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Abstract: The consensus problem of a multi-agent system with nonlinear second-order underac-
tuated agents is addressed. The essence of the approach can be outlined as follows: the output is
redesigned first so that the agents attain the minimum-phase property. The second step is to apply
the exact feedback linearization to the agents. This transformation divides their dynamics into a
linear observable part and a non-observable part. It is shown that consensus of the linearizable parts
of the agents implies consensus of the entire multi-agent system. To achieve the consensus of the
original system, the inverse transformation of the exact feedback linearization is applied. However,
its application causes changes in the dynamics of the multi-agent system; a way to mitigate this effect
is proposed. Two examples are presented to illustrate the efficiency of the proposed synchronization
algorithm. These examples demonstrate that the synchronization error decreases faster when the
proposed method is applied. This holds not only for the states constituting the linearizable dynamics
but also for the hidden internal dynamics.

Keywords: nonlinear multi-agent systems; underactuated systems; robust control

MSC: 93A16; 93C10

1. Introduction
1.1. State of the Art

A multi-agent system is a system composed of several autonomous units, so-called
agents, that are controlled to achieve a common goal (usually reaching synchronization). To
accomplish this goal, the agents can communicate; nonetheless, inter-agent communication
is restricted. To be specific, one agent can communicate with a limited number of other
agents only; for details, see, e.g., [1,2]. This theoretical setting has numerous applications in
biology, technology, physics, etc. This is why this problem belongs to the central problems
of recent control theory.

There are two basic tasks to be accomplished by the multi-agent system: leader-
following synchronization and consensus synchronization. The leader-following synchro-
nization problem is characterized by the presence of an agent (so-called leader agent)
that does not receive any information from other agents while the other agents should
replicate the behavior of the leader agent. (Another term for this kind of synchronization
is master-slave synchronization [3]). In the consensus synchronization problem, all agents can
receive information; the goal is to force the agents to converge to a common trajectory,
usually described by the average dynamics of all agents [4]. This paper focuses on the
consensus problem.

The synchronization of linear multi-agent systems has been studied in numerous
papers. This applies even to systems with delays in the communication channels, uncer-
tainties, etc. On the other hand, there are significantly fewer results concerning nonlinear

Mathematics 2024, 12, 3424. https://doi.org/10.3390/math12213424 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12213424
https://doi.org/10.3390/math12213424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4264-4827
https://orcid.org/0000-0003-1093-8046
https://orcid.org/0000-0002-6793-5324
https://doi.org/10.3390/math12213424
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12213424?type=check_update&version=1


Mathematics 2024, 12, 3424 2 of 19

multi-agent systems, despite the practical importance of these systems. Several approaches
have been developed to handle nonlinearities in the agents. The Young inequality was used
to estimate the nonlinear terms in [5,6], among others. Similarly, in [7], Qian designed the
synchronizing control based on the Jacobians of the nonlinear terms. Nonetheless, these
approaches do not allow for precise matching of nonlinearity, inevitably leading to rather
conservative results. Another method is based on game theory [8], yielding an iterative
algorithm, while backstepping is also often used to design a synchronizing control for
nonlinear multi-agent systems (see, e.g., [9–13], among others). This algorithm leads to
a control law that is robust against disturbances. However, the design process is rather
cumbersome. A passivity-based approach to the synchronization problem with delayed
control signals was adopted in [14]; its application for synchronizing a group of mobile
robots was also described.

Recently, exact feedback linearization-based algorithms for synchronizing nonlinear
multi-agent systems have emerged. Synchronization algorithms using this nonlinear
transformation can handle nonlinearity more precisely than those based on its linear
approximation, leading to less conservative results. Moreover, many nonlinear systems
encountered in practice exhibit nontrivial zero dynamics. Thus, the proposed algorithms
have to effectively deal with such systems. The synchronization problem for nonlinear
multi-agent systems was solved for systems with exponentially stable zero dynamics
(minimum-phase) in [15]; these results were extended to multi-agent systems with delayed
control signals in [16]. The requirement for the agents to be minimum-phase systems
is reiterated in this paper. The design method described in these papers can be briefly
outlined as follows: the exact feedback linearization is applied to all agents first; after this
transformation, one finds the synchronizing control for the linearized agents. The control
is then transformed into the original coordinates in the next step, yielding a nonlinear
synchronizing control law. If hidden dynamics are present, it is shown that they are also
synchronized by this control law, provided that these dynamics are exponentially stable.
As shown in [17], this approach can be extended to systems with output feedback.

Underactuated systems are systems with fewer actuators than degrees of freedom. These
systems constitute a very practically important class of nonlinear systems (see, e.g., [18–20],
among others. Let us mention that the two-link manipulator [21], three-link manipulator
[22], the pendulum on a cart, robot manipulators [23], the translational oscillator with a
rotating actuator (TORA) [24], quadrotors [25], and several kinds of underwater [26] and
water-surface vehicles [27] fall within this category, among other systems. On the other
hand, these systems can generate rather complex behavior. Hence, their control is rather
challenging [28]. A common feature of these systems is the presence of nontrivial zero
dynamics, which often fail to be exponentially stable. Several approaches to their control
have been proposed, including sliding-mode control [29], backstepping [30], and adaptive
control [31]. Fuzzy control for fractional-order underactuated systems was adopted in [32],
where stability and resilient control strategies were designed for this class of systems.

