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Abstract Testing axial symmetry given the axial direction has recently attracted 
considerable attention not only because of its direct practical applications but 
also because of its wide implications for testing exchangeability, independence, 
goodness-of-fit, or equality of scale. The contribution extends the family of recently 
developed tests of axial symmetry with new members that are based on coefficient 
estimates in directional quantile regression. The proposed testing tools are espe-
cially suitable for the situations not covered well by available competitors, i.e., in 
the linear regression context or when regression rank scores are not available. The 
performance of the new tests in such settings is illustrated with a few representative 
simulation experiments. 

1 Introduction 

This contribution focuses on nonparametric testing of the hypothesis that a stochas-
tic vector .Y ∈ Rm, .m ≥ 2, is symmetric around a line in a given (unit) direction 
.u ∈ Sm−1, which means, from the mathematical standpoint, that 

. L{Y − EY} = L{M(Y − EY)}

for .M = 2uuT − I. That kind of symmetry will be termed axial symmetry 
hereinafter. 

If  Y is accompanied with a covariate vector . Z, then it makes sense to speak 
about the symmetry of the conditional distribution .L(Y|Z). It is characterized with 
the invariance property: 

. L{Y − E(Y|Z)|Z} = L{M(Y − E(Y|Z))|Z}
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for .M = 2uuT − I and called conditional axial symmetry for short. It is tested 
in regression settings. 

The literature already knows a few nonparametric tests of symmetry about 
a particular or special line in the bivariate case when the axial and half-space 
symmetries coincide; see, e.g., Hollander (1971), Modarres (2008) and Rao and 
Raghunath (2012). Unfortunately, the general multivariate case has been rather 
neglected until recently, especially if one does not count the somewhat related tests 
of conditional central symmetry of Su (2006) and its references. And although there 
can never exist multiple parallel axes of symmetry, the natural idea of specifying 
only the axial direction (and thus avoiding the necessity to know the axis itself or to 
center the data first) seems also quite recent, originating probably only in the articles 
mentioned in the next paragraph. 

The recent contributions to testing axial symmetry in spaces of arbitrary dimen-
sion can be summarized as follows: 

(a) Kalina (2021) proposed some permutation tests of the hypothesis without 
desirable invariance properties. 

(b) Hudecová and Šiman (2021b) came up with some powerful parametric, 
nonparametric, permutation, and asymptotic naturally invariant tests of the 
hypothesis, but under quite stringent distributional assumptions. 

(c) Hudecová and Šiman (2021a) introduced naturally invariant asymptotic tests 
of the hypothesis even in a general regression setup, but either weak or, in 
the other case, badly sized, slow to compute and using both very restrictive 
distributional assumptions and complex asymptotic distributions intractable 
in large dimensions. 

(d) Hudecová and Šiman (2023) proposed powerful tests with mild assumptions, 
good small-sample performance, and simple asymptotic distributions, but only 
in the non-regression case and still perhaps somewhat slow to compute for 
extremely large datasets. 

In particular, the tests of Kalina (2021) used scatter matrix estimators, the tests 
of Hudecová and Šiman (2021b) employed canonical or rank correlations, and 
the tests of Hudecová and Šiman (2021a) and Hudecová and Šiman (2023) were  
respectively based on the rank scores and integrated rank scores resulting from 
the directional quantile regression of Hallin et al. (2010). 

To sum up, the tests of Hudecová and Šiman (2023) already appear very satis-
factory for the non-regression case, although they are known to be consistent only 
in the class of elliptically symmetric distributions and inconsistent against some 
rather special alternatives also illustrated in Hudecová and Šiman (2023). Their main 
problem may be that they are based on the quantile regression rank scores that may 
be sometimes slow or even impossible to compute with the statistical software at 
hand. They also exist only for the non-regression case. Unfortunately, the only tests 
so far proposed for the linear regression case are those of Hudecová and Šiman 
(2021a) which are still far from ideal. And they also use the rank scores. 

