete) semi-randomized

or reflective lift-interdirections may be the same for all the lift-interdirections employed, as it is in all the empirical examples below.
The portmanteau test statistic of (5) from Proposition 3 is analogous to the statistics considered in [20] or [19]. The difference

is that this time the test allows for various versions of hyperplane-based ranks and interdirections, including the rank versions
presented in this article, which makes the test applicable even to data with fixed dimension 𝑝 ≫ 2.

It follows directly from [20] and the proof of Proposition 3, namely from the zero limit of (A.1) in probability, that the test
based on 𝑆 remains asymptotically optimal if the scores are tailored to the underlying elliptical density (1):
5

𝑃
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Table 1
The table lists average times (in seconds) needed for ranking 𝑛 observations (uniformly distributed in [0, 1]𝑝) by means of reflective, semi-
randomized and randomized incomplete lift-interdirections for various data dimensions 𝑝 and sample sizes 𝑛. The design size 𝑁𝐻 = |𝐿| was set
to 5𝑛.

Average times (in seconds) based on 10,000 replications and 𝑝 = 20

ILI /𝑛 𝑛 = 25 𝑛 = 50 𝑛 = 100 𝑛 = 200 𝑛 = 400 𝑛 = 800 𝑛 = 1600
reflective 0.010 0.020 0.045 0.120 0.272 0.749 2.407
semi-randomized 0.010 0.020 0.045 0.120 0.273 0.748 2.394
randomized 0.010 0.022 0.048 0.125 0.287 0.771 2.435

Average times (in seconds) based on 10,000 replications and 𝑛 = 1000

ILI/𝑝 𝑝 = 2 𝑝 = 4 𝑝 = 8 𝑝 = 16 𝑝 = 32 𝑝 = 64 𝑝 = 128
reflective 0.946 0.974 1.001 1.038 1.145 1.536 3.294
semi-randomized 0.945 0.973 1.000 1.038 1.145 1.539 3.296
randomized 0.972 0.998 1.017 1.063 1.170 1.551 3.356

Proposition 4. Let 𝑛, R̂𝑡, and 𝐶𝑿𝑡 ,𝑿𝑠
(𝑛) be as in Proposition 3, let 𝑓 satisfy Assumption 1 and be positive almost everywhere, and

consider the cumulative distribution function 𝐹𝑟 corresponding to the radial density 𝑓𝑟. If 𝐾1 = −
(

2(
√

𝑓 )′∕
√

𝑓
)

◦𝐹−1
𝑟 , 𝐾2 = 𝐹−1

𝑟 , and the
assumptions of Proposition 3 hold, then the test based on (5) which rejects the null hypothesis for 𝑆𝑃 > 𝜒2

𝑝2 𝑚,1−𝛼
is locally asymptotically

maximin at asymptotic level 𝛼 for 0 with elliptical strict white noise against alternatives that {𝑿𝑡} follows a nontrivial VARMA(𝑞1, 𝑞2)
model with max(𝑞1, 𝑞2) = 𝑚 and with a strict white noise from an elliptical distribution 𝟎,⋅,𝑓 (i.e., with arbitrary scatter matrix).

As 𝑓 is typically unknown in practice, some standard score functions are used as 𝐾1 and 𝐾2. Different choices lead to different
est statistics. In particular, constant unit scores lead to the multivariate portmanteau sign test without any ranks at all, working
ven for more general noise distributions with elliptical directions. Furthermore, if one chooses the van der Waerden score functions
𝑗 =

√

𝐺−1, 𝑗 ∈ {1, 2}, where 𝐺−1 stands for the quantile function of the 𝜒2
𝑝 distribution with 𝑝 degrees of freedom, then it follows

from Proposition 4 that the resulting test based on 𝑆𝑃 is locally uniformly no worse than its Gaussian counterpart. It is easy to see
hat the asymptotic relative efficiencies provided in [20] remain valid even for 𝑆𝑃 .

As far as the choice of the threshold parameter 𝑚 is concerned, one could apply the recommendations formulated for the
nivariate or multivariate Ljung–Box test. As a rule of thumb, we recommend to choose 𝑚 fixed and as small as possible to capture

the significantly nonzero autocorrelation structure expected under the alternatives. As Proposition 4 implies, 𝑚 = max(𝑞1, 𝑞2) is
optimal for VARMA(𝑞1, 𝑞2) alternatives. This is in line with the recommendations contained in the literature. The behavior of the
test based on (5) in dependence on 𝑚 is also explored in the simulation study in Section 6.