From the (inevitably incomplete) list of applications of underactuated systems, it fol-
lows that the synchronization problem of a group of underactuated systems also has strong
practical importance, namely that this problem naturally arises, e.g., in the coordination or
formation control of water-surface vehicles (see [33,34] or [35], among others). Let us also
note that synchronizing a group of unmanned autonomous surface vehicles under cyber
attacks was investigated in [36]. The synchronization problem of underwater autonomous
vehicles, which also falls within this category, has been studied in numerous papers, such
as in [37], and generalized in [38,39]. The control of swarms of unmanned underwater
vehicles was presented in detail in [40], together with a presentation of neural-based control
algorithms for these systems. Moreover, a thorough presentation of issues encountered
when controlling swarms of underwater vehicles can also be found in [41]. The area of
controlling underactuated robotics is rapidly developing (see [42] or [19], to name a few).

To find an effective way to control design for underactuated systems, the so-called
collocated feedback method described in [43] seems to be a suitable approach. To apply
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this method, the procedure presented in [18] and [44] for the redefinition of the output is
conducted (the so-called collocated output is designed). This ensures that the zero dynamics
become asymptotically stable with this new output. As shown in [45], the stabilization of the
linearized part of the system suffices for the stabilization of the entire system for minimum-
phase systems. Hence, it seems that this method can be combined with the algorithms for
synchronizing nonlinear multi-agent systems based on exact feedback linearization.

1.2. Purpose of this Paper

The purpose of this paper is to present a synchronization algorithm for a multi-
agent system composed of underactuated agents with two degrees of freedom, based on
collocated output design and the subsequent application of exact feedback linearization.
The problem is studied in detail, including recovering the original average dynamics (the
average dynamics are equivalent to the dynamics of a single agent). The solution to the
problem of synchronization of underactuated systems via exact feedback linearization
without affecting the average dynamics is the main contribution of this paper. To the best
of our knowledge, this problem has not been investigated so far.

The advantage of the proposed approach is that it matches the nonlinearity precisely
through the application of exact feedback linearization, which, consequently, leads to
faster synchronization. A comparison with an existing method is given in the Examples
section. The method proposed here has numerous practical applications, e.g., more efficient
synchronization of robotic arms and swarms of surface, underwater, or aerial vehicles,
among others, as these systems fall into the category of underactuated systems.

In other words, this paper aims to present how the combination of output design, exact
feedback linearization, the linear synchronization algorithm, and, finally, inverse exact
feedback linearization yields an efficient method for nonlinear agents’ synchronization.

1.3. Outline of this Paper

The necessary terms from graph theory are summarized in the next section. Then,
the problem investigated in this paper is presented. The following sections contain the
necessary material to deal with multi-agent systems with underactuated agents, namely the
output redesign method and the problem of synchronizing a linear uncertain multi-agent
system. As these sections contain previously obtained results, they are rather brief. Then,
the synchronization of the internal dynamics is proved. As the control designed so far
changes the average dynamics of the multi-agent system, a modification of this control law
is proposed so that the average dynamics become equivalent to the dynamics of a single
agent. The illustrative examples and the conclusions follow.

1.4. Notations

The notations used in this paper include the following:

• The symbol 0 denotes the zero matrix; the symbol Iµ denotes the µ-dimensional
identity matrix (the dimension of the zero matrix is always clear from the context).

• The symbol ∥.∥ stands for the quadratic norm.
• The blocks below the diagonal are replaced with an asterisk for symmetric matrices:(

a b
bT c

)
=

(
a b
∗ c

)
.

• The symbol ⊗ denotes the Kronecker product.
• If P is a symmetric matrix, then the matrix inequality P > 0 means that the matrix P is

positive definite.
• The time dependence of functions is not explicitly expressed: if v is a function of time,

then v(t) is abbreviated as v.

2. Graph Theory

Graph theory is a common tool for describing the information exchange between
agents in the entire multi-agent system. Since the required notions of graph theory can be
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found in the literature (such as [2] or others), only the most important facts are presented
here.

The agents are denoted by integers from the set N = {1, . . . , N}. Then, define the
set E ⊂ N × N as follows: let (i, j) ∈ E if and only if the agent i sends information to the
agent j. The directed graph describing the topology of the agent network is then defined as
G = (N,E). If for all i, j ∈ {1, . . . , N} such that (i, j) ∈ E holds (j, i) ∈ E, then we say the
graph G is undirected.

The N × N-dimensional adjacency matrix J = (Jij) is defined as Jij = 1 if (i, j) ∈ E;
otherwise, Jij = 0.

Assumption 1. The following are assumed:

i The interconnection topology contains no loops. This implies that (i, i) ̸∈ E and, conse-
quently, Jii = 0 for every i = 1, . . . , N.

ii The communication topology is undirected; hence, for all i, j ∈ {1, . . . , N} such that Jij = 1,
it also holds that Jji = 1.

Generalizing the proposed results to directed communication topologies is rather
technical; hence, we focus on multi-agent systems with topologies described by undirected
graphs.

The graph G is said to contain a spanning tree if the following condition holds: for every
i, j ∈ N, we can find a path from node i to node j.