Consequently, this contribution deals with a general linear regression case. It 
still employs the directional quantile regression of Hallin et al. (2010), which has
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already proved advantageous, but it avoids the use of any rank scores and the 
problems associated with their computation by using directly the directional quantile 
regression coefficient estimators. Although the corresponding quantile regression 
task involves response-dependent and stochastic regressors, the general asymptotic 
results needed for the testing are already available in this time; see Angrist et al. 
(2006) and Chernozhukov et al. (2022). They can be further simplified, thanks to 
the axial symmetry assumption, as is shown here in the non-regression case. All 
the presented tests involve kernel estimators, but it does not matter too much for 
dimension m up to five or so because they are proposed for large datasets anyway. 

The quantreg package (Koenker, 2015) for R (R Core Team, 2021) produces 
the rank scores only when the modified Barrodale and Roberts simplex-type 
algorithm (br) is used whose computational complexity typically depends on the 
number of observations quadratically. However, the quantile regression coefficients 
alone can be computed with many other algorithms included in the package, and 
some of them are asymptotically much faster. For example, the computational 
complexity of some interior point methods with preprocessing often grows with the 
number of observations only linearly. This explains why avoiding rank scores and 
using only quantile regression coefficients may have significant speed benefits. For 
instance, the computational times of the most suitable algorithms (such as conquer 
or pfnb) included in the quantreg package were observed even one thousand times 
faster than those of the br algorithm for one million regression observations of small 
dimension. See Chapter 6 of Koenker (2005) for precise statements and further 
discussion regarding the computational aspects and complexities. 

Axial symmetry naturally occurs in the world around us. Therefore, its tests 
may be useful. Furthermore, Hudecová and Šiman (2021a) and Hudecová and 
Šiman (2021b) explain and demonstrate by means of both simulated and real data 
examples how the tests of axial symmetry may be used even for testing certain 
exchangeability, independence, goodness-of-fit, and equality-of-scale hypotheses. 

The outline of the paper is as follows. Section 2 introduces necessary notation, 
summarizes directional quantile regression to be used for the tests, and reviews 
relevant results. Section 3 presents the information about the general test statistics 
and their distributions. Section 4 simplifies the results in the non-regression case, 
Sect. 5 mainly applies the tests to simulated data, and Sect. 6 concludes with some 
remarks and comments. 

2 Definitions and Notation 

Let .Y = (Y (1), . . . , Y (m))T ∈ Rm and . X = (1, X(2), . . . , X(p))T = (1, ZT)T ∈ Rp

be the random vectors of responses and regressors, always satisfying 

Assumption 1 The joint probability distribution . L of .(YT, ZT)T is absolutely 
continuous with finite expectation, cumulative distribution function F , and prob-
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ability density function f that is continuous, bounded, and positive in the interior of 
a connected support. 

In the non-regression case, . X turns to 1, . Z simply disappears from all the 
definitions, and the distributions conditional on . Z or . X change to the unconditional 
ones. 

Consider also the null hypothesis of conditional axial symmetry. 

. HS
0 (u) : L(Y|Z) is axially symmetric around a line in a given direction u ∈ Sm−1

dealt with in this article. 
Hallin et al. (2010) introduced the concept of directional quantile regression 

which is, for the particular direction . u, based on the minimization problem: 

. min
(aT,cT)T∈Rm+p−1

Eρτ (u
TY − aTX − cT𝚪T

u Y) (1) 

leading to the .τ -dependent and .u-dependent directional regression quantile coeffi-
cient vector .(aT

τ,u, cT
τ,u)T minimizing (1). Here .τ ∈ (0, 1) denotes the quantile level, 

.𝚪u ∈ Rm×(m−1) complements . u to an orthonormal matrix, and 

. ρτ (t) = t (τ − I(t < 0)) = max{(τ − 1)t, τ t}

stands for the quantile check function from the .L1 definition of ordinary or 
regression quantiles (Koenker, 2005). For simplicity, define also the vector . W =
(XT, YT𝚪u)T and residuum 

. r(τ ) := uTY − (aT
τ,u, cT

τ,u)W.

In other words, (1) stands for the quantile regression problem with response . uTY
(the projection of . Y to the direction . u) and regressor vector . W including . X and 
the projection of . Y to the orthogonal complement of . u. 

