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Abstract: A control design for a linear large-scale interconnected system composed of identical
subsystems is presented in this paper. The control signal of all subsystems is sampled. For different
subsystems, the sampling times are not identical. Nonetheless, it is assumed that a bound exists for
the maximal sampling time. The control algorithm is designed using the Wirtinger inequality, and
the non-fragile control law is proposed. The size of the linear matrix inequalities to be solved by
the proposed control algorithm is independent of the number of subsystems composing the overall
system. Hence, the algorithm is computationally effective. The results are illustrated by two examples.
The first example graphically illustrates the function of the proposed algorithm while the second one
compares with a method for stabilizing a large-scale system obtained earlier, thus illustrating the
improved capabilities of the presented algorithm.

Keywords: large-scale system; Wirtinger inequality; non-fragile control; linear matrix inequality (LMI)
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1. Introduction

To design control algorithms for large-scale interconnected systems, one usually
divides the overall system into subsystems with not-too-strong interconnections. Then,
one designs a control law so that the control input for a particular subsystem depends
on the measurements from this subsystem only while, on the other hand, guaranteeing
sufficient robustness to mitigate the effects of interconnections with the other subsystems.
For more information (see, e.g., [1,2] or [3]). An important subclass of them is symmetrically
interconnected systems (every subsystem is connected with every other one); see, e.g., [3],
Chapter 12, for a thorough description.

A crucial step in the design of control of linear large-scale interconnected systems
composed of identical subsystems is the definition of a certain transformation that converts
the large-scale interconnected system into a set of (non-identical) disconnected systems.
Stabilization of this set of autonomous systems implies stability of the original large-scale
system as well (see, e.g., [4], among others). In [5], this approach to the stabilization of
large-scale systems is applied to the control of large-scale nonlinear systems.

Control of large-scale systems is usually implemented via communication networks
bringing flexibility and cost-effectiveness, but also introducing some undesired effects,
such as sampling and quantization of the signals, the transmission of the measured data as
well as the control signals is subject to time delays, packet dropouts are present, etc. (see,
e.g., [6–11]).

As the state values are not always available for the controller, an observer must be
designed. An observer-based decentralized control of large-scale systems was proposed
in [12], and for systems with time delays in [13]. Event-triggered controller, allowing for
reduction of the communication cost in the control loop, was designed for a nonlinear
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interconnected system in [14], and the stabilization of a large-scale system with quantized
control signals was investigated in [11].

In many practical applications, the properties of the actuators are subject to changes in
time due to various causes like material degradation, changing of properties depending
on temperature, etc. However, their replacement can often be difficult or costly. Hence,
there is a need to propose a control tolerating changes in the properties of the actuators
(non-fragile control). This can be modeled as variations in the control gain. Here, additive
perturbations of the control gain are considered (see, e.g., [15,16] or, for a related problem
of multi-agent system synchronization, in [17] or [18]).

To find a stabilizing control for linear time-delay systems, the Lyapunov–Krasovskii
(see, e.g., [5] or, for a multi-agent system, [19]) or Razumikhin functional-based methods
(as in [6]) leading to linear matrix inequalities (LMI) are often applied. The Wirtinger
inequality can be used in connection with the Lyapunov–Krasovskii-based methods (see,
e.g., [20,21]), reducing the conservativeness of the involved estimates. The Lyapunov–
Krasovskii functional sometimes requires the derivative of the time delay to be less than
one. Hence, these methods are not suitable for systems with sampled controls. The so-called
descriptor approach (see [22]) is a remedy [23], which uses this approach in connection
with the Wirtinger inequality to stabilize a system with sampled controls. A large-scale
system is stabilized by a Wirtinger inequality-based design in [24]. This paper extends
these results.

Purpose of this paper:

• To present an improved algorithm for stabilization of an interconnected large-scale
system with sampled controls under less restrictive conditions than required by the
algorithm proposed by [6].

• To provide a comparison of both approaches.
• To present an algorithm that enables more general interconnections than the algorithm

proposed by [6].
• Based on existing results to propose the non-fragile control law extending the previous

results to the case of fluctuating control gain.

The novel method is based on the Wirtinger inequality.

Notation:

1. The LMI P > 0 means matrix P is a square symmetric positive definite matrix.
2. For symmetric matrices, the elements below the diagonal are not written explicitly

they are replaced by an asterisk:
(

a b
bT c

)
=

(
a b
∗ c

)
.

3. If no confusion can arise, the time argument t is omitted. The time delay is written
using subscript: x = x(t), x(t − τ) = xτ(t) = xτ . However, if the time argument is
different from t, it is written in full.

4. If A is a square matrix, then IA denotes the identity matrix with a dimension equal to
the dimension of A; 0 denotes a zero block; its dimension will be clear from the context.

