
Tensor Train Approximation
of Multivariate Functions

1st Petr Tichavský
Inst. of Information Theory and Automation

Czech Academy of Sciences
Prague 8, Czech Republic

tichavsk@utia.cas.cz

2nd Ondřej Straka
Department of Cybernetics
University of West Bohemia

Pilsen, Czech Republic
straka30@kky.zcu.cz

Abstract—The tensor train is a popular model for approxi-
mating high-dimensional rectangular data structures that cannot
fit in any computer memory due to their size. The tensor train
can approximate complex functions with many variables in the
continuous domain. The traditional method for obtaining the
tensor train model is based on a skeleton decomposition, which
is better known for matrices. The skeleton (cross) decomposition
has the property that the tensor approximation is accurate on
certain tensor fibers but may be poor on other fibers. In this
paper, we propose a technique for fitting a tensor train to an
arbitrary number of tensor fibers, allowing flexible modeling
of multivariate functions that contain noise. Two examples are
studied: a noisy Rosenbrock function and a noisy quadratic
function, both of order 20.

I. INTRODUCTION

Multidimensional data appear in many applications, e.g.,
chemistry, astronomy, psychology, and other fields. Such data
is obtained when multivariate functions are sampled in a rect-
angular grid. The number of tensor elements is an exponential
function of the number of tensor dimensions (tensor order).
Some authors speak of a curse of dimensionality.

In practice, getting by with only a fraction of the tensor
elements may be possible. The most common methods for
handling multidimensional data are known as Parallel factor
analysis (PARAFAC) [1], or Canonical decomposition (CAN-
DECOMP) [2], or CP [3], [4]. Another popular method for
coping with high-dimensional data is the tensor train (TT)
[5], [6]. In quantum chemistry, this is known as the “matrix
product state”, and it is an outcome of the algorithm called
“density matrix renormalization group” (DMRG) [14].

Both models, the canonical polyadic decomposition (CPD)
and the tensor train (TT), have in common the fact that they
are multilinear. When some model parameters are fixed, the
tensor is linear with respect to the remaining parameters. When
the fitting criterion is quadratic, the optimization is performed
in closed form with respect to the linear part. The alternating
least squares (ALS) method consists of a cyclic optimization
with respect to a part of the parameters. The ALS method is the
most classical algorithm for the CPD. It has also been applied
to TT [17], [18]. In the latter paper, the algorithm is used
for tensor completion (estimating missing tensor elements).

This work was supported by the Czech Science Foundation through the
project No. 22-11101S.

Our paper solves a similar problem where the observed tensor
elements are arranged in tensor fibers.

In the case of TT decomposition, it is usually much more
convenient to use singular value decomposition (SVD), pro-
vided that all tensor elements are available and their number is
not too large. When the number of tensor elements is large, it
has been suggested to use the skeleton decomposition instead,
an extension of the skeleton matrix decomposition [16]. This
algorithm, also known under the name TT-cross, exists in
several variants [7], [9], [12], all of them use the maximum
volume algorithm [15]. The method is useful when the data
has no noise and obeys the low-rank model.

The novelty of this work is twofold. First, to the best of our
knowledge, it is the first paper to apply the ALS algorithm
to tensors that would never fit in any computer memory
while using the observed tensor elements stored in bundles of
fibers. Second, it is shown that some interesting or important
multivariate functions can be represented as functional tensor
trains with low bond dimensions.

The paper is organized as follows. In Section 2, we in-
troduce the TT and TT-cross decompositions. In Section 3,
we present an ALS technique for the TT decomposition that
allows the model to fit many more fibers of the tensor than
the TT-cross decomposition. A similar technique exists for
CPD [19], [20]. Here, the TT-cross decomposition is used
to initialize ALS. Section 4 presents a numerical experiment
using the Rosenbrock function and a quadratic function, both
with 20 variables. Section 5 concludes the paper.

II. TT DECOMPOSITION

Assume that we wish to model a function V (ξ) of N
variables, ξ = (x1, . . . , xN) sampled at the rectangular grid
[g11 , . . . , g

1
I1
]× . . .× [gN1 , . . . , gNIN]. The sampled function con-

stitutes an order−N tensor T of dimension I1× I2× . . .× IN
with elements

T (i1, . . . , iN) = V (g1i1 , . . . , g
N
iN)

for in = 1, . . . , In, n = 1, . . . , N .
A TT is a tensor model with a moderate number of

parameters arranged in so-called wagons or carriages. The
wagons are order-3 tensors except for the first and last wagons,
which are order-2, i.e. matrices. The tensor train is given as

2262ISBN: 978-9-4645-9361-7 EUSIPCO 2024

Fig. 1. Tensor train T = {{w}} with wagons w1, . . . ,wN .