Hudecová and Šiman (2021a) proved useful connections between .HS
0 (u) and 

the directional regression quantile coefficient vector .cτ,u obtained for the same . u. 
In particular, they showed in the non-regression multivariate case that .HS

0 (u) always 
implies 

. H0(u) : cτ,u = 0 for all τ ∈ (0, 1)

and that the implication changes to the equivalence for all elliptical distributions 
where, moreover, .cτ,u never depends on . τ . Furthermore, they demonstrated that 
the link between .HS

0 (u) and .H0(u) remains preserved even in certain linear 
regression models such as in the common-scale linear regression model: 

.Y = FX + (dTX)η (2)
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with parametric matrix . F, parametric vector .d /= 0, and a centered absolutely 
continuous error term .η ∈ Rm independent of . X. This representative linear model 
will always be considered here in the regression case. 

In other words, .HS
0 (u) implies .H0(u) for any . u, .‖u‖ = 1, even in the regression 

model (2) assumed here, and the reverse is true if . ε is elliptically distributed. 
Consequently, the rest of the article focuses on testing if .cτ,u = 0, which uses 

some general results for quantile regression with stochastic regressors, already 
published in the statistical literature. The assumption of .HS

0 (u) may lead to 
simplifications in some special cases; see Sect. 4. 

Consider also the sample case with n independent copies .(YT
i , XT

i )T and . Wi

of their population counterparts, .i = 1, . . . , n. Then the expectation in (1) is taken 
with respect to the empirical measure, all the sample characteristics are denoted 
with . ̂ and 

. ̂ri(τ ) = uTYi − (̂aT
τ,u, ĉT

τ,u)Wi , i = 1, . . . , n.

The task is to test .HS
0 (u) by means of .̂cτ,u. Fortunately, (1) corresponds 

to the generally misspecified ordinary quantile regression model with stochastic 
regressor . W and scalar response .uTY, and the asymptotic theory for its sample 
coefficient estimators and their linear functions has already been developed in 
Angrist et al. (2006); see also Proposition 1 of Chernozhukov et al. (2022). Those 
results useful for the purpose of this contribution are summarized in the next section. 

3 Regression Case 

Choose . 𝚪u and fix .ε ∈ (0, 0.5). Suppose that Assumption 1 holds together with 

Assumption 2 Assume that: 

1. there exists .δ > 0 such that 

.E‖Y‖2+δ < ∞ and E‖Z‖2+δ < ∞, (3) 

2. the conditional density .fuTY|W(v|w) of .uTY given .W = w is bounded 
and uniformly continuous in .(v, wT)T over the support of .(uTY, WT)T, 

3. the Jacobian matrix 

.J(τ ) := E
⎾
fuTY|W

(
(aT

τ,u, cT
τ,u)W|W)

WWT⏋
(4) 

is positive definite for all .τ ∈ [ε, 1 − ε], and its minimal eigenvalue is bounded 
away from zero uniformly on that interval. 

Then, one can state the following result.



246 M. Šiman

Proposition 1 (Angrist et al. (2006); Chernozhukov et al. (2022)) In the sample 
case, if Assumption 1 and Assumption 2 hold, then the .τ -indexed process 

.
√

nJ(τ )

⎾ ⎛
âτ,u

ĉτ,u

⎞
−

 ⎛
aτ,u

cτ,u

⎞⏋
, τ ∈ [ε, 1 − ε], (5) 

converges in distribution to a zero-mean vector Gaussian process . {G(τ ), τ ∈ [ε, 1−
ε]} with covariance matrix function .Σ(τ, τ ') = E

⎾
G(τ )G(τ ')T

⏋
given by 

. Σ(τ, τ ') = E
([τ − I{r(τ ) < 0}][τ ' − I{r(τ ') < 0}]WWT)

, τ, τ ' ∈ [ε, 1 − ε],

which simplifies to 

. Σ0(τ, τ
') = [min{τ, τ '} − ττ ']E⎾

WWT⏋

if all the conditional .τ -quantiles (.τ ∈ [ε, 1 − ε]) of  .uTY given . W are linear in . W
almost surely. 