Let us introduce the Laplacian matrix L ∈ RN×N by Lij = Jij for i ̸= j and Lii =

−∑N
j=1 Jij, i = 1, . . . , N.
The paper [2] and others show that if the interconnection topology is described by

the graph G containing a spanning tree, then the matrix L has one simple zero eigenvalue
that corresponds to the eigenvector 1 = (1, . . . , 1)T ∈ RN , while the other eigenvalues are
real and negative. Let us denote the nonzero eigenvalues as d1, . . . , dN−1. Let d̄ be the
nonzero eigenvalue with the largest absolute value and d be the nonzero eigenvalue with
the smallest absolute value of the matrix L.

Assumption 2. The interconnection topology of the multi-agent system studied in the following
section is described by a graph that contains a spanning tree.

3. Problem Setting

The multi-agent system considered here comprises N identical agents of the fourth
order; each agent is an underactuated system. The generalized coordinates and velocities
of the ith agent are denoted as (qi, q̇i) ∈ R2 ×R2. Also, let

M : R2 → R2×2, C : R2 ×R2 → R2×2, G, D : R2 → R2. (1)

The matrix M is called the mass matrix. The ith agent is defined as

M(qi)q̈i + C(qi, q̇i)q̇i + G(qi) + D(q̇i) = (0, I2)
Tui, (2)

(For a more detailed treatment of underactuated systems, see [18]).
Define the average of the state of all agents

q =
1
N

N

∑
i=1

(qT
i , q̇T

i )
T . (3)

The multi-agent system composed of agents in (2) is said to achieve consensus if

lim
t→∞

N

∑
i=1

∥(qi, q̇i)
T − q∥ = 0. (4)
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The goal is to design a smooth function k : R2 × R2 × R4 → R so that the control law
given as

ui = k
(

qi, q̇i,
N

∑
j=1

Jji((qj, q̇j)− (qi, q̇i))
)

(5)

guarantees consensus of the multi-agent system described in (2) under the assumption that
all agents have initial conditions (qi(0), q̇i(0)) ∈ U , where U is some neighborhood of the
origin in R4.

4. Collocated Feedback and Output Redesign

As shown in [16], if the agents are not exactly linearizable systems, their synchroniza-
tion can still be achieved, provided that the internal dynamics are asymptotically stable.
This condition is not satisfied in many real-world systems. However, [18] presented a
method for recovering this property through a suitable output redesign for nonminimum-
phase systems. For the sake of clarity, this method is briefly described here.

In line with [18] and [43], the agents are assumed to admit partial feedback lineariza-
tion. To be precise, we make the assumptions listed below.

Assumption 3. The following are assumed:

i For every q ∈ R2, the matrix function M is symmetric, and M(q) > 0.

ii Let us divide matrix M as M =
(

m11(q) m12(q)
∗ m22(q)

)
with m11(q) ∈ R, m12(q) ∈ R and

m22(q) ∈ R. Then, we assume that m12(q) ̸= 0 for any q ∈ R2.

First, divide the vector qi as follows: qi = (q̃i, q◦i )
T with q̃i ∈ R, q◦i ∈ R. Next, choose

yi = q̃i as the output. Then, after some manipulations, one can infer (see [43,44]) that there
exist functions ϕ′ : R2 ×R2 ×R → R, Φ, Ψ : R2 ×R2 → R, and a neighborhood U of zero
such that

Ψ(r, s) ̸= 0 for any r, s ∈ U , (6)

and, with the transformed input ũi defined as

ũi =Φ(qi, q̇i) + Ψ(qi, q̇i)ui (7)

one has

¨̃qi =ũi, (8)

q̈◦i =ϕ′(q̃i, ˙̃qi, q◦i , q̇◦i , ũi). (9)

Remark 1. The above formulas were obtained by defining the fictitious output as yi = q̃i and
conducting exact feedback linearization on the system (2).

The design of the synchronization algorithm that follows requires exponential stability
of the zero dynamics, which is defined as the following autonomous system:

q̈◦i = ϕ′(0, 0, q◦i , q̇◦i , 0). (10)

However, in many cases, the zero dynamics of underactuated systems are not exponentially
stable if yi = q̃i.

A remedy can be found in [18] or [44], where a procedure to modify the output to
ensure the desired stability of the zero dynamics is presented.

The authors of [18] thoroughly described the construction of the output. In [44], a
simplified version for systems with two degrees of freedom was presented. For the sake of
completeness, the algorithm is summarized here:

1. Choose the output yi = q̃i and determine the functions Φ and Ψ as mentioned above.
2. Determine the zero dynamics of the system with the output yi.
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3. If the zero dynamics are not asymptotically stable, choose a sufficiently smooth
function φ : R → R and redefine the output yi as yi = q̃i + φ(q◦i ).

4. Redefine the functions Φ and, as well as the input ũi, by conducting exact feedback
linearization on the system (2) with the redefined output. If necessary, redefine the set
U so that condition (6) holds.

5. As the choice of the new output alters the internal dynamics, redefine the function ϕ′

and find the new zero dynamics using (10).
6. If the zero dynamics are exponentially asymptotically stable, stop.
7. Go to Step 3.

To select the function φ, a specific description of the controlled system is necessary.
Hence, no specific advice can be given here. Nevertheless, [44] illustrated this procedure
through several practical examples.