Fig. 2. Strangulation: An approximation of an order-N tensor by a contraction
of two tensors smaller in size.

a contraction of these wagons; see Fig. 1. If the wagons are
denoted w1, . . . ,wN , then their contraction will be written as
T = {{w}}. Elements of the tensor train are computed as

T (i1, . . . , iN) =

R1∑
b1=1

R2∑
b2=1

. . .

RN−1∑
bN−1=1

w1(i1, b1)w2(b1, i2, b2) . . .wN (bN−1, iN) .

The integers R1, . . . , RN−1 are called bond dimensions. A
continuous extension of the tensor train is the functional
decomposition [10],

V (ξ) = W1(x1)W2(x2) . . .WN (xN) (1)

where ξ = [x1, . . . , xn] and Wn(xn), n = 1, . . . N are
univariate matrix functions of scalars xn for n = 1, . . . , N .
The bond dimensions refer to sizes of the matrices; Wn(·)
has the size Rn−1 × Rn for n = 1, . . . , N . Here, we set
R0 = RN = 1.

For future descriptions, we need to consider the notion of
tensor fiber. Let v = [v1, . . . , vN] be a vector of indices, vn ∈
[1, . . . , In]. Then, the fiber with indices v along the dimension
k is an Ik × 1 vector

f(T ,v, k) = T (v1, . . . , vk−1, :, vk+1, . . . , vN)

The colon “:” means that the index at the k−th position is
free, and all remaining indexes are fixed, selected from v.

A. TT-SVD decomposition

The TT decomposition [5], [6] can be obtained through
a series of strangulations, see Fig. 2. Here, the tensor T is
approximated by a contraction of two smaller tensors, say T1
and T2. The strangulation can be accomplished by singular
value decomposition (SVD) of a matrix obtained by reshaping
the tensor.

The strangulation can be applied N−1 times to achieve the
tensor train. Since SVD is a computationally cheap operation,
the TT decomposition is easy to accomplish unless the number
of the tensor elements is too large. In the latter case, a TT-cross
algorithm is an option [7]–[9].

B. Skeleton Matrix Decomposition

The skeleton matrix decomposition is a special case of the
TT-cross decomposition for order-2 tensors/matrices. Let an
N ×M matrix M have rank R, R ≤ N , R ≤ M . Let I be
a set of R indices, I ⊂ {1, . . . , N} and let J be a set of R
indices, J ⊂ {1, . . . ,M}. Let M(I, :) denote a submatrix of
M composed of the rows of the matrices with indices in I.
Similarly, M(:,J) denotes a submatrix of M composed of the
columns of the matrices with indices in J . Finally, M(I,J)
is the R × R submatrix with row indices in I and column
indices in J .

Assume the submatrix M(I,J) is invertible. Then, it
holds [7]

M = M(:,J)[M(I,J)]−1M(I, :) . (2)

In other words, we can write M as a product of two “wagons”,

M = w1w2 (3)

where w1 = M(:,J), w2 = [M(I,J)]−1M(I, :). The bond
dimension is the rank R. Note that the sets of the indices I and
J are not selected at random but through an maxvol algorithm
that aims to maximize the absolute value of the determinant
of M(I,J) [15].

C. TT-cross decomposition

The TT-cross decomposition exists in several variants [7]–
[9]. In all of them, as in the skeleton matrix decomposition,
the tensor has to be evaluated along some bundles of fibers.
Assume that for each n = 1, . . . , N , we are given a set of the
fibers along the dimension n stored as columns of a matrix
Fn of the size In×Bn, and indices (position) of the fibers in
matrix Vn of the size N×Bn. If vk is the k−th column of Vn,
then the k−th column of Fn is f(T ,vk, n) for k = 1, . . . , Bn.
The number Bn (the number of the columns) depends on the
bond dimensions. The variants of the algorithm differ in the
way how the fibers in (Fn,Vn) are selected. Here, we describe
the main idea only.