5. By diag(A, B) we denote the block-diagonal matrix diag(A, B) =
(

A 0
0 B

)
.

6. The symbol ⊗ denotes the Kronecker product. Its properties are summarized, e.g.,
in [25].

Outline of the paper: The problem is introduced in Section 2, and the necessary
assumptions are presented here. Section 3 contains the design of the control algorithm
based on the Wirtinger inequality. This section is divided into two subsections. The
Wirtinger inequality-based control design algorithm is derived in the first subsection;
however, the dimension of this problem is dependent on the number of subsystems. This
issue is remedied in the second subsection, which contains a control algorithm design
independent of the number of subsystems. Section 4 contains two illustrative examples;
the first one graphically illustrates the capabilities of the algorithm, while the second one
provides a comparison with a method derived earlier, thus highlighting the improvements
achieved by the algorithm presented here. Then, the conclusions follow.
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2. Problem Setting

Consider the following large-scale system, which is composed of N identical subsys-
tems. For every i = 1, . . . , N, the ith subsystem is given by

ẋi =Axi + Bui +
N

∑
j=1

eijHxj + Gwi, (1)

xi(0) =xi,0. (2)

Here, xi(t) ∈ Rn, ui(t) ∈ Rm, wi(t) ∈ Rq are the state, control, and disturbance, respectively.
Moreover, A, H ∈ Rn×n, B ∈ Rn×m, and G ∈ Rn×q. We define also the interconnection matrix
E ∈ RN×N as follows: let i, j ∈ 1, . . . , N; if i ̸= j then eij = 1 if the state of the jth subsystem
influences the state of the ith subsystem, otherwise eij = 0.

Assumption 1. For every i = 1, . . . , N holds eii = 0 (the interconnection of the system has
no loops).

Assumption 2. Matrix E is symmetric.

The second assumption implies that there exists an orthogonal matrix T′ and a real
diagonal matrix D′ such that

E = T′T D′T′. (3)

Without loss of generality, one can assume d1 ≤ · · · ≤ dN and D′ = diag(d1, . . . , dN).

Remark 1. Due to the importance of symmetrically interconnected systems (every subsystem
is connected to every other subsystem; in this case, eij = 1 whenever i ̸= j, eii = 0), special
methods for these systems were proposed. Papers [6,15] and Chapter 12 in [3], among others,
are focused on the control of this class of interconnected systems. The most distinctive feature is
that a different transformation can be defined for these systems: the transformation matrix is not
necessarily constructed using eigenvectors; rather,

T′′ =
1
N


(N−1) −1 ... −1 −1
−1 (N−1) ... −1 −1
...

...
. . .

...
...

−1 −1 ... (N−1) −1
1 1 ... 1 1


can be used. This can be beneficial if N is large as construction of this transformation matrix does not
require computation of eigenvectors and eigenstructures. Still, the method based on the computation
of the eigenvalues is applicable for these systems if the computation of the eigenstructure of matrix E
poses no difficulties. Although both methods lead to a stabilizing control, the results can be different
in terms of conservativeness. This is why this case is treated separately in this paper.

Denote D′′ = diag(−1, . . . ,−1︸ ︷︷ ︸
N−1 times

, N − 1). As shown in [3] (Chapter 12), for an N-dimensional

matrix E, the relation E = T′′−1D′′T′′ holds.

Let x = (xT
1 , . . . , xT

N)
T , x̃ = (xT

1,τ1
, . . . , xT

N,τN
)T , w = (wT

1 , . . . , wT
N)

T , u = (uT
1 , . . . , uT

N)
T .

This allows us to rewrite the N-tuple of subsystems (1) and (2) in the compact form

ẋ = (IE ⊗ A + E ⊗ H)x + (IE ⊗ B)u + (IE ⊗ G)w, x0 = (xT
1,0, . . . , xT

N,0)
T . (4)

System (4) is referred to as the overall system.
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Assumption 3. The control is sampled; moreover, it is assumed the time interval of length τ′

elapses between the sampling time and the time instant when the measured value is available to the
controller. The sequence of sampling times of the ith subsystem is denoted by ti,k, k ∈ N.

Assumption 4. There exists τ̄ > 0 such that ti,k − ti,k−1 < τ̄ for all i = 1, . . . , N and all k.

