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Abstract: The paper deals with active fault detection of stochastic systems based on tensor
train representation of the Bellman function. The faulty and faulty-free behavior of the system
is represented using multiple models. The active fault detection problem is treated as an optimal
design problem similar to optimal stochastic control. The original problem is reformulated as a
perfect state information problem by introducing an information state that contains statistics
computed by a state estimator. The Bellman function is computed using the value iteration
algorithm over a rectilinear grid set up in the information state space. Within the value
iteration algorithm, the Bellman function is represented using the tensor train decomposition,
and considerable attention is devoted to designing a rectilinear grid that respects the constraints
placed on the elements of the information state.
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1. INTRODUCTION

The main distinctive feature of active fault detection is
an auxiliary input signal that excites a monitored sys-
tem to improve the quality of decisions (Zhang, 1989).
This approach can be formulated in stochastic (Kereste-
cioğlu and Zarrop, 1991; Blackmore and Williams, 2005;
Punčochář and Šimandl, 2008), deterministic (Nikoukhah,
1998; Campbell and Nikoukhah, 2004; Raimondo et al.,
2016) or combined (Streif et al., 2014) frameworks.

In the stochastic framework, the problem of active fault
detection can be formulated as a functional optimization
problem. The optimal solution can be found by solving
the Bellman functional equation using the value iteration
algorithm (Punčochář and Šimandl, 2014). The critical is-
sues are finite-dimensional representations of the Bellman
function (Punčochář et al., 2015) and the optimal input
signal generator (Král and Punčochář, 2022). If the grid-
based approach is used to represent the Bellman function,
the memory and computational requirements increase ex-
ponentially with the dimension of the information state.
In recent years, the tensor train decomposition was suc-
cessfully used to represent a general function (Tichavský
and Phan, 2023) and the Bellman function in optimal
control (Gorodetsky et al., 2015).

The paper aims to employ the tensor train decomposition
for the active fault detection problem. The main challenge
is using a rectilinear grid over the information state that
respects the constraints on some of its elements.

The paper is structured as follows: Section 2 provides
problem formulation of active fault detection. Section 3
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discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
k , µk] ∈ S = X × M is a state, xk ∈

X ⊆ Rnx is a continuous-valued part of the state, µk ∈
M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
faulty-free model and µk ∈ {2, 3, . . . ,M} for faulty ones)
being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
and yk ∈ Y ⊆ Rny is an output. The conditional PDF (1a)
can be factorized as

psk+1|sk,uk
(sk+1|sk,uk) = pµk+1|sk,uk

(µk+1|sk,uk)×
pxk+1|sk,µk+1,uk

(xk+1|sk, µk+1,uk). (2)

We assume that the conditional PDFs pxk+1|sk,µk+1,uk
and

pµk+1|sk,uk
satisfy
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and Phan, 2023) and the Bellman function in optimal
control (Gorodetsky et al., 2015).

The paper aims to employ the tensor train decomposition
for the active fault detection problem. The main challenge
is using a rectilinear grid over the information state that
respects the constraints on some of its elements.

The paper is structured as follows: Section 2 provides
problem formulation of active fault detection. Section 3

⋆ The work was supported by the Czech Science Foundation under
grant 22-11101S.

discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
k , µk] ∈ S = X × M is a state, xk ∈

X ⊆ Rnx is a continuous-valued part of the state, µk ∈
M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
faulty-free model and µk ∈ {2, 3, . . . ,M} for faulty ones)
being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
and yk ∈ Y ⊆ Rny is an output. The conditional PDF (1a)
can be factorized as

psk+1|sk,uk
(sk+1|sk,uk) = pµk+1|sk,uk

(µk+1|sk,uk)×
pxk+1|sk,µk+1,uk

(xk+1|sk, µk+1,uk). (2)

We assume that the conditional PDFs pxk+1|sk,µk+1,uk
and

pµk+1|sk,uk
satisfy

Active Fault Detection Based on Tensor
Train Decomposition ⋆
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discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
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M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
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being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
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can be factorized as
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Ivo Punčochář ∗ Ondřej Straka ∗ Petr Tichavský ∗∗
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and Phan, 2023) and the Bellman function in optimal
control (Gorodetsky et al., 2015).

The paper aims to employ the tensor train decomposition
for the active fault detection problem. The main challenge
is using a rectilinear grid over the information state that
respects the constraints on some of its elements.