5. Speed comparison

The newly introduced hyperplane-based ranks may be found useful in various contexts because they are fast to compute even
for quite large dimensions and sample sizes. The speed of their computation is illustrated in Table 1 with the computational times
recorded by a work notebook (AMD Ryzen 7, 64 GB RAM, 64 bit Win 11). It shows the average computational times of reflective,
semi-randomized and randomized hyperplane-based ranks for uniformly distributed data when 𝑝 is fixed and 𝑛 is growing or when

is fixed and 𝑝 is growing. The ranks are based on reflective, semi-randomized and randomized incomplete lift-interdirections using
𝐻 = |𝐿| = 5𝑛 hyperplanes. The complete symmetrized lift-interdirections are not involved in Table 1, because their computation is
ractically impossible in almost all of the settings considered. The computational times obtained for reflective and semi-randomized
anks are virtually the same and marginally but uniformly smaller than those observed for the randomized ranks.

The average computational times grow with 𝑛 slightly faster than linearly (which can be expected because of the ranking
nvolved) and with 𝑝 slower than linearly if 𝑝 and 𝑛 are reasonably small. The steep increase in the computational times for high
alues of 𝑛 (> 1000) or 𝑝 (> 100) might be partly caused by the limitations of the notebook and the particular software implementation
n R [27]. The ranks can be computed in a reasonable time even for 𝑛 = 10,000 and 𝑝 = 1000. In principle, the computation could
e parallelized, which could further fasten it substantially. There is also a trade-off between the computational time and the choice
f 𝑁𝐻 , i.e., the finite-sample quality of the Mahalanobis ranks’ approximation. That is to say that the times needed to compute
he incomplete lift-interdirections are roughly proportionate to the number 𝑁𝐻 of considered hyperplanes. The asymptotic theory

requires only 𝑁𝐻∕𝑛 → ∞ for fixed 𝑝.

. Simulation study

This section considers the portmanteau test of (5) with the sign, Wilcoxon (i.e., linear) or van der Waerden score functions
𝐾1 = 𝐾2, and compares it to the benchmark Ljung–Box test. The behavior of the tests is explored under the null hypothesis as well
as under some alternatives in the form of a vector autoregressive model (VAR).

The simulation experiments employ time series lengths from 𝑛 = 100 to 𝑛 = 1000, time series dimensions from 𝑝 = 2 to 𝑝 = 40,
hreshold parameters from 𝑚 = 1 to 𝑚 = 50, and two innovation distribution families (multivariate Gaussian, multivariate Student)
ith two different choices for the matrix parameter Σ (vec(Σ) = (1, 0.5, 0.5, 2)⊤ for 𝑝 = 2 and Σ = 𝐈𝑝 for 𝑝 > 2) that stands for the
6

ovariance matrix in the Gaussian family and for the scale matrix in the Student family of distributions. The data were simulated
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Fig. 2. Size comparison I. Size comparison of the Ljung–Box (parametric) portmanteau test (black) and the new sign-and-rank portmanteau tests with sign
dark gray) or van der Waerden (light gray) scores, at significance level 𝛼 = 0.05 and for various threshold parameters 𝑚, when applied to 𝑛 = 1000 independent
bservations of dimension 𝑝 from the standard normal distribution or from the canonical Student distribution with 7 degrees of freedom. The dimension and
he distribution are indicated below each plot.

rom two VAR models, VAR(1): 𝑿𝑡 = 𝜳𝑿𝑡−1 + 𝜺𝑡 and VAR(2): 𝑿𝑡 = 𝜳 1𝑿𝑡−1 +𝜳 2𝑿𝑡−2 + 𝜺𝑡, where 𝜳 = 𝑎𝐈𝑝, 𝜳 1 = 𝜳 2 =
1
2𝑎𝐈𝑝, and 𝑎 is

a single scalar parameter. In other words, both the (stationary) VAR models use very simple diagonal VAR matrices that are scalar
multiples of the identity matrix, and both the models degenerate to the strict white noise 𝜺𝑡 for 𝑎 = 0. This simple setting makes it
possible to display the test power as a function of 𝑎, i.e., as a function of the departure from the null hypothesis. More complicated
VAR(1) and VAR(2) (stationary) models would likely lead to the same conclusions.

The design sets 𝐶 and 𝐿 are chosen independently with replacement such that |𝐶 | = |𝐿| = 5𝑛, with the exception of Fig. 3
7

where also |𝐶 | = |𝐿| = 20𝑛 is considered (but with no significant improvement).