We aim to find a matrix K ∈ Rm×n so that the control law

u = (KxT
1 (t1,k1 + τ′), . . . , KxT

N(ti,kN + τ′))T (5)

stabilizes the overall system.
In (5), ti,ki

is defined as follows: ti,ki
= max(ti,k|k ∈ N, ti,k < t − τ′). This is called the

nominal case, as the control gain is not perturbed.
In some cases, the control gain matrix is subject to perturbations. We assume the

perturbations are additive as in [15]; the matrix gain is time-dependent. Let there exist
measurable functions Fi : [0, ∞) → Rν×ν and matrices DK ∈ Rm×ν, EK ∈ Rν×n and
K ∈ Rm×n. Then, we define functions Ki by

Ki(t) = K + DKFi(t)EK. (6)

Assumption 5. Functions Fi : [0, ∞) → Rν×ν are measurable, and for all i = 1, . . . , N and all
t ≥ 0, ∥Fi(t)∥ ≤ 1 holds.

Then, the control law is given as

u = (K1(t)xT
1 (t1,k1 + τ′), . . . , KN(t)xT

N(ti,kN + τ′))T . (7)

The goal is to find matrix K so that stabilization of the overall system is achieved under the
control law (7). The delays satisfy the same conditions as in the nominal case. Matrix K is
called the nominal control gain matrix.

Remark 2. Matrices DK and EK are supposed to be known and available for the controller synthesis.
On the other hand, functions Fi are not known.

3. Control Design
3.1. Wirtinger Inequality and Its Application to the Control of a Large-Scale System

Lemma 1 ([26], Lemma 3.1). (Wirtinger inequality) Let a < b be real scalars, z : [a, b) → Rn be
an absolutely continuous function, z(a) = 0; limt→b− z(t) exists and is finite, and

∫ b
a ∥ż(s)∥2ds ex-

ists and is finite. Let there also exist an n× n-dimensional matrix R > 0. Then,
∫ b

a zT(s)Rz(s)ds ≤
4(b−a)2

π2

∫ b
a żT(s)Rż(s)ds.

This lemma was used to obtain the following result (Theorem 1 in [23]). For the sake
of completeness of this paper, we repeat it here without proof.

Theorem 1. Let 0 < τ′ < τ̄. Consider system

ẋ = A′x + B′u (8)

where x(t) ∈ Rn, u ∈ Rm and the control is sampled, so that Assumptions 3 and 4 hold. Let there
exist a scalar ε > 0 and matrices U ′ > 0, X ′ > 0, M′ > 0, L′ > 0, Z ′ nonsingular and K′ with
compatible dimensions, so that, with matrix Σ defined as
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Σ(A′,B′,X ′,Z ′,M′,L′,U ′,K′, ε) =


σ11 σ12 σ13 σ14
∗ σ22 σ23 εσ14
∗ ∗ σ33 0
∗ ∗ ∗ σ44

,

σ11 =A′TZ ′ +Z ′TA′ +M′ −L′, σ12 = X ′ −Z ′T + εA′TZ ′, σ13 = L′ +Z ′TB′K′,

σ14 =Z ′TB′K′, σ22 = −ε(Z ′ +Z ′T) + τ′2M′ + τ̄2U ′, σ23 = εZ ′TB′K′,

σ33 =−M′ −L′, σ44 = −π2

4
U ′,

the LMI
Σ(A′,B′,X ′,Z ′,M′,L′,U ′,K′, ε) < 0 (9)

holds. Then, system (8) with sampled control u = K′x(tk + τ′) is stable.

Remark 3. Note that matrix inequality (9) is linear either in Z or in K, but not simultaneously
in both; hence, it is not applicable to the control synthesis problem. On the other hand, a standard
procedure (applied in the subsequent text) yields a related matrix inequality that can be used to the
control design.

Remark 4. Parameter ε is not a decision variable; its value cannot be obtained from the solution of
these LMI. Rather, its value must be determined before the above LMIs are solved. The presence of
this parameter is characteristic for the control design using the descriptor approach (see [27]).

Remark 5. Paper [23] presents a slightly more general version, with a general matrix instead of
the multiple εZ . However, for the control synthesis problem, this formulation is useful.

Remark 6. Let ω̃ = (xT , ẋT , x − xτ′ , xτ′ − x(tk − τ′)) (here, tk is the last sampling time before
t − τ′). As shown in [23], if the Lyapunov–Krasovskii functional V ′ is defined as

V ′ = xTX ′x +
∫ t

t−τ′ xT(s)M′x(s)ds + τ′ ∫ 0
−τ′

∫ t
t+α ẋT(s)L′ ẋ(s)dsdα

+(τ̄ − τ′)2
∫ t−τ′

tk−τ′ ẋT(s)U ′ ẋ(s)ds

−π2

4

∫ t−τ′

tk−τ′

(
x(s)− x(tk − τ′)

)T
U ′

(
x(s)− x(tk − τ′)

)
ds

then V̇ ≤ ω̃TΣ(A′,B′,X ′,Z ′,M′,L′,U ′,K′, ε)ω̃ < 0 for ω̃ ̸= 0.