The paper is structured as follows: Section 2 provides
problem formulation of active fault detection. Section 3

⋆ The work was supported by the Czech Science Foundation under
grant 22-11101S.

discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
k , µk] ∈ S = X × M is a state, xk ∈

X ⊆ Rnx is a continuous-valued part of the state, µk ∈
M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
faulty-free model and µk ∈ {2, 3, . . . ,M} for faulty ones)
being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
and yk ∈ Y ⊆ Rny is an output. The conditional PDF (1a)
can be factorized as

psk+1|sk,uk
(sk+1|sk,uk) = pµk+1|sk,uk

(µk+1|sk,uk)×
pxk+1|sk,µk+1,uk

(xk+1|sk, µk+1,uk). (2)

We assume that the conditional PDFs pxk+1|sk,µk+1,uk
and

pµk+1|sk,uk
satisfy



	 Ivo Punčochář  et al. / IFAC PapersOnLine 58-4 (2024) 676–681	 677

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Active Fault Detection Based on Tensor
Train Decomposition ⋆
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ponentially with the dimension of the information state.
In recent years, the tensor train decomposition was suc-
cessfully used to represent a general function (Tichavský
and Phan, 2023) and the Bellman function in optimal
control (Gorodetsky et al., 2015).

The paper aims to employ the tensor train decomposition
for the active fault detection problem. The main challenge
is using a rectilinear grid over the information state that
respects the constraints on some of its elements.

The paper is structured as follows: Section 2 provides
problem formulation of active fault detection. Section 3
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discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
k , µk] ∈ S = X × M is a state, xk ∈

X ⊆ Rnx is a continuous-valued part of the state, µk ∈
M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
faulty-free model and µk ∈ {2, 3, . . . ,M} for faulty ones)
being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
and yk ∈ Y ⊆ Rny is an output. The conditional PDF (1a)
can be factorized as

psk+1|sk,uk
(sk+1|sk,uk) = pµk+1|sk,uk

(µk+1|sk,uk)×
pxk+1|sk,µk+1,uk

(xk+1|sk, µk+1,uk). (2)

We assume that the conditional PDFs pxk+1|sk,µk+1,uk
and

pµk+1|sk,uk
satisfy
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Punčochář and Šimandl, 2008), deterministic (Nikoukhah,
1998; Campbell and Nikoukhah, 2004; Raimondo et al.,
2016) or combined (Streif et al., 2014) frameworks.

In the stochastic framework, the problem of active fault
detection can be formulated as a functional optimization
problem. The optimal solution can be found by solving
the Bellman functional equation using the value iteration
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and Phan, 2023) and the Bellman function in optimal
control (Gorodetsky et al., 2015).

The paper aims to employ the tensor train decomposition
for the active fault detection problem. The main challenge
is using a rectilinear grid over the information state that
respects the constraints on some of its elements.

The paper is structured as follows: Section 2 provides
problem formulation of active fault detection. Section 3

⋆ The work was supported by the Czech Science Foundation under
grant 22-11101S.

discusses the design of an active fault detector, including
the reformulation to a perfect state information problem.
Section 4 then describes the tensor train decomposition,
grid design for the Bellman function, and the value itera-
tion algorithm. A numerical illustration of the active fault
detector using the proposed tensor train decomposition
of the Bellman function is presented in Section 5, and
concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

The problem of active fault detection is considered for
a stochastic system over an infinite time horizon T =
{0, 1, . . .}. The faults are modeled using a multiple model
framework where the fault-free and each faulty behavior of
the monitored system is described by its own model. Thus,
it is assumed that the monitored system can be described
at each time step k ∈ T be the following conditional
probability density functions (PDFs)

psk+1|sk,uk
(sk+1|sk,uk) , (1a)

pyk|sk (yk|sk) , (1b)

where sTk = [xT
k , µk] ∈ S = X × M is a state, xk ∈

X ⊆ Rnx is a continuous-valued part of the state, µk ∈
M = {1, 2 . . . ,M} is a discrete-valued part of the state
that represents the index of the model (µk ∈ {1} for the
faulty-free model and µk ∈ {2, 3, . . . ,M} for faulty ones)
being in effect at the time step k, uk ∈ U ⊂ Rnu is an
auxiliary input that can be used for active fault detection,
and yk ∈ Y ⊆ Rny is an output. The conditional PDF (1a)
can be factorized as

psk+1|sk,uk
(sk+1|sk,uk) = pµk+1|sk,uk

(µk+1|sk,uk)×
pxk+1|sk,µk+1,uk

(xk+1|sk, µk+1,uk). (2)

We assume that the conditional PDFs pxk+1|sk,µk+1,uk
and

pµk+1|sk,uk
satisfy

Active Fault Detection Based on Tensor
Train Decomposition ⋆
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pµk+1|sk,uk
satisfy

pxk+1|sk,µk+1,uk
(xk+1|sk, µk+1,uk) =

pxk+1|sk,uk
(xk+1|sk,uk), (3)

pµk+1|sk,uk
(µk+1|sk,uk) = pµk+1|µk

(µk+1|µk), (4)

where pxk+1|sk,uk
and Pµk+1|µk

are known. The conditional
PDF (1b) is also assumed to be known. The initial state
s0 is described by the known PDF

p(s0) = px0
(x0)Pµ0

(µ0). (5)

The aim is to design an active fault detector that is
described at each time step as[

dk
uk

]
=

[
σk(zk)
γk(zk)

]
, (6)

where dk ∈ M is a decision and zk = [y0:k,u0:k−1] ∈
Zk = Yk+1 × Uk is an information vector 1 that contains
all random variables whose realizations were observed up
to the current time step k. The function σk : Zk → M
describes a passive decision generator and the function
γk : Zk → U describes an input signal generator.