Assume that the tensor obeys the TT model with bond
dimensions (1, R1, . . . , RN−1, 1). If it is reshaped into the
matrix M1 of the size I1× (I2 . . . IN), the matrix would have
rank R1. The bundle of the fibers F1 is a submatrix of M1,
i.e. F1 = M1(:,J1) where J1 depends on the indices in V1.
If the fibers in F1 were selected well and their number is
B1 = R1, then F1 has full rank, R1. Applying the maxvol
algorithm, we can find the index set I1 so that absolute value
of the determinant of F1(I1, :) is maximized. The first wagon
in the train is then w1 = (F1(I1, :))−1F1.

Next, we consider a matrix M2 obtained by reshaping the
sub tensor T (I1, :, . . . , :) to the size (R1I2) × (I3 . . . IN).
According to the TT model, M2 has rank R2. We can select
R2 its columns (e.g., randomly, and V2 will be constructed
accordingly) to get a submatrix M̃2 of the size (R1I2)×R2.
Then, M̃2 can be obtained by reshaping F2 or vice versa.
Note that V2 and F2 contain B2 = R1R2 columns. Now, we
apply the maxvol algorithm to M̃2 to find the set I2 of R2

2263

Fig. 3. Scalar product of two tensor trains {{v}} and {{w}}

indices such that M̃2(I2, :) has a large volume. The wagon
w2 is obtained by reshaping the matrix (M̃2(I2, :))−1M̃2 in
the required format (R1, I2, R2). Similarly, the other wagons
are obtained. If the tensor T obeys the TT model exactly, we
receive another exact (or identical) TT representation of the
tensor.

D. Computing error of the TT model

It is not trivial to evaluate the accuracy of the TT approx-
imation unless we can compare the full tensor and the TT
model at every grid point. We can calculate the error only
approximately.

One option is to select (e.g., randomly) a large number
of the entries where the two tensors (the original T and its
approximation T̂) are compared; say {v1, . . . ,vP }, where vp,
p = 1, . . . , P are vectors of the tensor indices. The approxi-
mation error would be computed as the standard deviation of
errors between the selected entries of the tensors,

εP =

√√√√ 1

P

P∑
p=1

[T (vp)− T̂ (vp)]2 . (4)

A more sophisticated approximation of the estimation error
can be obtained by TT modeling of the error tensor T̂ − T .
Let {{w̃i}}=TTD(T̂ −T) be its TT approximation. The error

εTTD =
1

√
ne

∥TTD(T̂ − T)∥F . (5)

where ne is the number of the element in T . To compute εTTD,
we use the same procedure applied to obtain T̂ = {{wi}},
possibly with lower bond dimensions, because the error can
be estimated with lower accuracy. We leave the question of
the bond dimension of the error tensor to future experimental
analysis; we only note that we obtained satisfactory results
with quite low bond dimensions. Under normal condition and
large P , both errors should be similar, εP ≈ εTTD. Note
that the Frobenius norm of a tensor in TT format can be
computed with a low complexity without handling all the
tensor elements, see Fig. 3.

III. ALS FOR TT DECOMPOSITION

In this section, the computation of TT decomposition by
ALS is proposed. We start with the case N = 2, i.e,
decomposition of a matrix M. Assume that we are given
some initial rank-R model of the matrix, i.e., matrices A0, B0,
obtained, e.g., by the skeleton algorithm, and next assume that
we get two submatrices F1 = M(:,J) and FT

2 = M(I, :) of
M on which the model M̂ = ABT will be fitted. The sets I,

J should contain the indices used in the skeleton algorithm
and some additional ones. We wish to minimize the criterion
penalizing a discrepancy between submatrices F1, F2 and their
approximations

E(A,B) = ∥F1 − F̂1(A,B)∥2F + ∥F2 − F̂2(A,B)∥2F
−∥F12 − F̂12(A,B)∥2F . (6)

where F12 = M(I,J), F̂1(A,B) = M̂(:,J) = AB(J , :)T ,
and F̂2(A,B) = M̂(I, :)T = BA(I, :). Note that the third
term in (6) is already included in both the first two terms, and
therefore, it is subtracted so that the equal weight applies to
all available tensor elements.

The ALS method consists of a cyclic optimization of
the above criterion with respect to A and B. Details are
summarized in Algorithm 1.