See Theorem 3 of Angrist et al. (2006) for the proof and Chernozhukov et al. (2022) 
and its Proposition 1 for a restatement. 

Practical applications of Proposition 1 often require some uniformly consistent 
estimators of .J(τ ) (in .[ε, 1 − ε]) and .Σ(τ, τ ') (in .[ε, 1 − ε]2) such as those used 
by Chernozhukov et al. (2022) and Angrist et al. (2006) and provided by the next 
proposition. 

Proposition 2 (Angrist et al. (2006); Chernozhukov et al. (2022)) If . E‖Y‖4 <

∞, .E‖Z‖4 < ∞, and .ε ≤ τ, τ ' ≤ 1 − ε, then 

. ̂Σ(τ, τ ') := 1

n

n⎲

i=1

[τ − I{̂ri(τ ) ≤ 0}][τ ' − I{̂ri(τ ') ≤ 0}]WiW
T
i

and 

. ̂J(τ ) := (nhn)
−1

n⎲

i=1

φ
(
r̂i (τ )/hn

)
WiW

T
i

are uniformly consistent estimators of .Σ(τ, τ ') and .J(τ ) where . φ stands for the den-
sity of the standard normal distribution and the bandwidth . hn satisfies . hn → 0
and .nh2

n → ∞ as .n → ∞. 

Here, the adapted Bofinger bandwidth 

.hn = n−1/5
 ⎛

4.5φ4
(
Ф−1(τ )

)
(
2Ф−1(τ )2 + 1

)2

⎞1/5
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of Koenker (1994) is preferred because of certain optimality discussed ibidem. 
The symbol . φ again represents the density of the standard normal distribution, and . Ф

is the corresponding standard normal cumulative distribution function. 
Consider 

. R := (O(m−1)×p Im−1)

and 

. V(τ, τ ') := RJ(τ )−1Σ(τ, τ ')J(τ ')−1RT ∈ R(m−1)×(m−1).

Proposition 1 with (5) implies 

.{√n ĉτ,u}τ∈[ε,1−ε]
D→

{
RJ(τ )−1G(τ )

}
τ∈[ε,1−ε]

, (6) 

resp. 

.{√n V(τ, τ )−1/2 ĉτ,u}τ∈[ε,1−ε]
D→

{
V(τ, τ )−1/2RJ(τ )−1G(τ )

}
τ∈[ε,1−ε]

. (7) 

If .HS
0 (u) holds and .ε ≤ τ1 < · · · < τk ≤ 1 − ε for some positive integer k, then 

.cτ,u = 0 and .
√

n(̂cT
τ1,u, . . . , ĉT

τk,u)T has asymptotically .(m − 1)k dimensional zero-

mean normal distribution with block variance matrix .S = (
V(τi , τj )

)k

i,j=1, thanks 
to (6). Therefore, 

.Tχ2 := n(̂cT
τ1,u, . . . , ĉT

τk,u)̂S−1(̂cT
τ1,u, . . . , ĉT

τk,u)T D→ χ2
(m−1)k (8) 

as .n → ∞ for any consistent estimator . ̂S of . S such as that based on 

. ̂V(τ, τ ') := R̂J(τ )−1Σ̂(τ, τ ')̂J(τ ')−1RT,

with .̂J(τ ) and .Σ̂(τ, τ ') given by Proposition 2. 
Similarly, 

. TC := sup
τ∈[ε,1−ε]

g
(√

nV̂(τ, τ )−1/2 ĉτ,u
) D→ sup

τ∈[ε,1−ε]
g
(
V(τ, τ )−1/2RJ(τ )−1G(τ )

)

(9) 
for any continuous function .g : Rm−1 → R, thanks to (6) and (7), which can be 
used for testing .HS

0 (u) by means of subsampling (with the aforementioned matrix 
estimators) that is described in Section 3 of Angrist et al. (2006). The number 
of subsamples N has to satisfy .N → ∞ and .N/n → 0 as .n → ∞.
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In particular, .g(b) = maxj |bj | ≡ maxj |b|j (for .b = (b1, . . . , bm−1)
T) leads 

to the Kolmogorov-type statistic: 

.TC,1 := sup
τ∈[ε,1−ε]

max
j

||√nV̂(τ, τ )−1/2 ĉτ,u
||
j

(10) 

and .g(b) = bTb results in 

. TC,2 := sup
τ∈[ε,1−ε]

n̂cT
τ,uV̂(τ, τ )−1̂cτ,u.