The sequence of functions σ0:∞ and γ0:∞ should be de-
signed such that the decision dk is close to the model index
µk at each time step of the infinite time horizon. Therefore,
the functions σk and γk are designed to minimize the
following discounted additive criterion

J = lim
F→∞

E

{
F∑

k=0

ηkL(µk, dk)

}
, (7)

where E{·} is the expectation operator, η ∈ (0, 1) is a
discount factor, and L : M×M → R+ is a detection cost
function selected by a user to assign a cost for selecting
decision dk while true model is µk. A reasonable detection
cost function should satisfy

L(i, i) < L(i, j) (8)

for each i ∈ M and j ∈ M, j ̸= i.

3. DESIGN OF ACTIVE FAULT DETECTOR

This section presents the design of an active fault detector.
As the state sk is observed only through the noisy mea-
surement yk, the problem is first reformulated as a perfect
state information problem that uses an information state
consisting of statistics computed by a state estimator. The
general solution to this reformulated problem is given in
terms of the Bellman functional equation. Then, the tensor
train decomposition is presented as an efficient approxi-
mation of a Bellman function over a rectilinear grid. As
the information state includes covariance matrices and a
probability vector, a rectilinear grid cannot be defined over
the space of the information states. This issue is addressed
by an auxiliary grid that serves as an intermediate between
the information state space and the space of discrete in-
dices of a tensor representing the Bellman function.

3.1 Perfect State Information Problem

Since the state sk of the system (1) is not directly available,
the problem of active fault detector design belongs to the

1 The notation yi:j represents the sequence of variables yk from the
time step i up to the time step j and Un = U × U × . . .×U denotes
the n-ary Cartesian power of the set U .

class of imperfect state information problems. This paper
addresses the issue by reformulating it as a perfect state
information problem that uses the conditional PDF psk|zk

as an infinite-dimensional state (Striebel, 1965; Bertsekas,
2000). In principle, this PDF can be obtained recursively
by the optimal state estimator that performs the measure-
ment update using the Bayes functional relation

psk+1|zk+1
(sk+1|zk+1) =

pyk+1|sk+1
(yk+1|sk+1)

pyk+1|zk,uk
(yk+1|zk,uk)

×

psk+1|zk,uk
(sk+1|zk,uk) (9)

and the time update using the Chapman-Kolmogorov
functional relation

psk+1|zk,uk
(sk+1|zk,uk) =∫

S
psk+1|sk,uk

(sk+1|sk,uk)psk|zk
(sk|zk) d sk. (10)

Combining these two updates, the perfect state informa-
tion model can be written as

psk+1|zk+1
= φ

(
psk|zk

,uk,yk+1

)
, (11)

where φ : P × U × Y → P is a functional mapping
that transforms the conditional PDF psk|zk

, input uk, and
future output yk+1 to the conditional PDF psk+1|zk+1

. The
future output yk+1 is treated as a random disturbance
described by the predictive conditional PDF

pyk+1|zk,uk
= φy(psk|zk

,uk), (12)

where φy : P × U → P is a functional mapping that
transforms the conditional PDF psk|zk

and input uk into
conditional PDF pyk+1|zk,uk

. Note that P denotes the set
of all possible conditional PDFs. The functional mapping
(11) includes the description of the monitored system
through pyk+1|sk+1

and psk+1|sk,uk
as its parameters.

The generalized pseudo Bayesian (GPB)2 state estimator
together with the information state ξk can be used to build
up an approximation to (11)

ξk+1 = ϕ (ξk,uk,yk+1) , (13)

where ϕ : Ξ × U × Y → Ξ is a mapping that represents
the dynamics of an approximate perfect state information
model and the future output yk+1 is treated as a random
disturbance with the conditional PDF pyk+1|zk,uk

that is
approximated by a PDF with moments being computed
using the state estimation algorithm from ξk and uk.
The active fault detector for the perfect state information
problem is time-invariant and is described as[

dk
uk

]
=

[
σ̄(ξk)
γ̄(ξk)

]
. (14)

Finally, the equivalent form of the additive discounted
criterion (7) is

J = lim
F→∞

E

{
F∑

k=0

ηkL̄(ξk, dk)

}
, (15)

where L̄ : Ξ × M → R+ is a detection cost function
derived from the original detection cost function L. See
e.g., (Punčochář et al., 2015) for details.