Journal of Multivariate Analysis 204 (2024) 105344Š. Hudecová and M. Šiman

l
i
i
A

Fig. 3. Size comparison II. Size comparison regarding the new sign-and-rank portmanteau test with the Wilcoxon scores and 𝑚 = 1, at significance level 𝛼 = 0.05
and for various dimension 𝑝, when applied to 𝑛 = 100 (left) or 𝑛 = 250 (right) observations coming from the multivariate standard normal distribution. The
ranks of the test are based on three kinds of incomplete lift-interdirections: randomized [24] (light gray), semi-randomized (dark gray) and reflective (black).
The hyperplane-based signs and ranks use 5𝑛 (top) or 20𝑛 (bottom) hyperplanes.

Fig. 4. Power comparison. The empirical power of the new sign-and-rank portmanteau test with the Gaussian (van der Waerden) scores and 𝑚 = 1, at
significance level 𝛼 = 0.05, when applied to time series of length 𝑛 = 100 generated by the VAR(1) autoregressive model 𝑿𝑡 = 𝑎𝑿𝑡−1+𝜺𝑡, where 𝜺𝑡 are independent
and identically distributed zero-centered error terms coming from the bivariate Gaussian distribution with covariance matrix Σ (left) or from the bivariate
Student 𝑡1 (or Cauchy) distribution with scale matrix Σ (right) and vec(Σ) = (1, 0.5, 0.5, 2)⊤ in both cases. The ranks of the test are based on four kinds of
ift-interdirections: ordinary/complete symmetrized [23] (thick black), incomplete randomized [24] (dotted gray), incomplete semi-randomized (dashed gray) and
ncomplete reflective (solid gray). The ranks based on ordinary/complete symmetrized lift-interdirections were used with the signs based on ordinary/complete
nterdirections for benchmarking. The various types of incomplete lift-interdirections were used with incomplete interdirections, with 5𝑛 hyperplanes in all cases.
ll the power curves in each plot virtually coincide.
8
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Fig. 5. Portmanteau tests I. Power comparison of the Ljung–Box (parametric) portmanteau test (solid) and the new sign-and-rank portmanteau tests with sign
(short-dashed) or van der Waerden (long-dashed) scores and with threshold parameter 𝑚 = 1 (black) and 𝑚 = 4 (gray) when applied to time series of length
= 100 (left) and 𝑛 = 400 (right) generated by the VAR(1) autoregressive model 𝑿𝑡 = 𝑎𝑿𝑡−1 + 𝜺𝑡, where 𝜺𝑡 are independent and identically distributed zero-mean
rror terms coming from the bivariate Gaussian distribution with covariance matrix Σ (top) or from the bivariate Student 𝑡3 distribution with scale matrix Σ

bottom) and vec(Σ) = (1, 0.5, 0.5, 2)⊤ in all cases.

The presented plots show empirical sizes and powers of the tests for significance level 𝛼 = 0.05 computed from 1000
ndependent replications. As the two new rank concepts lead to almost identical results, only those based on incomplete
emi-randomized lift-interdirections are used in the pictures, except for Figs. 3 and 4 included for comparison. A web page
ttps://www.karlin.mff.cuni.cz/~hudecova/research/example.html provides an implementation of the test

n R.
The empirical size is investigated in Figs. 2 and 3. If the sample size is 𝑛 = 1000, then the sign-and-rank tests are virtually never

iberal. They seem correctly sized for dimension 𝑝 up to 𝑝 = 20 or so and conservative for higher values of 𝑝, and the size very
lightly decreases with 𝑚. In contrast, the parametric benchmark is virtually never conservative, its size is acceptable only up to
= 10 or so and further increases with 𝑚, especially for 𝑝 > 10. These observations are valid at least for the random samples coming

rom the canonical multivariate normal and multivariate 𝑡7 distributions. In other words, the newly presented sign-and-rank tests
learly surpass the benchmark in terms of test size in the special cases considered.

Fig. 3 illustrates with normally distributed data how the empirical size of the sign-and-rank test with Wilcoxon’s scores and three
ypes of hyperplane-based ranks decreases with 𝑝 for 𝑚 = 1 and small sample sizes 𝑛 = 100 and 𝑛 = 250. It also shows that there is
ardly any difference in using 𝑁𝐻 = 5𝑛 and 𝑁𝐻 = 20𝑛 hyperplanes. The type of hyperplane-based ranks also apparently does not
atter.