In the following, n × n-dimensional matrices U, X, M, L, and Z, and also matrix
K ∈ Rm×n and constants γ and ε, will be used.

Notation: Let us define the following matrices:

A = IE ⊗ A + E ⊗ H, B = IE ⊗ B,G = IE ⊗ G,U = IE ⊗ U,X = IE ⊗ X, M = IE ⊗ M,
L = IE ⊗ L, Z = IE ⊗ Z, K = IE ⊗ K, Σ1 = Σ(A,B,X ,Z ,M,L,U ,K, ε),
Σ2 = Σ1 + diag(IA + 1

γZTGGTZ , ε
γZTGGTZ , 0, 0),

(10)

ζ =


IA ZTG 0
0 0

√
εZTG

0 0 0
0 0 0

,

∆ = −diag(IA, γIGTG , γIGTG), Ψ =

(
Σ1 ζ

∗ ∆

)
.

(11)
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Lemma 2. Consider System (4), and let Assumptions 3 and 4 hold. Assume there exist n × n-
dimensional matrices U > 0, X > 0, M > 0, L > 0, Z nonsingular, an m × n-dimensional matrix
K, and scalars ε > 0 and γ > 0, such that, using Notation (10), LMI

Ψ < 0 (12)

holds. Let the control ui of the ith subsystem be given by (5). Then, if w = 0, System (4) is asymp-
totically stabilized; otherwise, if x(t) = 0 for all t ∈ [−τ̄, 0], for every t ≥ 0,

∫ t
0 xT(s)x(s)ds ≤

γ(1 + ε)
∫ t

0 wT(s)w(s)ds holds.

Remark 7. This is a direct counterpart of Theorem 7.1 in [27] for large-scale systems where the
sampling times are different for different subsystems. Thus, the proof is sketched here.

Proof. First, observe that the Schur complement theorem yields Ψ < 0, if and only if
Σ2 < 0. Moreover, for any scalar γ > 0, one has

(xTZT + εẋTZT)Gw ≤ 1
γ

xTZTGGTZx +
1
γ

ẋTZTGGTZ ẋ + (1 + ε)γwTw.

Now, we are ready to prove that inequality Σ2 < 0 implies the H∞-stability of the
overall system. Let us introduce, for the i = 1, . . . , N vector,

ω =
(
xT

1 , . . . , xT
N , ẋT

1 , . . . , ẋT
N , (x1 − x1,τ′)

T , . . . , (xN − xN,τ′)
T ,

x1,τ′ − x(t1,k − τ′)T , . . . , xN,τ′ − x(tN,k − τ′)T)T .

Observe also that

N

∑
i=1

xT
i ZT

N

∑
j=1

eijHxj =xT(IE ⊗ ZT)(E ⊗ H)x,

N

∑
i=1

ẋT
i ZT

N

∑
j=1

eijHxj =ẋT(IE ⊗ ZT)(E ⊗ H)x.

Define functional V by

V = xTX x +
∫ t

t−τ′
xT(s)Mx(s)ds + τ′

∫ 0

−τ′

∫ t

t+α
ẋT(s)Lẋ(s)dsdα

+
N

∑
i=1

(τ̄ − τ′)2
∫ t−τ′

ti,k−τ′
ẋT

i (s)Uẋi(s)ds

− π2

4

∫ t−τ′

ti,k−τ′

(
xi(s)− x(ti,k − τ′)

)T
U
(

xi(s)− x(ti,k − τ′)
)

ds.

The procedure described in the following is based on [23], where only one delay is con-
sidered. As multiple delays are present in our problem, we sketch a generalization of
the results of that paper to systems with multiple delays. Thus, for the case without
uncertainties in the control gain matrix, one obtains



Axioms 2024, 13, 702 7 of 15

V̇ =
N

∑
i=1

2xT
i Xẋi + xT

i Mxi − xT
i,τ′ Mxi,τ′ + ẋT

i (τ
′2L + τ̄U)ẋi

− π2

4
(xi,τ′ − x(ti,k − τ′)TU(xi,τ′ − x(ti,k − τ′)

− (xi − xi,τ′)
T L(xi − xi,τ′) + (xT

i ZT + εẋT
i Z)(−ẋi + Axi

+
N

∑
j=1

eijHxj + BKxi,τ′ + BK(xi,τ′ − x(ti,k − τ′) + Gwi) + xT
i xi − xT

i xi

≤ωTΣ2ω.

Then,

V̇ =V̇ + (xTZT + εẋTZT)(

=0︷ ︸︸ ︷
−ẋ +Ax + Bu + Gw) = ωTΣ1ω + (xTZT + εẋTZT)Gw

≤ωTΣ2ω + γ(1 + ε)wTw − xTx ≤ γ(1 + ε)wTw − xTx.