3.2 Bellman Equation for Active Fault Detector

The active fault detector optimal for the approximate
perfect state information problem (13), (14), and (15) can
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be determined by finding the value function V : Ξ → R+

that solves the following Bellman functional equation

V (ξ) = min
d∈M
u∈U

E
{
L̄(ξ, d) + ηV (ϕ(ξ,u,y′))|ξ,u

}
, (16)

where E{·|·} is the conditional expectation operator. The
conditional PDF py′|ξ,u used for the expectation calcula-
tion is defined as

py′|ξ,u(y
′|ξ,u) = pyk+1|zk,uk

(y′|ξ,u). (17)

Once the Bellman function V is found, the decision and
input signal generators are given as

dk = σ̄(ξk) = argmin
d∈M

E
{
L̄(ξk, d)|ξk

}
, (18)

uk = γ̄(ξk) = argmin
u∈U

E {V (ϕ(ξk,u,y
′))|ξk,u} . (19)

The Bellman functional equation (16) can be solved ap-
proximately using iterative methods such as the value
iteration, policy iteration, or policy search that succes-
sively compute an approximation to the Bellman func-
tion (Buşoniu et al., 2010). In recent years, the tensor
train decomposition approach was successfully used to ap-
proximate the Bellman function in several optimal control
problems, see e.g., Gorodetsky et al. (2015).

4. TENSOR TRAIN DECOMPOSITION OF
BELLMAN FUNCTION

4.1 Description of the tensor train decomposition

A survey of several tensor decompositions can be found,
e.g., in (Kolda and Bader, 2009), and the tensor train de-
composition used in this paper is elaborated in (Oseledets
and Tyrtyshnikov, 2010). A real d-dimensional tensor F is
a function defined over a discrete set

F : I1 × I2 × . . .× Id → R, (20)

where Ij = {1, 2, . . . , nj} is a set of discrete indices and
nj ∈ N is the cardinality of the set Ij . Since the domain
of F is a finite set, we can represent the tensor F as a d-
dimensional array (i.e., a function stored in its tabular
form) 2 and write F ∈ Rn1×n2×···×nd . Since the total
number of elements in the tensor F is

n =
d∏

j=1

nj , (21)

it is amenable for storing and computing only if the
dimension d is low. This issue can be addressed using
a tensor train decomposition (TTD) that exists for any
tensor F. This decomposition assumes that an element of
the tensor F can be written as

F(i1, i2, . . . , id) =

r0∑
α0=1

r1∑
α1=1

· · ·
rd∑

αd=1

F1(α0, i1, α1)F2(α1, i2, α2) · · ·Fd(αd−1, id, αd), (22)

where Fj : Rj−1×Ij×Rj → R is a real three-dimensional
tensor, Rj = {1, 2, . . . , rj} is an auxiliary discrete set, and
rj ∈ N is a rank. The ranks r0 and rd can be selected as
r0 = rd = 1 without loss of generality. The total number
of elements in the TTD is

2 These two interpretations will be used interchangeably without
using different notation.

nttd =

d∑
j=1

rj−1rjnj . (23)

It suggests that a significant saving in memory require-
ments can be achieved if the ranks are not too high. Since
the exact TTD of a given tensor might require high ranks,
a low rank TTD F̂ that approximates the original tensor
F is of interest. If the whole tensor F is available 3 , its
low-rank approximation can be found using numerically
stable algorithms that build upon the singular value de-
compositions (SVDs) of unfolding matrices of the tensor
F (Oseledets and Tyrtyshnikov, 2010). However, in most
cases of interest, the tensor F is too large for these algo-
rithms to be used. In such a case, the algorithms for finding
a low rank TTD are based on the skeleton decomposition
of unfolding matrices (Savostyanov and Oseledets, 2011).
The algorithm presented in the paper (Savostyanov and
Oseledets, 2011) can be used to find the approximation
to the Bellman function at each iteration of the value
iteration algorithm.

4.2 Grid design

Although the grid design is affected by several factors (e.g.,
grid extent and density), only one particular factor related
to the constraint imposed by the covariance matrices
and probability vector is addressed in this section. If the
continuous-valued part of the state xk has a dimension
greater than one (nx > 1) or the number of models
is greater than two (M > 1), the set of admissible
information states Ξ cannot be written as the Cartesian
product of intervals due to restriction on the covariance
matrix and the probability vector embedded in sets Ξc

and Ξp, respectively. Therefore, it is impossible to define
a rectilinear grid that would reasonably fill the whole set
Ξ. This issue can be addressed by defining a rectilinear
grid over a superset of Ξ and removing the inadmissible
grid points from further computation. However, it is not
clear if this approach is a viable option for tensor train
algorithms that work with fibers of a tensor (i.e., values of
tensor for all arguments fixed at all dimensions except for
one). Therefore, the issue is addressed in this paper at the
level of the grid design.