4 Non-regression Case 

In the non-regression case, .X = 1 and f is the density of . Y alone. Assume .HS
0 (u), 

.τ ∈ (0, 1), and .EY = 0 for simplification, without any loss of generality. Then, 

.aτ,u is the .τ -quantile of .uTY, i.e., .aτ,u = F−1
uTY

(τ ) where .FuTY is the cumulative 

distribution function of .uTY, with corresponding density . fuTY. Let . fuTY|𝚪T
u Y(v|w)

be the conditional density of .uTY at point v given .𝚪T
u Y = w. 

Then, 

. EfuTY|𝚪T
u Y(v|𝚪T

u Y) = fuTY(v)

and 

. EfuTY|𝚪T
u Y

(
F−1

uTY
(τ )|𝚪T

u Y
) = fuTY

(
F−1

uTY
(τ )

) =: 1/s(τ )

for the sparsity function .s(τ ) known from the quantile regression theory. 
The assumed hypothesis of axial symmetry implies that vectors . (uTY, YT𝚪u)T

and .(uTY,−YT𝚪u)T are equally distributed (which .H0(u) cannot guarantee only 
by itself). Therefore, .Eg(uTY,𝚪T

u Y) = 0 for any function g odd in the second 
argument: .g(v, w) = −g(v,−w). In particular, 

. E
⎾
fuTY|𝚪T

u Y

(
F−1

uTY
(τ )|𝚪T

u Y
)
𝚪T

u Y
⏋ = 0.

Therefore, 

. J(τ ) =
 ⎛

fuTY

 ⎛
F−1

uTY
(τ )

⎞
0T

0 H(τ )

⎞

where 

.H(τ ) = E
⎾
fuTY|𝚪T

u Y

 ⎛
F−1

uTY
(τ )|𝚪T

u Y
⎞

𝚪T
u YYT𝚪u

⏋
.
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It follows from (5) that 

.
√

nH(τ )̂cτ,u
D→ G2(τ ), (11) 

where .G2(τ ) is a zero-mean Gaussian process with the covariance function 

. Σ22(τ, τ
') = ττ '𝚪T

u Var Y𝚪u − τ 'Cτ − τCτ ' + Cmin{τ,τ '}, ε ≤ τ, τ ' ≤ 1 − ε,

where 

. Cτ = E
⎾
I{uTY < F−1

uTY
(τ )}𝚪T

u YYT𝚪u
⏋
,

cf. Proposition 2(2) in Hudecová and Šiman (2021a). Then also 

. V(τ, τ ') = H(τ )−1Σ22(τ, τ
')H(τ ')−1.

If moreover .uTY is independent of .𝚪T
u Y, then 

. Σ22(τ, τ
') = [min{τ, τ '} − ττ ']𝚪T

u Var Y𝚪u

and .G2(τ ) = [𝚪T
u Var Y𝚪u]1/2B(τ ), where .{B(τ ), τ ∈ [ε, 1 − ε]} is the . m − 1

dimensional Brownian bridge. This also implies that 

. V(τ, τ ') = (min{τ, τ '} − ττ ')s(τ )s(τ ')
(
𝚪T

u Var Y𝚪u
)−1

,

and that . TC of (9), for .g(b) = bTb, turns into 

.~TB := sup
τ∈[ε,1−ε]

n

τ (1 − τ )s2(τ )
ĉT
τ,u

⎾
𝚪T

u Var (Y)𝚪u

⏋
ĉτ,u, (12) 

which converges, for .n → ∞, in distribution to 

. sup
τ∈[ε,1−ε]

‖B(τ )‖2

τ (1 − τ )
= sup

τ∈[ε,1−ε]
Q2(τ )

where .Q(τ ) = ‖B(τ )‖[τ (1 − τ )]−1/2 is the well-known Bessel process, and the 
critical values of .supτ∈[ε,1−ε] Q2(τ ) are known and tabulated (Andrews, 1993; 
Estrella, 2003). The convergence remains valid even if .Var (Y)/s2(τ ) is replaced 
with a uniformly consistent estimator. 