As follows from the first part of the proof, Condition (12) implies Σ2 < 0. Then, for w = 0,
the following holds: if ∥ω∥ ̸= 0, then V̇ < 0, which yields asymptotic stability. If w ̸= 0
and x(t) = 0 for t ∈ [−τ̄, 0], then γ(1 + ε)

∫ t
0 wT(s)w(s)ds ≥

∫ t
0 xT(s)x(s)ds.

Remark 8. Finding the minimal γ satisfying assumption of Lemma 2 allows us to find the H∞-
optimal control.

Consider now the case when the feedback gain is perturbed. The control gains are
given by (6). Denote

DK = IE ⊗ DK, EK = IE ⊗ EK,F (t) = diag(F1(t), . . . , FN(t)). (13)

In this case, matrix Σ1 is time dependent; time dependent terms appear in σ13, σ23, σ14
and σ24 = εσ14. They are estimated using the following proposition. Before it is formulated,
let us choose a matrix J ∈ Rν×ν, J > 0, and also define

J = IE ⊗ J. (14)

With matrix J , as well as the matrices defined in (13), we define auxiliary matrices Υ ∈
RNn×Nn, Ω̃(t), Ω̃′ ∈ R4Nn×4Nn by

Υ = ZTBDKJDT
KBTZ ,

Ω̃(t) =

0
(
ZTBDKF (t)EK ZTBDKF (t)EK
εZTBDKF (t)EK εZTBDKF (t)EK

)
∗ 0

,

Ω̃′ =


Υ εΥ 0 0
∗ ε2Υ 0 0
∗ ∗ ET

KJ −1EK ET
KJ −1EK

∗ ∗ ∗ ET
KJ −1EK

.

Proposition 1. With matrices Ω̃ and Ω̃′ and with J > 0 one can see that inequality Ω̃(t) ≤ Ω̃′.
holds for all t ∈ [0, ∞).
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Proof. The following holds for Ω̃:

Ω̃(t) =

 0
(
ZTBDK
εZTBDK

)
F (t) (EK EK)

∗ 0

,

The Young inequality then yields the result.

For future purposes, we introduce matrix
Ω ∈ R(5n+2q+ν)N×(5n+2q+ν)N as follows:

Ω =



Υ εΥ 0 0 0 0 0 0
∗ ε2Υ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 ET

K
∗ ∗ ∗ 0 0 0 0 ET

K
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −J


.

Moreover, let Σ2, Ψ be defined as

Ψ =

(
Ψ 0
∗ 0

)
+ Ω.

Lemma 3. Consider System (4). Let Assumptions 3, 4, and 5 hold. Moreover, assume there exist
n × n-dimensional matrices U > 0, X > 0, M > 0, L > 0, Z nonsingular and K ∈ Rm×n,
J ∈ Rν×ν, such that J > 0 and scalars ε > 0 and γ > 0, so that, using notations (10), (11), (13),
and (14), the LMI

Ψ < 0 (15)

holds. Assume System (4) with the control input (7). Then, if w = 0, System (4) is asymptotically
stabilized; otherwise, if x(t) = 0 for every t ∈ [−τ̄, 0], then for every t ≥ 0, the following holds:∫ t

0
xT(s)x(s)ds ≤ γ(1 + ε)

∫ t

0
wT(s)w(s)ds. (16)

Proof. Proceeding as in the proof of Lemma 2, one can infer

V̇ ≤ω̃T(Σ2 + Ω̃(t))ω̃ + γ(1 + ε)wTw − xTx. (17)

If one can prove the inequality

Σ2 + Ω̃(t) < 0 (18)

for all t ≥ 0, one then obtains that (17) implies V̇ < γ(1 + ε)wTw − xTx.
Hence, it remains to prove the validity of (18) for all t ≥ 0 if Ψ < 0. Taking the Schur

complement of matrix Ω, one obtains that Ψ < 0, if and only if

Ψ +

(
Ω̃′ 0
∗ 0

)
< 0.

Proceeding as in the proof of Lemma 4, one has that the above inequality is equivalent to
Σ2 + Ω̃′ < 0. Taking (1) into account, we arrive at (18).

To sum up, V̇ < γ(1 + ε)wTw − xTx if x(t) = 0 in [−τ̄, 0]. As in the proof of Lemma 2,
by integration from 0 to t, we arrive at

∫ t
0 xT(s)x(s)ds ≤ γ(1 + ε)

∫ t
0 xT(s)x(s)ds. On the

other hand, if w(t) = 0 for all t ≥ 0, (17) implies V̇ ≤ ω̃T(Σ2 + Ω̃(t))ω̃ < 0 if ω̃ ̸= 0, and
one has asymptotic stability of the closed loop.
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3.2. Reduction of the Size of the Problem and Controller Synthesis

The size of the optimization problem (12) is proportional to nN, hence it is too large
for practical implementation. On the other hand, matrices Ψ and Ψ can be transformed
into a block-diagonal matrix, albeit with, in general, not equal terms on the diagonal.
This procedure, as well as the subsequent procedure for the controller design, are rather
standard; hence, their description is brief.