Fig. 4 confirms that the type of hyperplane-based ranks does not affect the test power, which is always virtually the same as
or the portmanteau test of [19] using the ordinary/complete interdirections and symmetrized lift-interdirections. It also shows that
he nonparametric portmanteau test is valid even when its parametric counterpart is not, namely for time series that are driven by
eavy-tailed noise and not even weakly stationary.
9
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Fig. 6. Portmanteau tests II. Power comparison of the Ljung–Box (parametric) portmanteau test (solid) and the new sign-and-rank portmanteau tests with sign
short-dashed) or van der Waerden (long-dashed) scores and with threshold parameter 𝑚 = 1 (black) and 𝑚 = 4 (gray) when applied to time series of length
= 100 (left) and 𝑛 = 400 (right) generated by the VAR(2) autoregressive model 𝑿𝑡 = 0.5𝑎𝑿𝑡−1+0.5𝑎𝑿𝑡−2+𝜺𝑡, where 𝜺𝑡 are independent and identically distributed

ero-mean error terms coming from the bivariate Gaussian distribution with covariance matrix Σ (top) or from the bivariate Student 𝑡3 distribution with scale
atrix Σ (bottom) and vec(Σ) = (1, 0.5, 0.5, 2)⊤ in all cases.

The results, shown in Figs. 5, 6, and 7, are in good agreement with the theory. All the tests appear (roughly) correctly sized and
eaker for 𝑚 = 4 than for 𝑚 = 1. The van der Waerden variant of the sign-and-rank test seems to be as powerful as the benchmark

n the Gaussian case and strictly more powerful otherwise. The sign variant is generally less powerful than the van der Waerden
ne, and it considerably outperforms the benchmark in terms of test power only in the heavy-tailed case.

Note that, given the same design sets, the semi-randomized or reflective lift-interdirections are substantially faster to compute
han the symmetrized lift-interdirections of [23] but only marginally faster to compute than the randomized ones of [24].

. Data example

As a modest concrete real data illustration, consider daily returns of 14 public firms from 1990 to 2004, appearing also in [28].
he dataset is available in the erer [29] R package. The data form a 14-dimensional time series of 3747 observations. The

benchmark as well as the sign-and-rank tests with the Wilcoxon, van der Waerden and sign scores reject the null hypothesis of
elliptical strict white noise with 𝑝-value technically zero for any 𝑚 ∈ {1, 3, 5, 10}.

8. Concluding remarks

This article introduces two new hyperplane-based multivariate rank concepts and justifies their use in an optimal, distribution-
free, affine invariant and robust portmanteau test with weak assumptions.

The incomplete reflective and semi-randomized ranks appear as simple and fast to compute as possible, i.e., as ideal hyperplane-
based ranks for multivariate data, especially for data dimension higher than two or three. The sign-and-rank portmanteau test also
seems very promising, especially when the identical van der Waerden scores are employed and when the number of observations
is relatively large in comparison to the degrees of freedom of the null test 𝜒2 distribution.
10
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Fig. 7. Portmanteau tests III. Power comparison of the Ljung–Box (parametric) portmanteau test (solid) and the new sign-and-rank portmanteau tests with
sign (short-dashed) or van der Waerden (long-dashed) scores and with threshold parameter 𝑚 = 1 (black) and 𝑚 = 4 (gray) when applied to five-dimensional
ime series of length 𝑛 = 1000 generated by the VAR(1) model (left) or the VAR(2) model (right) used in the previous pictures but now with canonical Gaussian
top) or canonical Student 𝑡3 (bottom) errors.
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Appendix. Proofs

If not stated otherwise, the expectations will be taken over everything stochastic, including the uniformly distributed random
design sets and vectors used in the definitions of ranks and interdirections. Their independence from 𝑛 greatly simplifies the proofs.

Without any loss of generality, it is possible to assume only spherical distributions with 𝜽 = 𝟎, Σ = 𝐈𝑝, and distances 𝑑𝑡 = ‖𝑿𝑡‖

ith ranks 𝑅𝑀
𝑡 . The standardized vectors 𝑼 𝑡 = 𝑑−1𝑡 𝑿𝑡, 𝑡 ∈ {1,… , 𝑛}, then form a strict white noise on the unit sphere in R𝑝.

roof of Proposition 2. The assertion (4) for incomplete reflective lift-interdirections 𝐿̄𝒔
𝑿𝑡

follows directly from the analogous claim
for incomplete lift-interdirections of [23] because all the randomized samples 𝒔 are equidistributed and because the Mahalanobis
ranks of 𝑿𝑡 and −𝑿𝑡, 𝑡 ∈ {1,… , 𝑛}, are by definition the same.

