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Fast autofocusing based on single-pixel
moment detection
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Traditional image processing-based autofocusing techniques require the acquisition, storage, and
processing of large amounts of image sequences, constraining focusing speed and cost. Here we
propose an autofocusing technique, which directly and exactly acquires the geometric moments of
the target object in real time at different locations by means of a proper image modulation and
detection by a single-pixel detector. An autofocusing criterion is then formulated using the central
moments, and the fast acquisition of the focal point is achieved by searching for the position that
minimizes the criterion. Theoretical analysis and experimental validation of the method are performed
and the results show that the method can achieve fast and accurate autofocusing. The proposed
method requires only three single-pixel detections for each focusing position of the target object to
evaluate the focusing criterion without imaging the target object. The method does not require any
active object-to-camera distance measurement. Comparing to local differential methods such as
contrast or gradient measurement, our method is more stable to noise and requires very little data
compared with the traditional image processing methods. It may find a wide range of potential
applications and prospects, particularly in low-light imaging and near-infra imaging, where the level of
noise is typically high.

Rapid and accurate autofocusing is an important issue in imaging
technologies1,2. There has been increasing research on passive autofocusing
techniques (i.e., techniques that do not require any distance measurement
by laser range-finders or similar sensors) in recent years. These techniques
can be classified into the following categories: traditional methods using
image information for autofocusing, such as contrast-based autofocusing
and phase autofocusing3–6 or evaluating advanced local differential focus
measures7 and the use of artificial intelligence approaches, such as the deep
learning autofocusing techniques8–10. However, the AI-based methods
require a largenumberof image sequences, being computationally intensive,
and being applicable only to specific scenes11,12. Conventional imaging
techniques rely on surface array detectors; however, surface array detectors
are expensive and sometimes unresponsive in special wavelength bands
such as infrared and terahertz.

Single-pixel imaging (SPI) is a novel imaging technique13, which was
invented in connection with compressed sensing. In SPI, optical informa-
tion ismodulatedby a spatial-opticalmodulator andprojected onto a single-
point photosensitive detector. SPI originally appeared in connection with

compressive sensing, where a complete image of the target is constructed
using an algorithmby varying themodulation patterns of the spatial-optical
modulator and obtainingmeasurements.Herewe employ SPI in an original
way for a real-time evaluation of a focusing criterion.

The typical advantages of SPI over conventional imaging techniques14

are as follows. First, SPI has high sensitivity. Conventional imaging tech-
niques typically use an array of pixels to capture an image, in which each
pixel is responsible for recording the intensity of light at a specific location.
However, SPI takes a different approach and captures image information by
measuring the total light intensity in the entire scene. This global mea-
surement approach makes SPI highly sensitive and capable of capturing
extremely faint light signals15. Second, SPI responds over a wide spectral
range. Different wavelengths of light have different properties and infor-
mation; therefore, the ability to acquire images over a wide spectral range is
critical for many applications. SPI uses a single-point detector with a much
wider response spectrum, making it valuable for important applications in
bands such as infrared and terahertz16. Since SPI actually performs a spatial
integration of the incoming light, it is very robust to noise.

1School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China. 2Key Laboratory of
Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
3Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China. 4Czech Academy of Sciences, Institute of Information Theory and Automation,
Prague, Czech Republic. e-mail: dfshi@aiofm.ac.cn

Communications Engineering |           (2024) 3:140 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00288-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00288-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00288-z&domain=pdf
http://orcid.org/0009-0005-3107-0233
http://orcid.org/0009-0005-3107-0233
http://orcid.org/0009-0005-3107-0233
http://orcid.org/0009-0005-3107-0233
http://orcid.org/0009-0005-3107-0233
mailto:dfshi@aiofm.ac.cn
www.nature.com/commseng


The use of non-imaging methods to achieve fast focusing is of great
value for many systems, such as conventional surface arrays and new SPI.
Recently, ShaotingQi et al. studied dual-modulation image-free active self-
focusing and its application to Fourier SPI17. However, this technique
requires the addition of auxiliary grating devices, which increases the
complexity of the imaging systems. ZilinDeng et al. proposed an autofocus
technique that employs Fourier coefficients as a criterion18. Ten Fourier
coefficients are acquired at each position and combined as a criterion for
autofocus; the number of detections required at each position is 30 when
using a three-step phase-shift method. However, universal rules for
selecting quantitative spectral values for a large number of rich images are
lacking.