To proceed, let

ζ ′ =


IA ZTG 0
0 0

√
εZTG

0 0 0
0 0 0

,

∆′ =− diag(IA, γIGT G, γIGT G).

Define matrix-valued function Ψ′ : Rn×n → R(5n+2q)×(5n+2q) as follows:

Ψ′(Λ) =




ψ′

11(Λ) ψ′
12(Λ) ψ′

13 ψ′
14

∗ ψ′
22 ψ′

23 εψ′
14

∗ ∗ ψ′
33 0

∗ ∗ ∗ ψ′
44

 ζ ′

∗ ∆′

,

ψ′
11(Λ) =ΛTZ + ZTΛ + M − L + IΛ,

ψ′
12(Λ) =X − ZT + εΛTZ,

ψ′
13 =L + ZT BK

ψ′
14 =ZT BK,

ψ′
16 =ZTG,

ψ′
22 =− ε(Z + ZT) + τ′2M + τ̄2U,

ψ′
23 =εZT BK,

ψ′
27 =

√
εZTG,

ψ′
33 =− M − L,

ψ′
44 =− π2

4
U.

Lemma 4 (No uncertainties in the control gain). Assume there exist n× n-dimensional matrices
U > 0, X > 0, M > 0, L > 0, Z nonsingular, and K ∈ Rm×n, and scalars ε > 0 and γ > 0, so
that at least one of the following conditions holds:

1. The eigenvalues of matrix E satisfy

Ψ′(A + d1H) < 0, Ψ′(A + dN H) < 0. (19)

2. The system is symmetrically connected, and

Ψ′(A − H) < 0, Ψ′(A + (N − 1)H) < 0. (20)

Then, Ψ < 0.

Proof. In the first case, note that the matrix-valued Ψ(A + dH) function is convex in d.
Hence, conditions (19) imply Ψ(A + djH) < 0 for all j = 1, . . . , N.
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With help of relation (3), we introduce matrix Σ̃1, defined by Σ̃1 = Σ(IE ⊗ A + D′ ⊗
H,B,X ,Z ,M,L,U ,K, ε),

Ψ̃ =

(
Σ̃1 ζ

∗ ∆

)
.

If the first condition in the formulation of this lemma holds, observe that there exists a
permutation matrix Π, such that

Ψ̃ = ΠTdiag(Ψ′(A + d1H), . . . , Ψ′(A + dN H))Π,

hence, Ψ̃ < 0.
Define now T = diag(T′ ⊗ IA, T′ ⊗ IA, T′ ⊗ IA, T′ ⊗ IA, T′ ⊗ IA, T′ ⊗ IGT G, T′ ⊗ IGT G).

Properties of the Kronecker product imply Ψ = T −1Ψ̃T , and one has Ψ < 0.
If condition (20) holds, then define

T ′′ = diag(T′′ ⊗ IA, T′′ ⊗ IA, T′′ ⊗ IA, T′′ ⊗ IA, T′′ ⊗ IA, T′′ ⊗ IGT G, T′′ ⊗ IGT G). Then, there
is a permutation matrix Π′′, such that

Ψ = (T ′′)−1Π′′Tdiag
(

Ψ′(A + (N − 1)H), Ψ′(A − H), . . . , Ψ′(A − H)︸ ︷︷ ︸
N−1 times

)
Π′′T ′′

which implies Ψ < 0. This completes the proof of this case.

To handle the case with uncertainties in the control gain, let us define matrices

ψ
′
11(Λ) =ψ′

11(Λ) + ZT BDK JDT
KBTZ,

ψ
′
12(Λ) =ψ′

12(Λ) + εZT BDK JDT
KBTZ,

ψ
′
22 =ψ′

22 + ε2ZT BDK JDT
KBTZ

and a matrix-valued function Ψ′ : Rn×n → R(5n+2q)×(5n+2q) as follows:

Ψ′
(Λ) =



ψ′
11(Λ) ψ′

12(Λ) ψ
′
13 ψ

′
14

∗ ψ′
22 ψ

′
23 εψ′

14
∗ ∗ ψ′

33 0
∗ ∗ ∗ ψ′

44

ζ ′

0
0

ET
K

ET
K

∗ ∆′ 0
∗ ∗ −J


.