As far as the ranks of incomplete semi-randomized lift-interdirections are considered, the assertion (4) follows for a fixed 𝒙 ∈ R𝑝

and design size 𝑚 = |𝐿| from

E
( 1
𝑚
𝐿̃𝒔
𝒙

)

= 1
𝑚2𝑝

∑

E(𝐿̃𝒔
𝒙|𝒔) =

1
𝑚2𝑝|{ }|

∑ ∑

E(𝐿̃𝒔
𝒙|𝒔,𝐿) = 𝓁(𝒙),
11

𝒔∈{−1,1}𝑝 𝐿 𝐿∈{𝐿} 𝒔∈{−1,1}𝑝
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where 𝓁(𝒙) is the theoretical lift-interdirection from Proposition 1 of [19], and from

var
( 1
𝑚
𝐿̃𝒔
𝒙

)

= Evar
( 1
𝑚
𝐿̃𝒔
𝒙|𝒔

)

+ var
( 1
𝑚

E(𝐿̃𝒔
𝒙|𝒔)

)

= 𝑂(𝑛−1).

This holds because 𝐿̃𝒔
𝒙∕𝑚, for fixed 𝒔, is a 𝑈 -statistic with bounded kernel and mean 𝓁(𝒙) equal to that of properly normalized

ncomplete symmetrized lift-interdirection of [23]. Therefore, 𝐿̃𝒔
𝒙∕𝑚

𝐿2
→ 𝓁(𝒙), and the rest is like in [19]. □

emma 1. Consider spherically distributed vector 𝑿𝑡 = (𝑋𝑡1,… , 𝑋𝑡𝑝)⊤ and define 𝐵𝑡 = sgn(𝑋𝑡1) and 𝐘𝑡 = 𝐵𝑡𝑿𝑡, 𝑑𝑡 = ‖𝑿𝑡‖ = ‖𝐘𝑡‖ and
𝑡 = 𝑿𝑡∕𝑑𝑡 = 𝐘𝑡𝐵𝑡∕𝑑𝑡. Let 𝑛 consist of 𝐘1,… ,𝐘𝑛 and, analogously, let 𝑛 be the sample of 𝐵1,… , 𝐵𝑛.

(i) Then 𝐵𝑡 is independent of 𝐘𝑡, and 𝐵𝑡, 𝑡 ∈ {1,… , 𝑛}, are mutually independent and identically distributed with 𝖯(𝐵𝑡 = 1) = 𝖯(𝐵𝑡 =
−1) = 1∕2, 𝑡 ∈ {1,… , 𝑛}. Furthermore, both the 𝑑𝑡’s and their ranks 𝑅𝑀

𝑡 ’s are functions of 𝑛 only.
(ii) Assume random entities 1 and 2 such that 𝑛, 𝑛, 1 and 2 are independent. Consider functions ℎ0(𝑛,1) and ℎ1(𝑛,2)

such that E1
ℎ0(𝑛,1) = E1

ℎ0(𝑛,1), ℎ1(𝑛,2) = ℎ2(𝑛)ℎ3(𝑛,2), and Eℎ2(𝑛) = 0. Then,

E
[

ℎ0(𝑛,1)ℎ1(𝑛,2)
]

= 0.

(iii) Let the 𝑅𝑡’s be some ranks of the 𝑿𝑡’s, 𝑡 ∈ {1,… , 𝑛}, exchangeable under 0. Assume 𝛼 > 0, and consider a product function 𝑔 such
that 𝑔(𝑟1,… , 𝑟𝑘) =

∏𝑘
𝑖=1 𝐾𝑖(𝑟𝑖∕(𝑛 + 1)) for functions 𝐾𝑖 satisfying

1
𝑛 + 1

𝑛
∑

𝑖=1

|

|

|

|

𝐾𝑖

( 𝑖
𝑛 + 1

)

|

|

|

|

𝛼
→ E |𝐾𝑖(𝑉 )|𝛼 < ∞, 𝑖 ∈ {1,… , 𝑘},

as 𝑛 → ∞ for 𝑉 uniformly distributed on [0, 1]. Then, as 𝑛 → ∞,

E |𝑔(𝑅1,… , 𝑅𝑘)|𝛼 →
𝑘
∏

𝑖=1
E |𝐾𝑖(𝑉 )|𝛼 < ∞.