As noted above, the resulting output is defined as

yi = q̃i + φ(q◦i ) (11)

for a suitable function φ : R → R so that the zero dynamics are asymptotically stable—this
feature will be useful in the sequel. The function φ is identical for all agents.

As a result, one obtains the functions Φ, Ψ, ϕ′, ũi, and a neighborhood of zero U such
that relations analogous to (7)–(9) hold, and moreover, system (10) is exponentially stable.

5. Synchronization of the Linearized External Dynamics

The problem of synchronizing the linear parts of the agents is briefly presented in this
section. Since one can use various methods to robustly synchronize linearized multi-agent
systems, the method used in this paper, based on the results in [46], can be freely replaced
with another method. The important requirement is to guarantee the validity of inequality
(20) (see below). In the context of this paper, this section presents rather technical material
and should be understood as an indication of a possible way to derive this quality.

In this section and the subsequent section, the following assumption is made.

Assumption 4. The output of the agents has been redesigned so that the system has exponentially
stable zero dynamics.

Let

ζi = (q̃i, ˙̃qi)
T , ζ =

 ζ1
...

ζN

, ũ =

 ũ1
...

ũN


and

A =

(
0 1
0 0

)
, B =

(
0
1

)
as

ζ̇ = (IN ⊗ A)ζ + (IN ⊗ B)ũ. (12)

The control signal ũi is assumed to attain the form (with the matrix K ∈ R1×2 to be
determined)

ũi = K
N

∑
j=1

Jji(ζ j − ζi). (13)

Then, one can rewrite Equation (12) as

ζ̇ = (I ⊗ A)ζ + (L ⊗ BK)ζ. (14)

As demonstrated in [47] and others, system (14) is asymptotically stable if the matrices

A + dBK, A + d̄BK (15)
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are Hurwitz (scalars d, d̄ are defined in Section 2).

Remark 2. The method to determine the matrix K is described in [47,48] and others. The main
idea is to introduce the so-called disagreement vector e as follows: let ζ = 1

N ∑N
i=1 ζi, ei = ζi − ζ,

and finally, e = (eT
1 , . . . , eT

N)
T . Then, the synchronization of the system (12) is equivalent to the

problem of stabilizing the disagreement dynamics (limt→∞ ∥e(t)∥ = 0). Moreover, it can be shown
that the convergence of the disagreement dynamics is exponential.

The generalization of the multi-agent system (14) to systems with Lipschitz-type
uncertainty, introduced in [46], will be useful in the subsequent sections; hence, it is
mentioned here. The version presented in this section is tailored to the application of the
synchronization of the observable part of underactuated systems. Specifically, we present a
result concerning the synchronization of the system (14) with an additional uncertain term.

For the case of the multi-agent system with external inputs ξi ∈ R2, i = 1, . . . , N, one
can derive the lemma given below (see [46]).

Lemma 1. Let us consider that Assumptions 1, 2, and 4 hold, and suppose there exists a function
f : R2 ×R2 → R that satisfies the following Lipschitz condition: there exist scalars α1 > 0, α2 > 0
such that for all z1, z2, y1, y2 ∈ R2, the following holds:

∥ f (z1, y1)− f (z2, y2)∥ ≤ α1∥z1 − z2∥+ α2∥y1 − y2∥. (16)

Let ξi ∈ R2, i = 1, . . . , N, ξ = (ξT
1 , . . . , ξT

N)
T , and

F (ζ, ξ) =

 f (ζ1, ξ1)
...

f (ζN , ξN)

.

Moreover, let E ∈ R2×1, and the multi-agent system be defined as

ζ̇ = (I ⊗ A)ζ + (L ⊗ BK)ζ + (I ⊗ E)F (ζ, ξ) (17)

with ξ ∈ R2. Let there exist a 2 × 2-dimensional matrix P = PT , P > 0, and a scalar τ > 0 such
that the following LMI holds(

AT P + PA − τBBT + (α2
1 + α2

2)EET P
P −I2

)
> 0. (18)

Let
K = − τ

2d
BT P. (19)

Then, there exist positive constants c1, c′1 such that, with ξ̄ = 1
N ∑N

i=1 ξi and V = eT(I ⊗ P)e, the
following holds:

V̇1(e) < −c1V1(e) + c′1∥ξ − ξ̄∥2. (20)

Having conducted the design of the control gain matrix K, one can see that (7) and
(13) imply

ui = Ψ−1(qi, q̇i)
(

K ∑N
j=1 Jji(( ˙̃qj, q̃j)

T − ( ˙̃qi, q̃i))− Φ(qi, q̇i)
)

, (21)

which is how the function k in (5) is expressed.
It is important to realize that the control signals ui may also depend on the state of

the internal dynamics q◦i since the functions Φ and Ψ depend on the entire state qi and its
derivative.



Mathematics 2024, 12, 3424 8 of 19

6. Synchronization of the Internal Dynamics

First, for the sake of conciseness of the notations, define vectors χi = (q◦i , q̇◦i ), i =
1, . . . , N, χ̄ = 1

N ∑N
i=1 χi, and let ¯̃u = 1

N ∑N
i=1 ũi, where the function ũi is defined in (13).