In this paper, we aim at a development of a novel autofocusing tech-
nique that shouldwork in real time, should be robust to noise in image data,
should be implemented directly in the camera hardware and should not
require any additional range measurement. Tomeet all these requirements,
we propose to use focusing criterion which is based on image moments. To
achieve the desired speed, we propose a real-time technique for moment
calculation by means of SPI.

We provide a detailed theoretical analysis of the universal autofocusing
judgment rules. Themoment values of the target image at different positions
of the imaging lens are obtained by direct detection, and the central
moments are used as a criterion to search for the positionof the imaging lens
with the smallest central moment to achieve autofocusing. In comparison
with traditional image processing autofocusing methods, our method is a
non-imaging autofocusing method with extremely fast data acquisition,
transmission, and processing. It manifests higher autofocusing speed with
only three detection intensity values at different positions18 and does not
require additional devices, such as gratings17. Moreover, our method can be
applied to diverse real-world images.

Methods
If the image is not perfectly focused, it appears blurred, whichmeans its high
frequencies are suppressed. If the scene is flat, the blurred image gðx; yÞ can
be modeled as a convolution of a focused image f(x,y) and a point spread
functionh(x,y)19; the convolution symbol is denotedby*, where (x,y) are the
coordinates of the two-dimensional (2D) image

gðx; yÞ ¼ ðf *hÞðx; yÞ: ð1Þ

In case of images of 3D scenes, the convolution model holds only
locally and/or approximately.

Common assumptions are the positivity of the image

Z 1

�1

Z 1

�1
f ðx; yÞdxdy > 0 ð2Þ

and overall conservation of energy in the imaging system

Z 1

�1

Z 1

�1
hðx; yÞdxdy ¼ 1: ð3Þ

In case of out-of-focus blur, h(x,y) is a constant function inside a
polygon which has the same shape as the aperture of the camera. If the
aperture is fully open, h(x,y) is a circle (see Fig. 1). For a detailed explanation
of out-of-focus blur see20, Chapter 6.

Nowwe explain how imagemoments are changed under wrong focus.
Geometric moment of order (p+ q) of image f is defined as

mðf Þ
pq ¼

Z 1

�1

Z 1

�1
xpyqf ðx; yÞdxdy: ð4Þ

Since geometricmoments are not shift-invariant, weworkwith central
moments upq

(f) that are independent on the position of the object in the field
of view of the camera

uðf Þpq ¼
Z 1

�1

Z 1

�1
ðx � xcÞpðy � ycÞq f ðx; yÞdxdy; ð5Þ

where (xc, yc) are the coordinates of the centroid of f(x,y)

xc¼
m10

m00
; yc¼

m01

m00
: ð6Þ

The moments of the blurred image g(x,y) can be expressed in terms of
moments of the original image f(x,y) and the point spread function h(x,y) as
follows21:

mðgÞ
pq ¼

Xp
i¼0

Xq
j¼0

p

i

� �
q

j

� �
mðhÞ

ij m
ðf Þ
p�i;q�j ð7Þ

uðgÞpq ¼
Xp
i¼0

Xq
j¼0

p

i

� �
q

j

� �
uðhÞij u

ðf Þ
p�i;q�j: ð8Þ

To derive a moment-based focus measure, we employ the second-
order moments. First-order moments do not carry enough information
about the focus andhigher-ordermoments do not bring any advantage over
the second order. So, from (8) we obtain

M1 ¼ uðgÞ20 ¼ uðhÞ00 u
ðf Þ
20 þ 2uðhÞ10 u

ðf Þ
10 þ uðhÞ20 u

ðf Þ
00 ð9Þ

M2 ¼ uðgÞ02 ¼ uðhÞ00 u
ðf Þ
02 þ 2uðhÞ01 u

ðf Þ
01 þ uðhÞ02 u

ðf Þ
00 : ð10Þ

Since the imaging system is assumed to be energy-preserving, we have
u(h)

00 = 1. Because u10 = u01 = 0 for arbitrary function, Eqs. (9) and (10)
obtain the form

