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1. Introduction
Modeling and analysis of cyclic walking of underactuated bipedal systems play an important
role in various applications of control of bipedal robots and rehabilitation robotic devices [1]. In
this context, the simplest robot able to walk is the two-link Compass gait walker [6]. Recall here,
that the underactuated hybrid mechanical systems where the DOF is bigger than the number of
actuated links and the interaction between the continuous and discrete parts of the corresponding
mathematical model takes place, are still in the scope of our interest [4]1.

This paper presents how to model one specific, well-known underactuated mechanical sys-
tem, a stepladder with an operator inducing the motion, and how to analyze the stability of its
corresponding gait pattern. Conversely to Compass gait and other common bipedal robotic sys-
tems, the leg order is preserved during walking, i.e., the swing leg never overcomes the stance
leg. Let us underline three key features of this planar or 2D system, enabling the overall ordered
cyclic displacement, e.g., from left to right, i.e., in the positive direction of x-axis in an inertial
(Cartesian) system of coordinates:

• The inclination of the decorator helps to diminish the normal (here vertical) force acting
on the tip of further swing (either the forward or backward) leg.

• The sudden return of the decorator to the originally vertical position creates an impulsive
(inertial) force (momentum) acting on the operator center of mass (against, helping to
diminish the normal force acting on the tip of further swing leg).

• Once per cycle, the operator’s forward leg forces the stepladder’s forward leg to move in
the direction of movement (again via a strike, modeled as an impulsive force).

The rigorous dynamical analysis of stable cyclic walking of this special class of stepladder
models with the periodic movement of an operator (decorator) is presented in the next sections.

2. Model formulation
The stepladder model with a decorator in the double support position is schematically depicted
in Fig. 1. The system is represented by the same kinematic scheme as an Acrobot or Compass
gait [6] with a third link called an upper body or a torso. This three-link planar mechanism
model has two rigid legs, each one with a lumped mass m2 and m3, respectively (no inertia),

1For a review on the control of underactuated or even passive (non-actuated at all) mechanical systems, see
e.g., [3] and [7], respectively. For a study of asymptotically stable walking of biped robots, see [2].
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Fig. 1. The stepladder model with a decorator: parameters, coordinates, and forces. (left) The initial po-
sition for the walking simulation, double support, the link 4 is rotating clockwise; (right) initial position
of the single support phase. Link 4 is in its right extreme position when ϕ̇14 = 0 ∧ ϕ̈14 > 0, i.e., it is
just turning back rotating counterclockwise. The reaction N2 diminishes until 0 and the perpendicular
projection of velocity of point B2 is positive

connected at the revolute (hip) joint H , and the moment of inertia of a torso (the operator) w.r.t.
point H is IH . It has, in general, four degrees of freedom in 2-dimensional space when the
”running mode” is not allowed. More precisely, using the notation introduced in Fig. 1: There
are 2 degrees for the angles (ϕ12, ϕ13) of two legs of equal length (l), one degree of freedom for
the angle ϕ14 (or ϕ24) describing the angular position of a decorator (an upper body), and one
degree for indicating the position of the hip (or for the position of one of the leg’s tip Bi), e.g.,
xH . This system undergoes a translation (it walks) on the right due to a synergic effect of (i) the
torque between links 2 and 3 applied in a specific time instant, and (ii) periodic (pendulating)
movement of link 4. A detailed description follows.

2.1 Governing equations

For hybrid dynamical systems [5], the equation of motion has to describe the interaction be-
tween the continuous and discrete parts of the corresponding mathematical model. Next, we set
up the stepladder model with a decorator (SMWD) for both the continuous swing phase of the
leg motion and the impact model, which has to be applied when both legs touch the ground.

First, the swing phase of the motion. is obtained from the usual Lagrangian approach. Let
be the stance leg tip, e.g., (B3) fixed at the origin, then the state of SMWD can be described by 6
variables: ϕ13, ϕ23, ϕ14, ˙ϕ13, ˙ϕ23, ˙ϕ14. Using q = [ϕ13, ϕ23, ϕ14]

T , we can write the continuous
dynamics as

D(q)q̈+C(q, q̇)q̇+G(q) = u, (1)

where D(q) is the inertia matrix, C(q, q̇) contains Coriolis and centrifugal terms, G(q) con-
tains gravity terms, u stands for the vector of active forces.