Proof. For (i), see, e.g., [5]. Statement (ii) follows from

E
[

ℎ0(𝑛,1)ℎ1(𝑛,2)
]

= E𝑛 ,2
[ℎ1(𝑛,2) E1

ℎ0(𝑛,1)] = E𝑛 ,𝑛 ,2

[

ℎ3(𝑛,2)ℎ2(𝑛) E1
ℎ0(𝑛,1)

]

= E𝑛 ,2

[

ℎ3(𝑛,2) E1
ℎ0(𝑛,1)

] [

E𝑛
ℎ2(𝑛)

]

= 0.

inally, let the conditions of (iii) be satisfied. Then

𝑝𝑘 = 𝑃 (𝑅1 = 𝑖1, 𝑅2 = 𝑖2,… , 𝑅𝑘 = 𝑖𝑘) =
1

𝑛(𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)

for any 𝑘-tuple (𝑖1,… , 𝑖𝑘) of distinct indices from {1,… , 𝑛}. Consequently,

E |𝑔(𝑅1,… , 𝑅𝑘)|𝛼 = 𝑝𝑘
𝑛
∑

𝑖1=1
⋯

𝑛
∑

𝑖𝑘=1
|𝑔(𝑖1,… , 𝑖𝑘)|𝛼 ⋅ I[𝑖1,… , 𝑖𝑘 are distinct]

≤ 𝑝𝑘(𝑛 + 1)𝑘
𝑘
∏

𝑖=1

{

1
𝑛 + 1

𝑛
∑

𝑗=1

|

|

|

|

|

𝐾𝑖

(

𝑗
𝑛 + 1

)

|

|

|

|

|

𝛼}

→ E |𝐾1(𝑉 )|𝛼 ⋯E |𝐾𝑘(𝑉 )|𝛼 < ∞,

hich concludes the argument. □

Lemma 1 here generalizes both Lemma 1 of [24] and Lemma 4 of [20]. It is applied several times in the next proof: ℎ0(𝑛,1)
s always a function of ranks and 1 consists of 𝐿 and possibly also of the sign vector(s) defining the ranks, ℎ1(𝑛,2) is

function of directions 𝑼 𝑡 and/or interdirections and 2 may include 𝐶 , and ℎ3 is a function of the signs 𝐵𝑡’s. Note that
os(𝑎𝑿𝑡 ,𝑿𝑠

) = 𝐵𝑡𝐵𝑠 cos(𝑎𝒀 𝑡 ,𝒀 𝑠
), 𝑡, 𝑠 ∈ {1,… , 𝑛}.

roof of Proposition 3. The proof proceeds similarly as in [20] with some necessary modifications. Define

𝑆0 = 𝑘2

E𝐾2
1 (𝑉 ) E𝐾2

2 (𝑉 )

𝑚
∑

𝑖=1

1
𝑛 − 𝑖

𝑛
∑

𝑠,𝑡=𝑖+1
𝐾1

(

𝐹𝑟(𝑑𝑠)
)

𝐾1
(

𝐹𝑟(𝑑𝑡)
)

𝐾2
(

𝐹𝑟(𝑑𝑠−𝑖)
)

𝐾2
(

𝐹𝑟(𝑑𝑡−𝑖)
)

𝑼⊤
𝑠 𝑼 𝑡𝑼⊤

𝑠−𝑖𝑼 𝑡−𝑖,

𝑇 𝑛
1,𝑖 =

1
𝑛 − 𝑖

𝑛
∑

𝑠,𝑡=𝑖+1
𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾1

(

R̂𝑡
𝑛 + 1

)

𝐾2

(

R̂𝑠−𝑖
𝑛 + 1

)

𝐾2

(

R̂𝑡−𝑖
𝑛 + 1

)

(

cos(𝑎𝑿𝑠 ,𝑿𝑡
) cos(𝑎𝑿𝑠−𝑖 ,𝑿𝑡−𝑖

) − 𝑼⊤
𝑠 𝑼 𝑡𝑼⊤

𝑠−𝑖𝑼 𝑡−𝑖

)

,

𝑇 𝑛
2 =

𝑚
∑

𝑖=1

1
𝑛 − 𝑖

𝑛
∑

𝑠,𝑡=𝑖+1

(

𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾1

(

R̂𝑡
𝑛 + 1

)

𝐾2

(

R̂𝑠−𝑖
𝑛 + 1

)

𝐾2

(

R̂𝑡−𝑖
𝑛 + 1

)

−𝐾1
(

𝐹𝑟(𝑑𝑠)
)

𝐾1
(

𝐹𝑟(𝑑𝑡)
)

𝐾2
(

𝐹𝑟(𝑑𝑠−𝑖)
)

𝐾2
(

𝐹𝑟(𝑑𝑡−𝑖)
)

)