Lemma 5 (Case with uncertainties in the control gain). Assume there exist n × n-dimensional
matrices U > 0, X > 0, M > 0, L > 0, Z nonsingular and K ∈ Rm×n, J ∈ Rν×ν, such that
J > 0 and scalars ε > 0 and γ > 0, so that at least one of the following conditions holds:

1. Ψ′
(A + dH) for all d ∈ {d1, dN}.

2. The system is symmetrically connected and
Ψ′

(A − H) < 0 as well as Ψ′
(A + (N − 1)H) < 0.

Then, Ψ < 0.

The proof is analogous to the proof of Lemma 4; hence, it is omitted.
To derive the controller synthesis algorithm, the procedure is similar to that of [23].

Also let Q = Z−1, Y = KZ−1, P = Z−TXZ−1, R = Z−T MZ−1, S = Z−T LZ−1, and
W = Z−TUZ−1. For n × n-dimensional matrices P > 0, R > 0, S > 0, W > 0, Q
nonsingular, a m × n-dimensional matrix Y, and positive scalars γ, ε, define matrices ξij,
j = 1, . . . , 4 and a matrix-valued function Ξ : Rn×n → R(5n+2q)×(5n+2q) by
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ξ11(Λ) =QTΛT + ΛQ + R − S,

ξ12(Λ) =P − Q + εQTΛT ,

ξ13 =S + BY,

ξ14 =BY,

ξ22 =− ε(Q + QT) + τ′2R + τ̄2W,

ξ23 =εBY,

ξ33 =− R − S,

ξ44 =− π2

4
W,

Ξ(Λ) =



ξ11(Λ) ξ12 ξ13 ξ14 QT G 0
∗ ξ22 ξ23 εξ14 0 0

√
εG

∗ ∗ ξ33 0 0 0 0
∗ ∗ ∗ ξ44 0 0 0
∗ ∗ ∗ ∗ −IΛ 0 0
∗ ∗ ∗ ∗ ∗ −γIGGT 0
∗ ∗ ∗ ∗ ∗ ∗ −γIGGT


.

Also define Ξ : Rn×n → R(5n+2q)×(5n+2q) as

ξ̄11(Λ) =QTΛT + ΛQ + R − S + BDK JDT
KBT ,

ξ̄12(Λ) =P − Q + εQTΛT + εBDK JDT
KBT ,

ξ̄22 =− ε(Q + QT) + τ′2R + τ̄2W + ε2BDK JDT
KBT ,

Ξ(Λ) =



ξ̄11(Λ) ξ̄12(Λ) ξ13 ξ14 QT G 0 0
∗ ξ̄22 ξ23 εξ14 0 0 G 0
∗ ∗ ξ33 0 0 0 0 QTET

K
∗ ∗ ∗ ξ44 0 0 0 QTET

K
∗ ∗ ∗ ∗ −IΛ 0 0 0
∗ ∗ ∗ ∗ ∗ −γIGGT 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γIGGT 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −J


.

Lemma 6. Consider System (4). Let there exist n × n-dimensional matrices P > 0, R > 0, S > 0,
W > 0, Q nonsingular, a m × n-dimensional matrix Y, and positive scalars γ, ε. Then, for every
matrix Λ ∈ Rn×n, Ξ(Λ) < 0 holds if and only if Ψ(Λ) < 0.

Proof. Let Q = diag(Q−1, Q−1, Q−1, Q−1, IΛ, IGT G, IGT G). Then, QT
Ξ(Λ)Q = Ψ(Λ).

The following analogous result holds for the case with uncertainties in the control gain.

Lemma 7. Let the assumptions of Lemma 6 hold; moreover, let there exist a n × n-dimensional
matrix J > 0. Then, the condition Ξ(Λ) < 0 holds if and only if Ψ(Λ) < 0.

Proof. The proof is analogous to the proof of Lemma 6. The only difference is that matrix
Q is defined as Q = diag(Q−1, Q−1, Q−1, Q−1, IA, IGT G, IGT G, IET

K EK
).

The following theorem summarizes the results of the above lemmas.
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Theorem 2. 1. Consider System (4). Let there exist n × n-dimensional matrices P > 0, R > 0,
S > 0, W > 0, Q nonsingular, a m × n-dimensional matrix Y, and positive scalars γ, ε.
Assume also the validity of at least one of the following conditions:

(a) Ξ(A + d1H) < 0 and Ξ(A + dN H) < 0.
(b) The overall system is symmetrically connected;

Ξ(A − H) < 0 and Ξ(A + (N − 1)H) < 0.

Then, systems (1) for i = 1, . . . , N are stabilized by the sampled control (5) where K = YQ−1.
2. Assume moreover there exists a n × n-dimensional matrix J > 0, and assume at least one of

the following conditions holds:

(a) Ξ(A + d1H) < 0 and Ξ(A + dN H) < 0.
(b) The overall system is symmetrically connected, and

Ξ(A − H) < 0 and Ξ(A + (N − 1)H) < 0.