Note that . ~TB virtually coincides with the Wald-type test statistic of Theorem 2 
in Koenker and Machado (1999), formulated for correctly specified quantile 
regression models with deterministic regressors and already supported by common 
statistical software.
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Evidently, . ~TB is invariant with respect to the choice of . 𝚪u, rotation, and certain 
scale transformations: 

. ~TB(u,𝚪u, Y) = ~TB(u,𝚪uΔ, Y)

= ~TB(Au, A𝚪u, AY) = ~TB(u,𝚪u, (u|𝚪u)D(u|𝚪u)TY)

for any rotational (i.e., orthonormal) matrices .Δ ∈ R(m−1)×(m−1) and . A ∈ Rm×m

and for any regular matrix .D = diag(d11, . . . , dmm) with . d11 > 0. The shift  
invariance of .~TB is also evident, although one should work with .Y − EY rather 
than with .EY = 0 to prove that rigorously. All the good invariance properties of . ~TB

would remain untouched if .Var (Y) were replaced with its sample counterpart. They 
usually get lost by using an estimator of .s2(τ ). 

5 Illustrations 

This section illustrates the usefulness of the introduced tests for testing axial sym-
metry in large datasets with .n = 10,000, 20,000, 40,000, or .700,000 observations. 
It uses representative (conditional) multivariate distributions (uniform, normal, 
and Student . t7) in spaces of dimension .m = 2, 3, 4, and 5 and in the general linear 
regression setup with .p = 1, 5, or 10 regressors. 

For the considered numbers of observations, the test size has never been generally 
acceptable for dimension m higher than five owing to the nonparametric estimation 
involved. This is also one of the reasons for using only large sample sizes (the other 
is that only then the computation of quantile regression rank scores may become 
substantially slower than that of quantile regression coefficients). 

All the computations have been conducted in the software environment R (R Core 
Team, 2021) with the aid of the quantreg package (Koenker, 2015). The p-
values regarding the Bessel process have been obtained by means of the algorithm 
published in Estrella (2003). 

After the investigated tests are specified, the figures and associated simulation 
experiments are described in detail, all using the null hypothesis .HS

0 (u) for . u =
(cos(α), sin(α), 0T)T ∈ Sm−1 where .α ∈ [0,π/90] or .α ∈ [0,π/360] is 
considered in radians and only .α = 0 makes the null hypothesis satisfied in all the 
experiments considered. Then this section indicates possible computational benefits. 

The test .Tχ2 is used with .k = 3, which is in line with the recommendations given 

in Hudecová and Šiman (2021a). In particular, .τ1 = 0.2, .τ2 = 0.5 and .τ3 = 0.8. 
The test . TS employs the statistic .TC,1 of (10), also recommended in Angrist et al. 

(2006), but with the supremum changed to the maximum over two values of . τ , 
namely: 

.TS := max
τ∈{0.2,0.8}

max
j=1,...,m−1

||√nV̂(τ, τ )−1/2 ĉτ,u
||
j
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for the sake of computational simplicity. It does not have any standard asymp-
totic distribution. In principle, one could also consider maxima over larger sets 
of equidistributed . τ ’s or other metrics for measuring the distance of the .τ -process 
.
√

nV̂(τ, τ )−1/2 ĉτ,u from zero, for example. 
The test . TB is based on . ~TB of (12), but with estimated population quantities and 

with the supremum over .[ε, 1 − ε] replaced with the maximum over 101 equidistant 
points from .[0.1, 0.9] including the end points. 

The behavior of the tests is illustrated by means of the averages and/or empirical 
distribution functions of sample p-values based on .1 000 independent simulations, 
in line with Hudecová and Šiman (2021a), Hudecová and Šiman (2021b), and 
Hudecová and Šiman (2023). 