As a consequence of Assumption 4, there exist the matrix U and a function ∆′ :
R×R×R×R×R → R satisfying

U1 =
∂ϕ′

∂χ1,1
(0, 0, 0, 0, 0), U2 =

∂ϕ′

∂χ1,2
(0, 0, 0, 0, 0),

U =

(
0 1

U1 U2

)
(22)

and

∆′(q̃i, ˙̃qi, q◦i , q̇◦i , ũi) = ϕ′(q̃i, ˙̃qi, q◦i , q̇◦i , ũi)− (U1, U2)

(
q◦i
q̇◦i

)
. (23)

Note that the function ∆′ vanishes at the origin together with its derivatives.
The exponential stability of the zero dynamics implies that for any α > 0, there exists

a positive definite matrix R ∈ R2×2 such that

UT R + RU = −αI. (24)

Let us define the functions ϕ, ∆ : R2 ×R2 ×R → R2 as

ϕ(ζi, χi, ũi) =

(
0

ϕ′(ζi, χi, ũi)

)
, ∆(ζi, χi, ũi) =

(
0

∆′(ζi, χi, ũi)

)
.

In the sequel, we will investigate the differences χi − χ̄ for i ∈ 1, . . . , N:

χ̇i − ˙̄χ = ϕ(ζi, χi, ũi)− ϕ(ζ̄, χ̄, ¯̃u). (25)

With the help of the function ∆, one can reformulate expression (25) as

χ̇i − ˙̄χ = U(χi − χ̄) + ∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u), (26)

which, with (24), yields

d
dt
(χi − χ̄)T R(χi − χ̄) < −α(χi − χ̄)T(χi − χ̄) + 2(χi − χ̄)T R(∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u)). (27)

Then, the Young inequality implies the validity of the following estimate for every β > 0:

|2(χi − χ̄)T R(∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u))|

≤β∥(χi − χ̄)∥2 +
1
β
∥∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u)∥2. (28)

Moreover, observe that

∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u) = ∆(ζi, χi, ũi)− ∆(ζ̄, χi, ũi) + ∆(ζ̄, χi, ũi)− ∆(ζ̄, χ̄, ũi)

+ ∆(ζ̄, χ̄, ũi)− ∆(ζ̄, χ̄, ¯̃u).

Let us suppose that µ > 1. Then, there exists a neighborhood of the origin Uµ ⊂ R2 ×R2 ×
R such that if ζa, ζb, χa, χb, va, vb ∈ Uµ, then

∥∆(ζa, χa, va)− ∆(ζb, χa, va)∥2 ≤µ∥ζa − ζb∥2,

∥∆(ζb, χa, va)− ∆(ζb, χb, va)∥2 ≤µ∥χa − χb∥2,

∥∆(ζb, χb, va)− ∆(ζb, χb, vb)∥2 ≤µ∥va − vb∥2.
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Hence,

|2(χi − χ̄)T R(∆(ζi, χi, ũi)− ∆(ζ̄, χ̄, ¯̃u))|

≤(β +
µ

β
)∥χi − χ̄∥2 +

µ

β
(∥ζi − ζ̄∥2 + ∥ũi − ¯̃u∥2). (29)

As the function ∆ contains only higher-order terms, a choice of constants β, µ such that

α − β − µ

β
> 0 (30)

is always possible (at the cost of taking a smaller set Uµ). Choosing these parameters such
that (30) is satisfied allows us to infer the following expression from (27)

d
dt (χi − χ̄)T R(χi − χ̄) ≤ −(α − β − µ

β )∥χi − χ̄∥2 + µ
β∥ζi − ζ̄∥2 + µ

β∥ũi − ¯̃u∥2. (31)

Define the Lyapunov function V2 as

V2 =
N

∑
i,j=1

(χi − χ̄)T R(χi − χ̄).

Using (31), one can see that there exists a constant c2 > 0 satisfying

V̇2 ≤ −(α − β − µ

β
)c2V2 +

µ

β

N

∑
i,j=1

(∥ζi − ζ̄∥2 + ∥ũi − ¯̃u∥2). (32)

Due to the results from the previous section, the application of the control signal ũi =
K ∑N

j=1 Jji(ζi − ζ̄) implies that ζi − ζ̄ → 0. This, in turn, yields synchronization of the
functions χi by the same control ũi, for i = 1, . . . , N. Hence,

lim
t→∞

N

∑
i=1

∥χi − χ̄∥ = 0. (33)

Theorem 1. Consider the multi-agent system (2) with an interconnection topology satisfying
Assumptions 1 and 2. Let Assumptions 3 and 4 hold. Suppose the linearized part is synchronized,
condition (30) is valid, and the trajectories of all agents lie in the set U ∩ Uµ. Then, the consensus of
the system (2) is guaranteed by the control law (5).

Proof. Assume the external dynamics are synchronized. This also implies synchroniza-
tion of the control signals ũi. Thanks to the Vanishing Perturbation Theorem (see [45]),
relation (32) guarantees χi → χ̄.

Since exact feedback linearization is a diffeomorphism between two descriptions of
one system, we immediately arrive at the corollary given below.

Corollary 1. Under the assumptions of Theorem 1, the control law (21) guarantees synchronization
of the multi-agent system (2).