Algorithm 1 (ALS for fibers’-based matrix decomposition)
Input: Index sets I, J , fiber matrices F1 = M(:,J),

F2 = M(I, :)T , initial factors A = A0, B = B0

Repeat until convergence
A(I, :) = FT

2 (B
T)†

A(I, :) = F1(I, :)(B(J , :)T)†

B(J , :) = FT
1 (A

T)†

B(J , :) = F2(J , :)(A(I, :)T)†
End
I = {1, . . . ,M} − I, J = {1, . . . , N} − J ,
† denotes matrix pseudoinverse.

The ALS for higher-order tensor decomposition in the
tensor fibers is similar. The input is the set of the fiber
matrices Fn with indices in Vn, n = 1, . . . , N , and an initial
tensor train {{wn}}. For simplicity, we do not care about the
intersection of the fibers (which is an analogy to F12 and may
be empty) and minimize the criterion

E({w}) =

N∑
n=1

∥Fn − F̂n({w})∥2F

where F̂n({w}) is the matrix of fibers for T̂ = {{w}} (with
indices in Vn), and ∥ · ∥F is the Frobenius norm.

All fiber matrices are separately linear functions of each
wagon in the train. Say

vec(F̂m) = Lmnvec(wn)

for m,n = 1, . . . , N , where Lmn are suitable matrices that
depend on all other wagons wk, k ̸= n, and “vec” the
vectorization operator. The least-square estimate of the n−th
wagon is then

vec(ŵn) =

[
N∑

m=1

LT
mnLmn

]−1 [N∑
m=1

LT
mnvec(Fm)

]
.

Details of the algorithm (i.e., the matrices Lmn) are presented
in Appendix A.

The algorithm has the advantage that the number of fibers
used for estimation can be increased adaptively. The quality of
the current model (the approximation error) can be tested on

2264

a bunch of randomly selected fibers. If the error is not small
enough, it is advised to add the testing fibers to the set of
fibers used for estimation and perform additional iterations of
the ALS algorithm to distribute the error among all the fibers.
Note that the ALS algorithm can still be modified using the
ideas in [18] to enhance its performance.

IV. EXAMPLES

A. Noisy Rosenbrock function

In this example, we consider a Rosenbrock function [23]. It
is a non-convex function used as a performance test problem
for optimization algorithms. A multidimensional version of the
function is defined as

fN (x1, . . . , xN) =

N−1∑
i=1

b(xi+1 − x2
i)

2 + (a− xi)
2 . (7)

Typically, a = 1, b = 100.
In [22], it was shown that for N = 3, the tensor can

be decomposed as a TT with a bond dimension (1, 3, 3, 1).
Applying the skeleton TT algorithm shows that for higher
N , the bond dimension is (1, 3, . . . , 3, 1), at least for all
dimensions we tried (up to 20). The tensor was sampled on
the grid (−2 : 0.1 : 2)20 so that the tensor has 4120 elements,
more than any existing computer can handle. We can apply
the TT-cross algorithm to obtain an exact TT representation
of the tensor. The fitting error is a machine zero.

A noisy version of the tensor will be obtained by round-
ing the tensor elements to the closest integers. Each tensor
element’s expected mean square error (assuming a uniform
distribution of the errors) is then 1/12, and the standard
deviation is

√
3/6 ≈ 0.222. The TT-cross decomposition of

the noisy tensor has the problem that it provides either a
poor low-rank approximation based on a few tensor fibers
only or a high-rank (high bond dimension) approximation with
moderate but not small error because of over-fitting. To be
specific, we compute the fitting error as

ϕ =
1

√
nT

∥T̂ − T ∥F

where nT is the number of elements of T .
First, we applied the algorithm greedy2 cross of [13] with

a tolerance such that the bond dimension was 3. The resultant
fitting error ϕ was 29.14. The bond dimension grew to 21
with a lower tolerance, and the fitting error became 1.0910.
It was impossible to reduce the error ϕ further by lowering
the tolerance and increasing the bond dimension. Second,
we applied 20 sweeps of our ALSTT algorithm with bond
dimension 3 and a growing number of random tensor fibers.
The result is shown in Fig. 4. We can see a decrease in the
error. With 500 randomly chosen fibers along each dimension,
the error decreased to 0.05. The advantage of the proposed
algorithm is that it allows for the achievement of much lower
fitting errors than TT-core in noisy scenarios.