To facilitate further discussion, it is necessary to formalize
the connection between the integer indices of the tensor
and the grid points of a rectilinear grid. Let us assume a
vector of indices iT = [i1, i2, . . . , inξ

] ∈ I = I1 ×I2 × . . .×
Inξ

and a rectilinear grid G over a superset of Ξ that is
defined using the Cartesian product as

G = G1 × G2 × . . .× Gnξ
, (24)

where Gj =
{
g
(1)
j , g

(2)
j , . . . , g

(nj)
j

}
is a discrete ordered set

for the j-th dimension and g
(m)
j ∈ R. Then the relationship

between a grid point g ∈ G and vector of indices i ∈ I can
be written element-wise as

gj = hj(ij), (25)

where h : I → G is a bijective function that is natu-

rally defined by the assignment g
(m)
j = hj(m) for each

m ∈ {1, . . . , ni} and all j ∈ {1, . . . , nξ}. Now, according

3 It means that the tensor is small enough to be stored in memory
and is amenable for computation.
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be determined by finding the value function V : Ξ → R+

that solves the following Bellman functional equation

V (ξ) = min
d∈M
u∈U

E
{
L̄(ξ, d) + ηV (ϕ(ξ,u,y′))|ξ,u

}
, (16)

where E{·|·} is the conditional expectation operator. The
conditional PDF py′|ξ,u used for the expectation calcula-
tion is defined as

py′|ξ,u(y
′|ξ,u) = pyk+1|zk,uk

(y′|ξ,u). (17)

Once the Bellman function V is found, the decision and
input signal generators are given as

dk = σ̄(ξk) = argmin
d∈M

E
{
L̄(ξk, d)|ξk

}
, (18)

uk = γ̄(ξk) = argmin
u∈U

E {V (ϕ(ξk,u,y
′))|ξk,u} . (19)

The Bellman functional equation (16) can be solved ap-
proximately using iterative methods such as the value
iteration, policy iteration, or policy search that succes-
sively compute an approximation to the Bellman func-
tion (Buşoniu et al., 2010). In recent years, the tensor
train decomposition approach was successfully used to ap-
proximate the Bellman function in several optimal control
problems, see e.g., Gorodetsky et al. (2015).

4. TENSOR TRAIN DECOMPOSITION OF
BELLMAN FUNCTION

4.1 Description of the tensor train decomposition

A survey of several tensor decompositions can be found,
e.g., in (Kolda and Bader, 2009), and the tensor train de-
composition used in this paper is elaborated in (Oseledets
and Tyrtyshnikov, 2010). A real d-dimensional tensor F is
a function defined over a discrete set

F : I1 × I2 × . . .× Id → R, (20)

where Ij = {1, 2, . . . , nj} is a set of discrete indices and
nj ∈ N is the cardinality of the set Ij . Since the domain
of F is a finite set, we can represent the tensor F as a d-
dimensional array (i.e., a function stored in its tabular
form) 2 and write F ∈ Rn1×n2×···×nd . Since the total
number of elements in the tensor F is

n =
d∏

j=1

nj , (21)

it is amenable for storing and computing only if the
dimension d is low. This issue can be addressed using
a tensor train decomposition (TTD) that exists for any
tensor F. This decomposition assumes that an element of
the tensor F can be written as

F(i1, i2, . . . , id) =

r0∑
α0=1

r1∑
α1=1

· · ·
rd∑

αd=1

F1(α0, i1, α1)F2(α1, i2, α2) · · ·Fd(αd−1, id, αd), (22)

where Fj : Rj−1×Ij×Rj → R is a real three-dimensional
tensor, Rj = {1, 2, . . . , rj} is an auxiliary discrete set, and
rj ∈ N is a rank. The ranks r0 and rd can be selected as
r0 = rd = 1 without loss of generality. The total number
of elements in the TTD is

2 These two interpretations will be used interchangeably without
using different notation.

nttd =

d∑
j=1

rj−1rjnj . (23)

It suggests that a significant saving in memory require-
ments can be achieved if the ranks are not too high. Since
the exact TTD of a given tensor might require high ranks,
a low rank TTD F̂ that approximates the original tensor
F is of interest. If the whole tensor F is available 3 , its
low-rank approximation can be found using numerically
stable algorithms that build upon the singular value de-
compositions (SVDs) of unfolding matrices of the tensor
F (Oseledets and Tyrtyshnikov, 2010). However, in most
cases of interest, the tensor F is too large for these algo-
rithms to be used. In such a case, the algorithms for finding
a low rank TTD are based on the skeleton decomposition
of unfolding matrices (Savostyanov and Oseledets, 2011).
The algorithm presented in the paper (Savostyanov and
Oseledets, 2011) can be used to find the approximation
to the Bellman function at each iteration of the value
iteration algorithm.

4.2 Grid design

Although the grid design is affected by several factors (e.g.,
grid extent and density), only one particular factor related
to the constraint imposed by the covariance matrices
and probability vector is addressed in this section. If the
continuous-valued part of the state xk has a dimension
greater than one (nx > 1) or the number of models
is greater than two (M > 1), the set of admissible
information states Ξ cannot be written as the Cartesian
product of intervals due to restriction on the covariance
matrix and the probability vector embedded in sets Ξc

and Ξp, respectively. Therefore, it is impossible to define
a rectilinear grid that would reasonably fill the whole set
Ξ. This issue can be addressed by defining a rectilinear
grid over a superset of Ξ and removing the inadmissible
grid points from further computation. However, it is not
clear if this approach is a viable option for tensor train
algorithms that work with fibers of a tensor (i.e., values of
tensor for all arguments fixed at all dimensions except for
one). Therefore, the issue is addressed in this paper at the
level of the grid design.