7. Recovery of Dynamical Properties

The control law (21) guarantees achieving the consensus of the multi-agent system, at
the cost of changing the dynamics of the agents caused by the application of exact feedback
linearization. Specifically, the average dynamics (the dynamics that govern the evolution of
q̄) are equivalent to the linearized dynamics (8), (9). A change in the average dynamics is a
rather undesirable feature—in many cases, it is required that the average external dynamics
obey the equations describing one agent (with zero external input). Hence, the control
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law (21) must be modified to restore this property. In this section, such a control law is
proposed with the help of robust control theory.

If consensus is achieved, then (qT
1 , q̇T

1 )
T = · · · = (qT

N , q̇T
N)

T = q̄, and for the trans-
formed control signals, we have ũ1 = · · · = ũN = 0. Then, (7) implies that, after reaching
consensus, the control signal fed to every agent is equal to (with a slight abuse of notation)

uconsensus = −Ψ−1(q̄)Φ(q̄). (34)

This control input acts upon all agents, even after reaching the consensus state, and modifies
their dynamical properties since it does not (in general) equal to zero.

On the other hand, subtracting (34) from the control signal (21) is not possible since the
quantity q̄ is not known to the agents (unless in the special case when the complete graph
describes the interconnection topology). Still, for future purposes, consider the (practically
non-realizable) case when the control of all agents is defined for some matrix K as

ui = Ψ−1(qi, q̇i)
(

K ∑N
j=1 Jji(( ˙̃qj, q̃j)

T − ( ˙̃qi, q̃i))− Φ(qi, q̇i)
)
− uconsensus

= Ψ−1(qi, q̇i)
(

K ∑N
j=1 Jji(( ˙̃qj, q̃j)

T − ( ˙̃qi, q̃i))− Φ(qi, q̇i)
)
− Ψ−1(q̄)Φ(q̄).

(35)

Remark 3. Since uconsensus is independent of i, adding this term to all agents’ inputs does not
modify the synchronization of the multi-agent system.

In other words, when consensus is established, the control input (35) guarantees that
the average dynamics are governed by the same law as the dynamics of a single agent.

To design a practically realizable control law, the term Ψ−1(q̄)Φ(q̄) will be replaced
with its approximation obtained only from values directly available to agent i; this proce-
dure is described in the subsequent text. As will be seen, some uncertainty appears in this
process; thus, the matrix K must be designed with this feature in mind.

Denote by Ni the number of nodes that send information directly to the ith agent
(meaning Ni = ∑N

j=1 Jji). Moreover, define

q̃′i =
1

Ni+1 (q̃i + ∑N
j=1,j ̸=i Jji q̃j), q◦i

′ = 1
Ni+1 (q

◦
i + ∑N

j=1,j ̸=i Jjiq◦j ),
˙̃q′i =

1
Ni+1 (

˙̃qi + ∑N
j=1,j ̸=i Jji ˙̃qj), q̇◦

′
i = 1

Ni+1 (q̇
◦
i + ∑N

j=1,j ̸=i Jji q̇◦j ).

The quantity q̃′i is realizable as it is an average of the values of q̃j from those agents that
send information directly to agent i. Thus, q̃′i can be regarded as the approximation of the
first component of q̄ based on the information available to agent i. First, define the function
f̃ : R2 ×R2 → R2 as

f̃ (ζi, χi) = Ψ−1(qi, q̇i)Φ(qi, q̇i) (36)

where ζ and χ were defined in the previous sections. We also introduce the vectors
ζ ′i = (q̃′i, ˙̃q′i), χ′

i = (q◦i
′, q̇◦

′
i ).

Assumption 5. There exist scalars α1 > 0 and α2 > 0 such that, for any z1, z1, z3, z4 ∈ R2, the
function f̃ satisfies inequality (16).

The function f̃ (ζ ′i , χ′
i) can be regarded as the realizable approximation of the term

Ψ−1(q̄, ˙̄q)Φ(q̄, ˙̄q). With the function f̃ , one can modify the control signal defined in (35) so
that the following physically realizable control signal is fed into the ith agent:

ui = Ψ−1(qi, q̇i)
(

K ∑N
j=1 Jji(( ˙̃qj, q̃j)

T − ( ˙̃qi, q̃i))− Φ(qi, q̇i)
)
− f̃ (ζ ′i , χ′

i). (37)

Note that if q1 = · · · = qN and q̇1 = · · · = q̇N , then ui = 0.
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Adding the term f̃ (ζ ′i , χ′
i) is equivalent to adding the same term to the transformed

control ũi. Hence, this control is replaced with

ˆ̃ui = ũi − f̃ (ζ ′i , χ′
i). (38)

Let ζ = (ζT
1 , . . . , ζT

N)
T , χ = (ξT

1 , . . . , χT
N)

T , and

F =

 f̃ (ζ ′1, χ′
1)− f̃ (ζ̄, χ̄)

...
f̃ (ζ ′N , χ′

N)− f̃ (ζ̄, χ̄)

. (39)

Then, the linearized part of the multi-agent system can be compactly expressed in the form

ζ̇ = (I ⊗ A)ζ + (L ⊗ BK)ζ −F (ζ, χ)− 1 ⊗ uconsensus. (40)

Hence, replacing the non-realizable term uconsensus with the term f (ζ ′i , χ′
i) in (35) corre-

sponds to the appearance of the uncertain term F (ζ, χ) and thus introduces an additional
requirement for the robustness of the synchronizing control.