0 100 200 300 400 500

number of fibers

0

5

10

15

20

Fig. 4. Fitting error as a function of number of added fibers. Upper diagram:
Noisy Rosenbrock function. Lower diagram: Noisy quadratic function.

B. Noisy Quadratic Function

Let Q be a general positive definite matrix of the size N ×
N . Consider the quadratic function

V (ξ) = ξTQξ (8)

It can be shown that this function can be represented as a
functional tensor train (1) with maximum bond dimension
N/2+2. For example, for N = 20, the bond dimensions can be
(1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 1), see
Appendix B. We can choose any grids, e.g., (−2 : 0.1 : 2)20

again, and a tensor train with zero fitting error with this
bond dimension exists. The matrix Q was chosen such as
Q = XXT where X is a random 20 × 20 matrix with
elements generated as independent with the standard normal
distribution, N (0, 1). Again, a noisy tensor will be obtained
by rounding the tensor elements to the closest integers.
The task is to reconstruct the original (noiseless) tensor
by tensor train modeling. The results are similar to the
noisy Rosenbrock function. The fitting error of the TT-cross
was 5.22; ALS with added 50 fibers had an even worse
performance of 17.59. However, the error decreased to a
value of 0.7692 when 500 random fibers were added. The
difference with the Rosenbrock function is that the quadratic
function is more complex. It has more parameters and is,
therefore, more difficult to fit.

V. CONCLUSIONS

The proposed algorithm allows the modeling of high-order
multivariate functions in the presence of noise better than the
traditional TT-cross algorithm. We plan to use it to solve the
Bellman equation in dynamic programming. In this applica-
tion, the multivariate Bellman function varies in an iterative

2265

scheme in each step. We wish to handle it in the TT format
and thus break the curse of dimensionality.

APPENDIX A

In this Appendix, we show how one fiber of the tensor
T̂ = {{w}} along dimension m depends on one wagon of the
train, say wn, which may be subject of optimization, n,m =
1, . . . , N . Let the fiber f be given as f = f(T ,v,m), i.e., its
indices are in vector v.

Assume for simplicity that n = m. Let XL be the left part
of the train with the wagons w1, . . . ,wn−1 with the middle
entry replaced by the corresponding element of v. Then, XL

is the product of one vector and n− 2 matrices,

XL = w1(1, v1, :)w2(:, v2, :) . . .wn−1(:, vn−1, :) .

so that vector of the length Rn−1. Similarly the right part, XR

is the vector

XR = wn+1(:, vn+1, :)wn+2(:, vn+2, :) . . .wN (:, vN , 1) .

With this notation, it holds

f = wn ×1 XL ×3 XR

where ×k denotes the tensor-matrix multiplication along the
dimension k, k = 1, 2, 3. The last equation can be rewritten
as

f = (XR ⊗ IIn ⊗XL)vecwn

where ⊗ denotes the Kronecker product and IIn is the identity
matrix of the size In × In. The construction of the matrices
Lmn is an extension of these ideas.

APPENDIX B

Let Q be a symmetric matrix of the size N ×N , N > 1.
Consider the quadratic function of N variables,

VN (ξ) = ξTQξ

where ξ = (x1, . . . , xN). We present VN (ξ) in the form of
the functional tensor train decomposition (1) for N = 2, 3, 4
for now only. The extension to higher N is straightforward.

1) For N = 2, the bond dimensions are (1, 3, 1)

V2(ξ) = [x2
1, x1, 1][Q11, 2Q12x2, Q22x

2
2]

T

2) For N = 3, the bond dimensions are (1, 3, 3, 1)

V3(ξ) = [x2
1, x1, 1]

 0 0 Q11

0 2Q13 2Q12x2

Q33 2Q23x2 Q22x
2
2

 x2
3

x3

1

3) For N = 4, the bond dimensions are (1, 3, 4, 3, 1)

V4(ξ) = [x2
1, x1, 1]

 0 0 0 Q11

0 0 1 2Q12x2

1 x2 0 Q22x
2
2

 ·

Q44 2Q34x3 Q33x

2
3

0 2Q24 2Q23x3

0 2Q14 2Q13x3

0 0 1

 x2

4

x4

1

REFERENCES

[1] R.A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multimodal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[2] J.D. Carroll and J.J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of Eckart-Young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[3] N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K Huang, E.E Papalexakis,
and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning”, IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, Sep. 2009.