To facilitate further discussion, it is necessary to formalize
the connection between the integer indices of the tensor
and the grid points of a rectilinear grid. Let us assume a
vector of indices iT = [i1, i2, . . . , inξ

] ∈ I = I1 ×I2 × . . .×
Inξ

and a rectilinear grid G over a superset of Ξ that is
defined using the Cartesian product as

G = G1 × G2 × . . .× Gnξ
, (24)

where Gj =
{
g
(1)
j , g

(2)
j , . . . , g

(nj)
j

}
is a discrete ordered set

for the j-th dimension and g
(m)
j ∈ R. Then the relationship

between a grid point g ∈ G and vector of indices i ∈ I can
be written element-wise as

gj = hj(ij), (25)

where h : I → G is a bijective function that is natu-

rally defined by the assignment g
(m)
j = hj(m) for each

m ∈ {1, . . . , ni} and all j ∈ {1, . . . , nξ}. Now, according
3 It means that the tensor is small enough to be stored in memory
and is amenable for computation.
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Fig. 1. Illustration of two possible nonlinear bijective
functions that map grid points and indices of a tensor.

to the previous discussion, some of the grid points are
not admissible as they lie outside the set Ξ. Thus, we
must redefine the bijective function h to avoid such in-
stances. One approach follows the idea of tensor reshaping
used in multiresolution analysis (Kazeev and Oseledets,
2013). Instead of the original index set I an alternative
index set Im with a possibly different dimension is se-
lected and an alternative function hm : Im → G ∩ Ξ is
established. The underlying idea is illustrated in Fig. 1
for a two-dimensional rectilinear grid G by means of two
different index sets Im and corresponding nonlinear func-
tions hm. The circles and squares represent the admissible
and inadmissible grid points of G, respectively. The up-
per part of the figure shows a mapping between a two-
dimensional grid and a one-dimensional index. The lower
part of the figure illustrates another mapping between a
two-dimensional grid and two-dimensional indices. This
approach gets more complex in a higher-dimensional case.
Also, note that a possible structure existing in the original
space can be lost. Therefore, this approach will not be
pursued further in this paper.

Another approach is to introduce an intermediate rec-
tilinear grid F = F1 × F2 × . . . × Fnξ

, where Fj =

{f (1)
j , f

(2)
j , . . . , f

(ni)
j } and split the bijective function h into

two compound bijective functions as

g = h2 (h1(i)) , (26)

where h1 : I → F is a bijective function that maps the
index set I to the intermediate rectilinear grid F and
h2 : F → G ⊂ Ξ is a bijective function that maps the
intermediate rectilinear grid F to a grid G that might
not be rectilinear. The function h1 is defined similarly

to h by the assignment f
(m)
j = h1,j(m). The definition

of the bijective function h2 must consider the constraint
on the admissible grid points in the set G. Let us denote
the elements of the function h2 that pertain to a single
covariance matrix as hc

2 and the elements representing the
probability vector as hp

2 . The following two subsections
discuss the selection of these two functions.

Covariance matrix The function hc
2 is specified using

the spherical parametrization of positive definite covari-
ance matrices (Pinheiro and Bates, 1996). The Cholesky
decomposition of a positive definite covariance matrix
P ∈ Rnn×nn is

P = LTL, (27)

where L ∈ Rnx×nx is an upper triangular matrix. The
matrix can be parameterized as

L =




ℓ1 ℓ2 cos(θ1,2) ℓ3 cos(θ1,3) . . .
0 ℓ2 sin(θ1,2) ℓ3 sin(θ1,3) cos(θ2,3) . . .
0 0 ℓ3 sin(θ1,3) sin(θ2,3) . . .
...

... 0 . . .
0 0 0 . . .




(28)

and the first i elements of the i-th column of the matrix
for i = 2, . . . , nx read



L1,i

L2,i

L3,i

...
Li,i



=




ℓi cos(θ1,i)
ℓi sin(θ1,i) cos(θ2,i)

ℓi sin(θ1,i) sin(θ2,i) cos(θ3,i)
...

ℓi sin(θ1,i) sin(θ2,i) · · · sin(θi−1,i)



, (29)

where ℓi ∈ R++ is a non-zero norm of the i-th column of
L and θj,i ∈ [0, π] for j = 1, . . . , i − 1 are angles of the
spherical parametrization. From the parametrization (29),
the following convenient relationship between the diagonal
elements of the covariance matrix P and parameters ℓi
follows

Pii = ℓ2i . (30)

Let us denote the part of the intermediate rectilinear
grid F that pertains to the covariance matrix Pk|k(i) as

Fc,i ⊂ Rnx(nx+1)/2. It is specified as a Cartesian product of
discrete sets Li ⊂ R++ and Θj,i ⊂ [0, π] for the parameters
ℓi, and θ1,i to θi−1,i for all i = 1, . . . , n, respectively.