Let e◦i = χi − χ̄, e◦ = (e◦1
T , . . . , e◦N

T)T , and define the function V as

V(e, e◦) = V1(e) + V2(e◦). (41)

Since the last term in (40) is equal for all agents, it does not affect the disagreement vectors.
Assume the control gain K was designed using the method described in Corollary 1. Then,
(20) and (32) yield

V̇ ≤ −c1V1(e) + c′1∥e◦∥2 − (α − β − µ
β )c2V2(e◦) +

µ
β (1 + ∥K∥2)∥e∥2. (42)

Theorem 2. Consider the multi-agent system (2) with an interconnection topology satisfying
Assumptions 1 and 2. Assume the agents are systems with two degrees of freedom and an under-
actuation degree of one such that Assumptions 3 and 4 hold. Moreover, suppose their outputs are
chosen so that the agents are minimum-phase systems. Let the assumptions of Lemma 1 hold so that
the positive constants c1, c′1, c2, µ, and β satisfy

0 > (α − β − µ
β )c2 −

c′1
λmin(R) ,

0 > c1 − µ
βλmin(P) (1 + ∥K∥2).

(43)

Let the control signal be equal to (37). Assume that the trajectories of all agents lie in the set U ∩ Uµ.
Then, the consensus of the system (2) is guaranteed, and the vector (q, q̇) obeys the dynamics
described by (2) with zero input.

Proof. Conditions (43) imply that V̇ < 0 on U ∩ Uµ − {0}; hence, synchronization is
achieved. Moreover, as noted above, the average dynamics are equivalent to the dynamics
of a single uncontrolled agent.

Remark 4. The method for output redesign might be difficult to apply, as it requires an in-depth
knowledge of the controlled system. In contrast, the application of exact feedback linearization
is quite straightforward. On the other hand, the zero dynamics must be asymptotically stable; if
matrix R is such that the constant α is too small, then one may experience difficulties in satisfying
inequality (30). However, such limitations are often encountered in control theory; thus, their
presence is not perceived as a serious drawback.
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8. Examples
8.1. Coupled Inverted Pendulums on a Cart

For the agents, the inverted pendulums on the cart are chosen. The system is thor-
oughly described in [18], and its synchronization is briefly described in [49]. As the agents
are equal, we omit the subscript i in the following.

The single inverted pendulum on a cart is described by the equations

ẍ =
1

M + m + m cos2 θ
(u − ml sin θθ̇2 + mg sin θ cos θ),

θ̈ =
1

M + m + m cos2 θ

(u
l

cos θ − m sin θ cos θθ̇2 + (M + m)
g
l

sin θ
)

,

where the meanings of the variables are as follows: x is the cart’s position and θ is the
pendulum’s angle. The other constants are as follows: l is the length of the pendulum, g is
the gravitational acceleration, m is the mass of the cart, and M is the mass of the pendulum
(M ≪ m). The variable u is the external force acting upon the cart, which is the control
input. The application of exact feedback linearization (with output y = x first) yields

ẍ =ũ1, (44)

θ̈ =
g
l

sin θ − cos θ

l
ũ1 (45)

for
ũ1 =

1
M
m + 1 + cos2 θ

( u
m

− l sin θθ̇2 + g sin θ cos θ
)

, (46)

where the fraction M
m is negligibly small.

As the zero dynamics are not stable for this choice of output, [18] suggested redefining
the output as follows:

y = x + k1 sin θ + k2

∫ t

0
sin θ(τ)dτ (47)

with suitably chosen constants k1 and k2. In this example, k1 = 2 and k2 = 20 were chosen.
With the help of (47), one can design a stabilizing control law ũ, which is a function of

y and ẏ. Let the signal ũ be given by (for some real constants k3, k4)

ũ = k3(ẋ + k1θ̇ cos θ + k2 sin θ) + k4(x + k1 sin θ + k2

∫ t

0
sin θ(s)ds).

As shown in [18], the control signal ũ1 fed into the transformed system and the designed
control input ũ are related by

ũ1 =
1

k1
l cos2 θ − 1

(
ũ + k1 sin θ(

g
l

cos θ − θ̇2) + k2θ̇ cos θ
)

. (48)

This equation, together with (46), yields the relation between u and ũ.
For simulations, we set l = 0.0475 m. The values of m and M are not required. The

algorithm described in Section 5 yields k3 = 7.27 and k4 = 13.07. If used for only one
system, this control stabilizes not only the pendulum’s vertical position but also the cart’s
position.

Remark 5. Note that [18] derived a slightly different control action, as the authors aimed to
enlarge the region of attraction. However, for the sake of simplicity, the linear controller in the form
v = k3y + k4ẏ was used here.
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The multi-agent system composed of six identical agents described above, along with
the control presented here, was interconnected into the loop (see Figure 1). Moreover, a
sinusoidal disturbance was added to agent 1.

1 2 3 4 5 6

Figure 1. Interconnection of the agents.

The dashed red line illustrates the position of the first cart in Figure 2. The solid black
line shows the position of the cart of the third agent, while the dotted blue line represents
the fifth agent. The meanings of the lines are the same in Figure 3, where the angle θ is
depicted. Similarly, the control signals of these agents are shown in Figure 4. The norm of
the synchronization error for the entire network is depicted in Figure 5, which shows the
norm of the synchronization error for the entire multi-agent system. One can see that the
collocated feedback stabilizes the zero dynamics (in the case of the inverted pendulum, the
angle θ), while the variable x of all agents is synchronized.