Figure 1 illuminates the behavior of the test .TB in the non-regression case 
with .n = 10,000 observations .(Y1, 2Y2, . . . , mYm)T of dimension .m = 3 or 
.m = 4 for the axial direction .u = (cos(α), sin(α), 0T)T, .α ∈ [0,π/90], where 
.(Y1, Y2, . . . , Ym)T comes from the multivariate uniform distribution on .[−1, 1]m or 
from the multivariate standard normal distribution. 

Figures 2, 3, and 4 show the performance of .Tχ2 in the non-regression case 
with .n = 10,000, . 20,000, or .40,000 observations .(Y1, 2Y2, . . . , mYm)T of dimen-
sion .m = 3, . m = 4, or .m = 5 for the axial direction . u = (cos(α), sin(α), 0T)T
for .α ∈ [0,π/90] where .(Y1, Y2, . . . , Ym)T comes from the multivariate uniform 
distribution on .[−1, 1]m, multivariate standard normal distribution, or multivariate 
canonical Student distribution . t7 with 7 degrees of freedom. 

Figure 5 analogously compares the behavior of .Tχ2 in the non-regression (.p = 1) 
and regression (p = 10) case with .n = 20,000 observations of dimension 
.m = 3, 4, or 5 from the linear regression model . (Y1, Y2, . . . , Ym)T = BX +
(ε1, 2ε2, . . . , mεm)T where .B = 1m1T

p ∈ Rm×p is the matrix of ones, .X = 1 or 

.X = (1, ZT)T ∈ Rp, .p = 10, with multivariate standard normal . Z independent 
of .(ε1, ε2, . . . , εm)T whose distribution is multivariate canonical . t7, multivariate 
standard normal or multivariate uniform. Apparently, the test performance does 
not deteriorate in the presence of a moderate number of regressors, which is not 
surprising in the quantile regression context. This also explains why Figs. 2, 3, and 4 
focus only on the non-regression case. 

Figure 6 illustrates the performance of the test . TS when applied to . n = 700, 000
observations from the linear regression model of Fig. 5 but this time with .p = 5 and 
only in the most important cases of .m = 2 or . m = 3. The  p-values regarding . TS

have been determined by means of re-centered subsampling, described in Angrist 
et al. (2006). Their averages and empirical distribution functions are based on . 1,000
independent simulations, each using .1,000 subsamples of length .1,000. The number 
of subsamples could be increased easily in real data examples without numerous 
replications.
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Fig. 1 The .TB test. The figure shows the averages of sample p-values coming from the test 
.TB of axial symmetry around a line in direction .u = (cos(α), sin(α), 0T)T for .α ∈ [0,π/90]. 
The plots have been obtained from .1,000 independent samples of dimension .m = 3 (top) or 
.m = 4 (bottom) containing .n = 10,000 (thin), .n = 20,000 (normal) or .n = 40,000 (thick) 
independent observations .(Y1, 2Y2, . . . , mYm)T where the distribution of .(Y1, Y2, . . . , Ym)T is 
multivariate uniform on .[−1, 1]m (left) or multivariate standard normal (right). The null hypothesis 
is satisfied for . α = 0

The computational benefits of not using the br algorithm may be substantial. 
For example, if .n = 1,000,000, .p = 1, .m = 5, the data are uniformly distributed 
and a normal computer (CPU: Intel Core i5-6600 3.30 GHz, RAM: 16 GB) is used, 
then the average (elapsed) times of computing three quantile regression coefficient 
vectors (for .τ = 0.2, .0.5 and . 0.8) are 1.1 s for the conquer algorithm, 1.5 s 
for the pfnb algorithm but 1,505 s for the br one (all the algorithms are included 
in the quantreg package).
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Fig. 2 The .Tχ2 test and normally distributed data. The figure shows the averages (left) and 

empirical distribution functions (right) of sample p-values coming from the .χ2-test .Tχ2 of axial 