𝑼⊤
𝑠 𝑼 𝑡𝑼⊤

𝑠−𝑖𝑼 𝑡−𝑖.
12
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a

(

a

f
e

Furthermore, set

𝐓𝑛 = (𝐓⊤
𝑛,1,… ,𝐓⊤

𝑛,𝑚)
⊤, 𝐒𝑛 = (𝐒⊤𝑛,1,… ,𝐒⊤𝑛,𝑚)

⊤, 𝐒̂𝑛 = (𝐒̂⊤𝑛,1,… , 𝐒̂⊤𝑛,𝑚)
⊤

for

𝐓𝑛,𝑖 =
1

√

𝑛 − 𝑖

𝑛
∑

𝑠=𝑖+1
vec

(

𝐾1(𝐹𝑟(𝑑𝑠))𝐾2(𝐹𝑟(𝑑𝑠−𝑖))𝑼 𝑠𝑼⊤
𝑠−𝑖

)

, 𝐒𝑛,𝑖 =
1

√

𝑛 − 𝑖

𝑛
∑

𝑠=𝑖+1
vec

(

𝐾1

(

𝑅𝑀
𝑠

𝑛 + 1

)

𝐾2

(

𝑅𝑀
𝑠−𝑖

𝑛 + 1

)

𝑼 𝑠𝑼⊤
𝑠−𝑖

)

,

𝐒̂𝑛,𝑖 =
1

√

𝑛 − 𝑖

𝑛
∑

𝑠=𝑖+1
vec

(

𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾2

(

R̂𝑠−𝑖
𝑛 + 1

)

𝑼 𝑠𝑼⊤
𝑠−𝑖

)

.

Basically, the proof approximates 𝑆𝑃 of (5) with 𝑆0 = 𝐓⊤
𝑛 𝛤

−1𝐓𝑛,

𝛤 = 1
𝑝2

E𝐾2
1 (𝑉 ) E𝐾2

2 (𝑉 )[I𝑚 ⊗(I𝑝 ⊗ I𝑝)],

whose asymptotic 𝜒2
𝑝2𝑚

distribution follows from the asymptotic distribution  (𝟎, 𝛤 ) of 𝐓𝑛. The difference

𝑆𝑃 − 𝑆0 =
𝑝2

E𝐾2
1 (𝑉 ) E𝐾2

2 (𝑉 )

( 𝑚
∑

𝑖=1
𝑇 𝑛
1,𝑖 + 𝑇 𝑛

2

)

(A.1)

has to be asymptotically negligible because 𝑇 𝑛
2 and all 𝑇 𝑛

1,𝑖, 𝑖 ∈ {1,… , 𝑚}, converge to zero in probability for 𝑛 → ∞, which will be
proved below.

The norm ‖𝐒𝑛 − 𝐓𝑛‖ is the same as in [20]. Therefore,

‖𝐒𝑛 − 𝐓𝑛‖ = 𝑜𝐿2 (1) and 𝐾1

(

𝑅𝑀
𝑠

𝑛 + 1

)

𝐾2

(

𝑅𝑀
𝑠−𝑖

𝑛 + 1

)

−𝐾1(𝐹𝑟(𝑑𝑠))𝐾2(𝐹𝑟(𝑑𝑠−𝑖)) = 𝑜𝐿2

s is proved there. Furthermore,

E ‖𝐒̂𝑛 − 𝐒𝑛‖2 =
𝑚
∑

𝑖=1

𝑛
∑

𝑠=𝑖+1

1
𝑛 − 𝑖

E

[

𝐾1

(

𝑅𝑀
𝑠

𝑛 + 1

)

𝐾2

(

𝑅𝑀
𝑠−𝑖

𝑛 + 1

)

−𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾2

(

R̂𝑠−𝑖
𝑛 + 1

)]2

thanks to Lemma 1, see the details below) is also 𝑜(1) because the squared differences in the summands are 𝑜𝑃 (1) and also uniformly
integrable. Then E ‖𝑇𝑛‖2 = 𝑚E𝐾2

1 (𝑉 )𝐾2
2 (𝑉 ) < ∞, therefore E ‖𝐒̂𝑛‖ < ∞ and

E |𝑇 𝑛
2 | ≤

√

E ‖𝐒̂𝑛 + 𝐓𝑛‖
2
√

E ‖𝐒̂𝑛 − 𝐓𝑛‖
2 → 0,

for 𝑛 → ∞, owing to the Cauchy–Schwarz inequality. Therefore, 𝑇 𝑛
2 → 0 with 𝑛 → ∞ both in 𝐿1 and in probability.