The inverse function h−1
2 is given as follows. For a given

positive definite covariance matrix P, the Cholesky de-
composition is found. For the i-th column of the Cholesky
factor L, the parameters ℓi, and θ1,i to θi−1,i are computed
as follows. The parameter ℓi is given as

ℓi = ∥L1:i,i∥2. (31)

Then, the column is normalized

L1:i,i :=
L1:i,i

ℓi
(32)

and the angles can be computed successively as

θj,i = arccos (Lj,i) , Lj+1:i,i :=
Lj+1:i,i

sin(θj,i)
, (33)

where j = 1, 2, . . . , i− 1.

Probability vector The elements of the function h2 that
correspond to the probability vector π ∈ Π are specified
in the following way. A commonly used bijective function
that maps the hypercube (0, 1)M−1 to the interior of the
probability simplex (Leger, 2023) is

πi = ti

M−1
j=i+1

(1− tj), (34)

where t ∈ (0, 1)M−1. If this function is extended to
the closure of the hypercube (0, 1)M−1, it also maps to
the boundary of the probability simplex, but it fails to
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Fig. 2. Illustration of two compound bijective functions
that map indices of a tensor and grid points.

be bijective. If the conditional probabilities P (µk|zk) do
not converge to the boundary values of the probability
simplex, it seems reasonable to limit the grid points only
to the interior of the probability simplex. Then the inverse
function h−1

2 is given as

ti =
πi

1−
∑M−1

j=i+1 πj

, (35)

where π is in the interior of Ξp.

An illustration of the grid for the index set I, intermediate
rectilinear grid F , and the grid with admissible points G
for a probability vector in a two-dimensional simplex is
shown in Fig. 2.

4.3 Tensor Train Value Iteration

When the TTD is used to represent the Bellman function
V (i) in the value iteration algorithm, the single iterate is
described as

V (i+1)(i) = min
u∈U

E
{
L̄ (h2(h1(i)),u)+

ηV (i)
(
h−1
1 (h−1

2 (ϕ(h2(h1(i)),u,y)|i,u))
)}

. (36)

The iteration starts with a zero Bellman function V (0)

in the tensor train format. At each iteration step, the
right-hand side of (36) can be evaluated for any selected
index i. The TT-RC method (Savostyanov and Oseledets,
2011) that is implemented in the TT-Toolbox is used to
construct the TTD of the right-hand side and is stored
in V (i+1). The iterations are performed until convergence
criteria are satisfied.

5. NUMERICAL EXAMPLE

A preliminary evaluation of the proposed approach is
performed through a simplified numerical example of a
linear Gaussian second-order system with a measurable
state xk and two models. The first model represents fault-
free behavior, and the second represents faulty behavior.
Although this simplified model does not require the pro-
posed grid design for the covariance matrices, it is suitable
for an initial evaluation. The PDFs describing the system
are given as

pxk+1|sk,uk
(xk+1|sk,uk) = N{xk+1 : Aµk

xk +Bµk
uk,Q},

pyk|sk(yk|sk) = δ(yk − xk),

where N{x : m,P} denotes the Gaussian distribution
of the random variable x with the mean value m and
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Fig. 3. The convergence of the value iteration algorithm.

the covariance matrix P, and δ denotes the Dirac delta
function. The matrices of the system are

A1 =

[
0.956 0.085
−0.834 0.7

]
,A2 =

[
0.957 0.083
−0.814 0.67

]
, (37)

B1 =

[
0.002
0.042

]
,B2 =

[
0.002
0.041

]
,Q = 9× 10−4I2. (38)

The transition probability is

P (µk+1|µk) =

[
0.95 0.02
0.05 0.98

]
. (39)

The initial state is described as px0(x0) = N{x0 :
02×1, 0.002 I2} and P (µ0 = 1) = 1. The set of admissible
inputs is selected as U = {−10, 0, 10}, the discount factor
is η = 0.9, and the detection cost function is

L(µk, dk) =

{
1 if µk ̸= dk,

0 otherwise.
(40)

Since the continuous-valued state is directly available, the
information state ξk ∈ R3 is selected as

ξTk =
[
xT
k P (µk = 1|zk)

]
(41)

and a simpler state estimator is used to compute P (µk =
1|zk). The grid is selected as G = {−1 : 0.005 : 1} × {−3 :
0.1 : 3} × {0 : 0.01 : 1} and it contains 2 470 561 points.
The mean value in the Bellman equation (36) is computed
approximately using the unscented transform (Julier et al.,
2000). The TTD representation of the Bellman function is
found in the fixed number of 40 iterations of the value
iteration algorithm. During the value iteration, the ranks
were around r1 = 6 and r2 = 4, which translates approx-
imately to 4274 elements of the TTD. It is considerable
less then the number of grid points. The convergence of
the algorithm expressed as ∥V (i) −V (i−1)∥F is depicted in
Fig. 3. Since the dimension of the information state space
is small and full tensor can be constructed, it is possible
to compute the max norm ∥V (i) − V (i−1)∥∞ that is also
given in Fig. 3. These norms are not monotonic, probably
due to the random selection of fibers performed within the
TT-RC algorithm. One particular realization of the input,
state, and decision trajectories is given in Fig. 4.