[5] I.V. Oseledets and E.E. Tyrtyshnikov, “Breaking the curse of dimen-
sionality, or how to use SVD in many dimensions,” SIAM Journal on
Scientific Computing, vol. 31, no. 5, pp. 3744–3759, 2009.

[6] I. V. Oseledets, “Tensor–train decomposition”, SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[7] I. V. Oseledets and E. E. Tyrtyshnikov, “TT-cross approximation for
multidimensional arrays”, Linear Algebra Appl., vol. 432, no. 1, pp.
70–88, 2010. doi: 10.1016/j.laa.2009.07.02

[8] E. Tyrtyshnikov, “Incomplete cross approximation in the mosaic-
skeleton method”. Computing, vol. 64, no.4, pp. 367–380, 2000.

[9] D.V. Savostyanov, “Quasioptimality of maximum-volume cross interpo-
lation of tensors”, Linear Algebra and its Applications, Vol. 458, pp.
217-244, 2014.

[10] A. Gorodetsky, S. Karaman, Y.M. Marzouk, “A continuous analogue
of the tensor-train decomposition”, Computer Methods in Applied
Mechanics and Engineering, vol. 347, no.4, pp. 59-84, 2018. DOI:
10.1016/j.cma.2018.12.015

[11] A. Gorodetsky, S. Karaman, Y.M. Marzouk, “High-dimensional
stochastic optimal control using continuous tensor decompositions”,
arXiv:1611.04706v2 [cs.RO] 11 Jan 2018.

[12] K. Sozykin, A. Chertkov, R. Schutski, A.-H. Phan, A. Cichocki, and
I. Oseledets, “TTOpt: A Maximum volume quantized tensor train-based
optimization and its application to reinforcement learning”, Proc. Thirty-
sixth Conference on Neural Information Processing Systems (NeurIPS
2022) https://arxiv.org/abs/2205.00293.

[13] I. Oseledets, “MATLAB Toolbox for working with high-
dimensional tensors in the Tensor-Train (TT)-format”
https://github.com/oseledets/TT-Toolbox.

[14] S. R. White, “Density matrix formulation for quantum renormalization
groups.”, Physical Review Letters 69 (1992), pp. 28–63.

[15] S.A. Goreinov, E.E. Tyrtyshnikov, “The maximal-volume concept in
approximation by low-rank matrices”, Contemporary Math. vol. 208,
pp. 47–51, 2001.

[16] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, “A theory of
pseudo-skeleton approximations”, Linear Algebra Appl., vol. 261, pp.
1–21, (1997).

[17] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear
scheme for tensor optimization in the tensor train format”, SIAM J. Sci.
Comput., vol. 34, no. 2, pp. A683–A713, 2012. doi: 10.1137/100818893.

[18] L. Grasedyck, M. Kluge, and S. Krämer, “Variants of alternating
least squares tensor completion in the tensor train format”, SIAM
Journal on Scientific Computing, vol. 37, no. 5, pp. A2424-A2450
(2015)10.1137/130942401

[19] M. Sörensen and L.De Lathauwer, “Fiber sampling approach to canoni-
cal polyadic decomposition and application to tensor completion”, SIAM
Journal on Matrix Analysis and Applications, vol. 40, no. 3, pp 888–917,
2019.

[20] N. Vervliet, O. Debals, L. Sorber, L. De Lathauwer, “Breaking the curse
of dimensionality using decompositions of incomplete tensors: Tensor-
based scientific computing in big data analysis”. IEEE Signal Processing
Magazine, vol. 31, no. 5, pp. 71–79, 2014.

[21] A. Sobral, E. Zahzah, “Matrix and tensor completion algorithms for
background model initialization: A comparative evaluation”, Pattern
Recognition Letters, vol. 96, pp. 22–33, 2017.

[22] P. Tichavský, and A.H. Phan, “Tensor chain decomposition and function
interpolation”, IEEE Statistical Signal Processing Workshop, Hanoi,
Vietnam, pp. 557–561, 2023.

[23] H.H. Rosenbrock, “An automatic method for finding the greatest or least
value of a function”. The Computer Journal., Vol. 3, no. 3, pp. 175–184,
1960.

2266