As for E ‖𝑇 𝑛
1,𝑖‖

2, define

𝐺𝑠,𝑡,𝑖(𝑛) =
(

cos(𝑎𝑿𝑠 ,𝑿𝑡
) cos(𝑎𝑿𝑠−𝑖 ,𝑿𝑡−𝑖

) − 𝑼⊤
𝑠 𝑼 𝑡𝑼⊤

𝑠−𝑖𝑼 𝑡−𝑖

)

nd observe that 𝐺𝑠,𝑡,𝑖(𝑛) = 0 for 𝑠 = 𝑡. Thanks to Lemma 1 (ii) (see the details below)

E ‖𝑇 𝑛
1,𝑖‖

2 = 4
(𝑛 − 𝑖)2

𝑛
∑

𝑠,𝑡=𝑖+1,𝑠<𝑡
E𝐾2

1

(

R̂𝑠
𝑛 + 1

)

𝐾2
2

(

R̂𝑡
𝑛 + 1

)

𝐾2
1

(

R̂𝑠−𝑖
𝑛 + 1

)

𝐾2
2

(

R̂𝑡−𝑖
𝑛 + 1

)

𝐺2
𝑠,𝑡,𝑖

≤ 4
(𝑛 − 𝑖)2

𝑛
∑

𝑠,𝑡=𝑖+1,𝑠<𝑡

⎛

⎜

⎜

⎝

E
|

|

|

|

|

|

𝐾1

(

R̂𝑠
𝑛 + 1

)

𝐾2

(

R̂𝑡
𝑛 + 1

)

𝐾1

(

R̂𝑠−𝑖
𝑛 + 1

)

𝐾2

(

R̂𝑡−𝑖
𝑛 + 1

)

|

|

|

|

|

|

2+𝛿
⎞

⎟

⎟

⎠

2
2+𝛿

(

E |𝐺𝑠,𝑡,𝑖|
2(2+𝛿)∕𝛿)𝛿∕(2+𝛿)

or the particular 𝛿 > 0 from the assumption owing to Hölder’s inequality. Now the summands are products of two terms in the
xponentiated parentheses: the first parenthesis is bounded for 𝑠 ≠ 𝑡− 𝑖 thanks to Lemma 1 (iii) and the second term converges to 0

in 𝐿2 and in probability as 𝑛 → ∞ because of bounded |𝐺𝑠,𝑡,𝑖| and the consistency property of used interdirections. The case 𝑠 = 𝑡− 𝑖
can be handled analogously, as in the proof of Lemma 3 in [20].

Lemma 1 is applied above in the same way as Lemma 4 in [20]: ℎ0(𝑛,1) is typically a function of ranks and 1 may reflect
the randomness in their definition possibly hidden in the design set and/or sign vector(s). The lift-interdirections considered in
Proposition 3 ensure that E1

ℎ0(𝑛,1) = E1
ℎ0(𝑛,1). Lemma 1 (ii) is then used with ℎ1, ℎ2, ℎ3, where for example

ℎ1(𝑛,2) = 𝑼⊤
𝑠 𝑼 𝑡𝑼⊤

𝑠−𝑖𝑼 𝑡−𝑖 = 𝑿⊤
𝑠 𝑿𝑡𝑿⊤

𝑠−𝑖𝑿𝑡−𝑖∕(𝑑𝑠𝑑𝑡𝑑𝑠−𝑖𝑑𝑡−𝑖),

ℎ2(𝑛) = 𝐵𝑠𝐵𝑡𝐵𝑠−𝑖𝐵𝑡−𝑖 and ℎ3(𝑛,2) = 𝐘⊤
𝑠 𝐘𝑡𝐘⊤

𝑠−𝑖𝐘𝑡−𝑖∕(𝑑𝑠𝑑𝑡𝑑𝑠−𝑖𝑑𝑡−𝑖) (where the dependence on 2 is missing entirely), or

ℎ1(𝑛,2) = 𝐺𝑠,𝑡,𝑖(𝑛)𝐺𝑠̃,𝑡,𝑖(𝑛),

ℎ2(𝑛) = 𝐵𝑠𝐵𝑡𝐵𝑠−𝑖𝐵𝑡−𝑖𝐵𝑠̃𝐵𝑡𝐵𝑠̃−𝑖𝐵𝑡−𝑖 and ℎ3(𝑛,2) = 𝐺𝑠,𝑡,𝑖(𝑛)𝐺𝑠̃,𝑡,𝑖(𝑛) where 2 may account for the random design of incomplete
interdirections if they are used. □
13
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