The figures show that the TTD approximate representa-
tion of the Bellman function can provide quality decisions
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be bijective. If the conditional probabilities P (µk|zk) do
not converge to the boundary values of the probability
simplex, it seems reasonable to limit the grid points only
to the interior of the probability simplex. Then the inverse
function h−1

2 is given as

ti =
πi

1−
∑M−1

j=i+1 πj

, (35)

where π is in the interior of Ξp.

An illustration of the grid for the index set I, intermediate
rectilinear grid F , and the grid with admissible points G
for a probability vector in a two-dimensional simplex is
shown in Fig. 2.

4.3 Tensor Train Value Iteration

When the TTD is used to represent the Bellman function
V (i) in the value iteration algorithm, the single iterate is
described as

V (i+1)(i) = min
u∈U

E
{
L̄ (h2(h1(i)),u)+

ηV (i)
(
h−1
1 (h−1

2 (ϕ(h2(h1(i)),u,y)|i,u))
)}

. (36)

The iteration starts with a zero Bellman function V (0)

in the tensor train format. At each iteration step, the
right-hand side of (36) can be evaluated for any selected
index i. The TT-RC method (Savostyanov and Oseledets,
2011) that is implemented in the TT-Toolbox is used to
construct the TTD of the right-hand side and is stored
in V (i+1). The iterations are performed until convergence
criteria are satisfied.

5. NUMERICAL EXAMPLE

A preliminary evaluation of the proposed approach is
performed through a simplified numerical example of a
linear Gaussian second-order system with a measurable
state xk and two models. The first model represents fault-
free behavior, and the second represents faulty behavior.
Although this simplified model does not require the pro-
posed grid design for the covariance matrices, it is suitable
for an initial evaluation. The PDFs describing the system
are given as

pxk+1|sk,uk
(xk+1|sk,uk) = N{xk+1 : Aµk

xk +Bµk
uk,Q},

pyk|sk(yk|sk) = δ(yk − xk),

where N{x : m,P} denotes the Gaussian distribution
of the random variable x with the mean value m and
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the covariance matrix P, and δ denotes the Dirac delta
function. The matrices of the system are

A1 =

[
0.956 0.085
−0.834 0.7

]
,A2 =

[
0.957 0.083
−0.814 0.67

]
, (37)

B1 =

[
0.002
0.042

]
,B2 =

[
0.002
0.041

]
,Q = 9× 10−4I2. (38)

The transition probability is

P (µk+1|µk) =

[
0.95 0.02
0.05 0.98

]
. (39)

The initial state is described as px0(x0) = N{x0 :
02×1, 0.002 I2} and P (µ0 = 1) = 1. The set of admissible
inputs is selected as U = {−10, 0, 10}, the discount factor
is η = 0.9, and the detection cost function is

L(µk, dk) =

{
1 if µk ̸= dk,

0 otherwise.
(40)

Since the continuous-valued state is directly available, the
information state ξk ∈ R3 is selected as

ξTk =
[
xT
k P (µk = 1|zk)

]
(41)

and a simpler state estimator is used to compute P (µk =
1|zk). The grid is selected as G = {−1 : 0.005 : 1} × {−3 :
0.1 : 3} × {0 : 0.01 : 1} and it contains 2 470 561 points.
The mean value in the Bellman equation (36) is computed
approximately using the unscented transform (Julier et al.,
2000). The TTD representation of the Bellman function is
found in the fixed number of 40 iterations of the value
iteration algorithm. During the value iteration, the ranks
were around r1 = 6 and r2 = 4, which translates approx-
imately to 4274 elements of the TTD. It is considerable
less then the number of grid points. The convergence of
the algorithm expressed as ∥V (i) −V (i−1)∥F is depicted in
Fig. 3. Since the dimension of the information state space
is small and full tensor can be constructed, it is possible
to compute the max norm ∥V (i) − V (i−1)∥∞ that is also
given in Fig. 3. These norms are not monotonic, probably
due to the random selection of fibers performed within the
TT-RC algorithm. One particular realization of the input,
state, and decision trajectories is given in Fig. 4.

The figures show that the TTD approximate representa-
tion of the Bellman function can provide quality decisions
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Fig. 4. A sample trajectory of input uk, state xk, µk, and
decision dk.

even though its number of elements is small compared to
the number of elements if no approximation is involved for
the Bellman function representation. Such savings can be
crucial when dealing with higher dimensional problems.

6. CONCLUSION

The paper dealt with the TTD representation of the
Bellman function for the active fault detection problem.
The main challenge addressed was the design of a grid
that can be used in connection with the tensor train
representation. The use of TTD for the Bellman function
representation is crucial for high-dimensional problems
for which the full tensor representation of the Bellman
function cannot be constructed due to enormous memory
requirements.
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