0 5 10 15 20 25 30 35 40 45 50
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0

0.1

0.2

0.3
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1

x
3
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Figure 2. The position of the cart of agents 1, 3, and 5.
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1
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Figure 3. The angle of the pendulum of agents 1, 3, and 5.

The choice of the output ensures that not only the agent’s state x—the positions—are
synchronized, but it also naturally stabilizes the angle at θ = 0—that is, the upright position
of the pendulum—if no interactions between agents are active. This, in turn, guarantees
synchronization of the angle of the pendulums.
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Figure 4. The control of agents 1, 3, and 5.
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Figure 5. Norm of the synchronization error.

8.2. Coupled van der Pol and Linear Oscillators

In this example, the multi-agent system composed of nine interconnected van der Pol
and linear oscillators is considered. The interconnection topology is again circular.

One agent is described by the equations

ẍ − µ(1 − x2)ẋ + x = u (49)

z̈ + z = u. (50)

with µ = 2.
Proceeding as in [18], taking y = x as the output does not lead to asymptotically stable

zero dynamics. Thus, we modify the output as

y = x + kz (51)

where k is a constant that will be determined later. Using ζ1 = y, ζ2 = ẏ, χ1 = z, χ2 = ż, and
v = −x + µ(1 − x2)ẋ − kz + (1 + k)u, the agent’s description can then be transformed into

ζ̇1 = ζ2,
ζ̇2 = v,
χ̇1 = χ2,

χ̇2 = −χ1 +
1

1+k

(
v + ζ1 + µ(1 − (ζ1 − (kχ1)

2)(ζ2 − kχ1)
)

.
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Thus, the zero dynamics read

χ̇1 = χ2,

χ̇2 = −χ1 +
kµ

1 + k

(
1 − (kχ1)

2
)

χ2.

Proposition 1. Assume that k ∈ (−1, 0). The origin is an asymptotically stable equilibrium, and
the set D = {(χ1, χ2) ∈ R2 | χ2

1 + χ2
2 ≤ 1

k2 } is a subset of its domain of attraction.

Proof. Taking the Lyapunov function V = 1
2 (χ

2
1 + χ2

2), one can infer that V̇ ≤ 0. Since
the set D is positively invariant and the set {(0, 0)} is the only invariant subset of D ∩
{(χ1, χ2) | V̇(χ1, χ2) = 0}, the origin is asymptotically stable due to LaSalle’s invari-
ance principle.

Consider a multi-agent system composed of nine systems (49), (50), with µ = 2
and k = − 1

8 . Then, K = (−1.35, −3.85), and the eigenvalues of the closed loop are
−0.926 ± 1.22j.

Figure 6 shows the state x of the first agent (dashed red line), fourth agent (solid black
line), and seventh agent (dotted blue line). Similarly, the control signals of these agents are
shown in Figure 7. The norms of the synchronization error are depicted in Figures 8 and
9. To clearly illustrate the potential of the method, the magnitude of the initial conditions
was increased, and the time interval of the simulation was extended. Moreover, these figures
present a comparison with the same system controlled by a linear controller with the same
gain matrix K. Specifically, the time evolution of the norm of the synchronization error√

∑9
i=1(xi − x̄)2 is depicted in Figure 8. Analogously, the norm

√
∑9

i=1(zi − z̄)2 is shown in
Figure 9. In both figures, the solid black line represents the norm of the synchronization
error for a proposed nonlinear controller, and the red dashed line stands for the norm of the
synchronization error when the multi-agent system was synchronized by the linear controller.
One can see that the synchronization error converged to zero faster when the synchronization
algorithm proposed here was applied. This is due to the fact that the nonlinearity was matched
more precisely. Specifically, when the effect of the nonlinear terms was large, the control was
less conservative compared to the control obtained by estimating the nonlinearities using the
Lipschitz inequality combined with robust control methods.
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Figure 6. States x1, x4, and x7.
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Figure 7. The control of agents 1, 4, and 7.
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Figure 8. Norm of the synchronization error in x. The solid black line represents the norm of the
synchronization error for the proposed nonlinear controller, while the red dashed line represents the
norm of the synchronization error for the linear controller.
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Figure 9. Norm of the synchronization error in z. The solid black line represents the norm of the
synchronization error for the proposed nonlinear controller, while the red dashed line represents the
norm of the synchronization error for the linear controller.

9. Conclusions and Future Work

The synchronization of nonlinear agents was investigated. The agents were not
fully linearizable, but it was shown that synchronization of all states can be achieved.
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This was accomplished by finding an auxiliary output in which the agents’ systems are
minimum-phase. Then, one group of states can be synchronized while the minimum-phase
property ensures the synchronization of the remaining states. Two examples illustrated
the potential of the proposed method: the synchronization error converges faster for a
multi-agent system synchronized by the proposed controller compared to the case when
the synchronizing controller is linear.

In the future, research will include systems with uncertainties, leading to a robust
control law. Moreover, as the control of multi-agent systems is often subject to time delays,
the effects of these time delays will also be studied, which will require the application of
suitable Lyapunov–Krasovskii functionals. Last but not least, more general topologies will
be investigated.
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