Then, System (1) for i = 1, . . . , N is stabilized by the Control (7) with matrices Ki given by
(6), where K = YQ−1.

Proof of Theorem 2. The first part is a consequence of Lemmas 6 and 4, the second part is
the consequence of Lemmas 6 and 5.

Remark 9. Minimization of the parameter γ leads to the H∞-optimal control.

4. Examples
4.1. Example 1

System (4) is composed of 10 subsystems given as follows. The system matrices are

given as A =

(
0 1
−1 0

)
, B =

(
0
1

)
, H = 1

2

(
0 0
1 1

)
, DK = 1, EK = (1, 1), E = (eij), ei,i+1 = 1,

ei+1,i = 1, i = 1, . . . , 9, eij = 0 elsewhere; its eigenvalues are in the interval [−1.92, 1.92].
Note that the overall system is unstable. Time delays are defined as τ′ = 0.01s, τ̄ = 0.08s.
The sampling occurs at different time instants for different subsystems.

The LMI optimization problem obtained in this example is feasible. Computations
from the previous section yield K = (−3.70,−4.29), γ = 9.36. The initial condition was
chosen as x(0) = (1, 0.75, 1, 0, 0, 2,−1, 2, 0,−0.75, 1,−2, 1, 0, 2, 0,−2, 2,−1,−1)T .

Figure 1 illustrates the results. The upper subplot shows the state x1,1 (solid line),
x1,2 (dotted line), x5,1 (dashed line) and x5,2 (dash-dot line). The lower subplot illustrates
the norm of the vector x(t). There were no disturbances present in the simulated system.
Therefore, the control algorithm achieved a full stabilization of the overall system, in spite
of the presence of the interconnections. If some disturbances act upon the system, the state
of the system would not, in general, achieve the zero value in the limit. However, the norm
of the state would be, for a sufficiently large time, bounded by (16). The simulations were
obtained using the Matlab R2021b software.



Axioms 2024, 13, 702 13 of 15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (s)

-1

-0.5

0

0.5

1

1.5

x
i,
j

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (s)

0

2

4

6

||
x
||

Figure 1. Simulation results. Upper subplot: x1,1 (solid line), x1,2 (dotted line), x5,1 (dashed line), x5,2

(dash-dot line). Lower subplot: the norm of x(t).

4.2. Example 2

The purpose of this example is to provide a fair comparison of the algorithm presented
here with the algorithm derived in [6]. Both methods are applied to identical systems with
equal parameters.

Matrices defining the ith subsystem are given as

A =

(
0 1

−0.1 −0.8

)
, B =

(
0

0.1

)
, H =

(
0.01 0

0 0.012

)
, G =

(
1
1

)
.

The system is symmetrically interconnected; matrix T′′, introduced in Remark 1, was
applied in both cases.

The results are summarized in Table 1 for various values of τ̄ and various numbers N
of subsystems that were computed using the approach presented in this paper (values KW
and γW , denoted by K and γ, respectively, in the above text) and a compared with results
obtained by the method based on the Razumikhin functional as described in [6] (values KR
and γR; these quantities are denoted by K and γ, respectively, in [6]).

Table 1. Comparison of results.

N = 20

τ̄(s) γR KR γW KW

0.001 48.55 (−5.683, −4.868) 3.86 (−20.183, −14.360)

0.01 49.27 (−5.740, −4.942) 3.87 (−20.17, −14.35)

0.1 infeasible 3.91 (−19.79 −13.99)

N = 30

τ̄(s) γR KR γW KW

0.001 55.38 (−6.34, −5.48) 4.31 (−21.39, −14.17)

0.01 56.42 (−6.40, −5.56) 4.32 (−21.39, −15.18)

0.1 infeasible 4.46 (−20.93 −14.77)

In both cases, the value of the constant γ computed by the LMIs based on the Wirtinger
inequality is considerably smaller. Thus, the presented algorithm exhibits a better capability
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of disturbance attenuation. Also, it is capable of handling a larger set of parameters of the
optimization problem.

5. Conclusions

An algorithm for the stabilization of large-scale interconnected systems with sampled
controls was presented. The algorithm is based on the Wirtinger inequality. Results
of the presented approach were compared with results previously obtained using an
algorithm based on the Razumikhin functional. It is shown that the method presented
here is less conservative. On the other hand, it is to point out that the method is applicable
to linear systems; nonlinearities must be approximated using the Lipschitz property in
combination with methods known from the robust control, hence leading to an overly
conservative design.

In future research, we intend to focus on more nonlinear systems, systems with delays,
and/or systems with fractional derivatives (see, e.g., [28]); the ultimate goal is to apply the
proposed method in a practical setting.
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