Second, the swing leg collision. It is an instantaneous change of velocity caused by an
impulsive force at the leg tip that brings it to rest at the same time transmitting the momentum
to the previous stance leg, yielding an expression

q̇+ = Scolq̇
−, (2)
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Fig. 2. Description of the individual phases of the gait cycle. A filled black circle stands for a stance leg,
while an empty circle describes the leg that is either gaining or losing contact. The blue circle indicates
the instant when the impulse on the front leg is applied

where the velocities just before (q̇−) and just after (q̇+) the impact, is governed by the impact
model, see [2] for the collision operator Scol and other details.

2.2 Gait phases

Let a stable walking cycle starts with both feet on the ground, see Fig. 2. Let the relative angle
ϕ23 = 2γ. The hind leg has a velocity away from the floor. During a step, the stance (front) leg
is modeled as a hinge, connected to the floor. The swing leg moves freely as the other end of a
double pendulum. This swing phase of the hind leg finishes when the leg tip B2 reaches floor
level (regarded as heel-strike). Let the relative angle ϕ23 = 2β and γ > β. The swing leg makes
a fully inelastic collision and becomes the new stance leg. Instantaneously, the former stance
leg looses ground contact, and a new step begins. To impose the overall SLWD translation on
the right, an impulsive force (momentum) is applied to the front swing leg causing an increment
of the angular velocity of the front leg. A similar operator to (2) is proposed q̇+ = Simpq̇

−.Only
then, the front leg swing phase begins. Similarly to the previous swing phase, the stance (hind)
leg is modeled as a hinge, connected to the floor. The front swing leg moves freely as the other
end of a double pendulum until it (tip B3) reaches floor level. The relative angle is ϕ23 = 2γ,
the cycle ends, and the length of the one-cycle step is 2(sin γ − sin β).

2.3 Limit cycle analysis

Striving for a (stable/continuous) cyclic walking, the initial conditions have to be the same as
the conditions at the end of one cycle. Therefore, the consecutive phases of one gait cycle must
be ensembled. Let us define a step-to-step function: vn+1 = Si(vn), where v = [q, q̇] is the
augmented state vector. Given the pendulating motion of link 4 is imposed, the simulation of
one cycle comprises 5 phases (5 steps) and 5 operators Si must be concatenated: (1) a smooth
swing motion of the hind leg, (2) an abrupt collision at the heel strike, (3) the momentum
transfer by the hip torque actuator, (4) a smooth swing motion of the front leg, and (5) an abrupt
collision at the front leg heel. A walking cycle is thus specified by the requirement that the
vector of initial conditions vn results in identical initial conditions for the kth subsequent step:

vn+k = vn, vn+k = Sk
i (vn), (3)

here, it is expected k = 5 or the multiples of 5 by an integer number. Because of the complexity
of an analytical solution, a common practice is to employ the iteration procedure, which is
regarded as a cycle-to-cycle function v5 = S5

i (v0), where v0 is the initial guess. Monitoring
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the state of the system v once per cycle is known as Poincaré mapping. The gait is in a limit
cycle if the corresponding initial conditions represent a fixed point on the Poincaré map. The
implementation is made in the computer algebra system Mathematica.

3. Conclusion
In this work, we formulated a model for stable cyclic walking for the stepladder with an opera-
tor. It integrates the continuous and discrete parts of the overall one-cycle model and proposes
a method for identifying the basin of attraction for stable walking. Now, encouraged by the
successful implementation of the model, we are open to running a study on the stability of
cyclic walking for different values of model parameters and the operator movement. Here, the
expected result is finding an optimal stepladder walking regime (e.g., minimizing the energy
input).
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[1] Anderle, M., Čelikovský, S., On the controller implementation in the real underactuated walking

robot model, Proceedings of the 12th Asian Control Conference (ASCC), Kitakyushu, Fukuoka,
Japan, June 2019, pp. 91–99.

[2] Grizzle, J. W., Abba, G., Plestan, F., Asymptotically stable walking for biped robots: Analysis via
systems with impulse effects, IEEE Transactions on Automatic Control 46 (1) (2001) 51–64.

[3] Krafes, S., Chalh, Z., Saka, A., A review on the control of second order underactuated mechanical
systems, Complexity 2018 (2018) No. 9573514.
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