symmetry around a line in direction .u = (cos(α), sin(α), 0T)T for .α ∈ [0,π/90]. The plots have 
been obtained from .1,000 independent samples of dimension (a) . m = 3, (c) . m = 4, and (e) . m = 5
containing .n = 10,000 (thin black), .n = 20,000 (normal dark gray) or .n = 40,000 (thick light 
gray) independent observations .(Y1, 2Y2, . . . , mYm)T where the distribution of . (Y1, Y2, . . . , Ym)T
is multivariate standard normal. The empirical distribution function is included for .m = 3 in (b), 
for .m = 4 in (d) and for .m = 5 in (f). It corresponds to .α = 0 when the null hypothesis is satisfied
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Fig. 3 The .Tχ2 test and uniformly distributed data. This figure differs from Fig. 2 only 

in the employed distribution of .(Y1, Y2, . . . , Ym)T that is now multivariate uniform on .[−1, 1]m
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Fig. 4 The .Tχ2 test and . t7 distributed data. This figure differs from Fig. 2 only in the employed 

distribution of .(Y1, Y2, . . . , Ym)T that is now multivariate Student with 7 degrees of freedom
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Fig. 5 The .Tχ2 test in the regression case. The figure shows the averages (left) and empirical 

distribution functions (right) of sample p-values coming from the .χ2-test .Tχ2 of axial symmetry 

around a line in direction .u = (cos(α), sin(α), 0T)T ∈ Sm−1 for .α ∈ [0,π/90], and for . τ1 =
0.2, .τ2 = 0.5 and .τ3 = 0.8. The plots have been obtained from .1,000 independent samples of 
dimension .m = 3 (top), .m = 4 (center), and .m = 5 (bottom) containing .n = 20,000 observations 
from the linear regression model .(Y1, Y2, . . . , Ym)T = BX + (ε1, 2ε2, . . . , mεm)T where . B =
1m1T

p ∈ Rm×p , .X = 1 (black) or .X = (1, ZT)T ∈ R10 with multivariate standard normal . Z (gray) 

independent of .(ε1, ε2, . . . , εm)T whose distribution is multivariate canonical . t7 (top), multivariate 
standard normal (center) or multivariate uniform on .[−1, 1]m (bottom). The empirical distribution 
functions correspond to .α = 0 when the null hypothesis is satisfied
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Fig. 6 The subsampling approach in the regression case. The figure shows the averages (left) 
and empirical distribution functions (right) of sample p-values coming from the test . TS of axial 
symmetry around a line in direction .u = (cos(α), sin(α), 0T)T ∈ Sm−1 for .α ∈ [0,π/360]. 
The plots have been obtained from .1,000 simulation experiments, each using .1,000 independent 
subsamples of length .1,000 out of .n = 700,000 observations from the linear regression model 
.(Y1, . . . , Ym)T = BX + (ε1, . . . , mεm)T where .B = 1m1T

p ∈ Rm×p , the component . Z ∈ R4

of .X = (1, ZT)T is multivariate standard normal, and the distribution of .(ε1, . . . , εm)T is 
independent of . Z and multivariate uniform on .[−1, 1]2 (top) or on .[−1, 1]3 (bottom), or bivariate 
canonical . t7 (center). The empirical distribution functions correspond to .α = 0 when the null 
hypothesis is satisfied
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6 Concluding Remarks 

The tests always assume that the axial direction is known, and they cannot be easily 
extended to the situations with an unknown or estimated axial direction due to their 
complex nonlinear dependence on the axial directional vector. Therefore, their 
usefulness for exploratory analysis is limited. 

The performance of the test .TB is disappointing due to the puzzling small 
but persistent size issues present even for large and normally distributed samples. 
These problems have also been observed in other supremum-based tests in the 
quantile regression context; see, e.g., Hudecová and Šiman (2021a) and Koenker 
and Machado (1999). 

Nevertheless, the introduced tests based on .Tχ2 and . TC constitute a viable proce-
dure for testing conditional axial symmetry in large datasets of small-dimensional 
vector observations where other options are not yet available, i.e., mainly in the 
linear regression context. In the multivariate case with .p = 1, they may be 
recommended only if the rank scores are not available and if the assumptions of 
Hudecová and Šiman (2021b) are not satisfied. Otherwise the tests of Hudecová and 
Šiman (2021b) and Hudecová and Šiman (2023) should be preferred. 
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