M1 ¼ uðgÞ20 ¼ uðf Þ20 þ uðhÞ20 u
ðf Þ
00 ; ð11Þ

M2 ¼ uðgÞ02 ¼ uðf Þ02 þ uðhÞ02 u
ðf Þ
00 : ð12Þ

Fig. 1 | Examples of real point spread functions
(PSF’s) that cause out-of-focus image blur. Cir-
cular PSF of a fully open aperture (left) and poly-
gonal PSF’s of partially open aperture. The shape is
given by diaphragm blades. The images of the PSF’s
were obtained as photos of a single bright point far
from the focus distance.
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Themoments u20
(h) and u02

(h) are in fact variances of the PSF in x and y
direction, respectively. The variance σ of the PSF indicates the degree of
spatial dispersion of light energy; a smaller variance implies a more con-
centrateddistributionof thePSF, leading to sharper images, whereas a larger
variance corresponds to amoredispersedPSFdistributionand thus, blurrier
images22. The larger blur, the higher these moments. In the optimal focus
position we have u20

(h) = u02
(h) = 0 and both M1 and M2 reach their mini-

mum (note that the othermoments in Eqs. (11) and (12) are always positive
and independent on the focus setting).

Therefore, M1 and M2 can be used to measure the degree of image
blurring whatever the particular PSF is. TakingM1+M2 as the criterion is
even more convenient choice—this quantity measures the blur in both
directions and is invariant to image rotation. To calculate the central
moments, we use the relationship between the center of mass and the
geometricmoments.The centralmoments of theblurred image g(x,y) canbe
expressed as

M1 ¼ uðgÞ20 ¼ mðgÞ
20�

mðgÞ2
10

mðgÞ
00

; ð13Þ

M2 ¼ uðgÞ02 ¼ mðgÞ
02 � mg2

01

mðgÞ
00

: ð14Þ

Hence, only an algorithm for calculating geometric moments is suffi-
cient to evaluate our focus measure.

Traditional moment calculation from the definition replaces the
integral in Eq. (4) by a sum over all image pixels. This is expensive as it
requires O(N2) operations for anN ×N image. To reduce this complexity to
O(1), we take the advantage of SPI andopticalmodulation unit called digital
micromirror device (DMD). We spatially modulate the image by a poly-
nomial, which is equivalent to multiplication. Then the entire modulated
image is captured by a single-pixel detector, which is equivalent to inte-
gration of the modulated light over the field of view. The obtained scalar
value is the image moment, which corresponds to the polynomial used for
modulation. By changing the pattern on DMD, we can calculate any set of
moments in real time.

To describe this process formally, we multiply the scene information
using a series ofmodulation patternsBn(x, y), and use a single-pixel detector
to record the total amount of light In reflectedor transmitted from the scene,
where n denotes the index of the modulation pattern

In ¼
Z 1

�1

Z 1

�1
f ðx; yÞBnðx; yÞdxdy: ð15Þ

If

Bnðx; yÞ ¼ xpyq ð16Þ

Then obviously In =mpq.

Using the detected value as the geometric moments, fast acquisition
and calculation of the central moments can be achieved. Being a non-
imaging method, the proposed method does not require image acquisition
of the target and requires only a small amount of computation and data,
which enables fast and accurate autofocusing. Compared to existing
methods17,18, thismethod does not require additional hardware devices, and
the modulation sampling intensity values are lower with higher efficiency.
At the same time, the integration of the light into a single value ensures the
robustness to noise. The generatedmodulation patterns are shown in Fig. 2.
When the scene information is modulated using B1, B2, B3, B4, and B5, the
detected intensity values correspond to geometric momentsm00,m10,m20,
m01, andm02 of the scene, respectively. Notice, to enhance the clarity of the
modulation pattern boundaries in the plotting, a black border has been
added at each boundary of the modulation modes for better visibility.

Results
Simulations results
In the first series of experiments, we used computer simulations only. No
actual DMD and SPI were used. The aim of these experiments is to
demonstrate that M1, M2, and M1+M2 can actually measure the level of
blur in images and to identify slight differences between them. We per-
formed this study using 256 × 256 pixel binary and grayscale images, as
shown in Fig. 3. The images were convolved with different types of point
spread functions to simulate various out-of-focus blur types. The absolute
difference indistance between the imaging lens at different positions and the
reference focused position corresponds to the degree of blurring. Thus, we
can simulate the entire image focusing process, from defocus to focus and
back to defocus, by changing the position of the imaging lens.

Through theoretical analysis, it is observed that M1 represents the
image variance in the horizontal direction,M2 represents the variance in the
vertical direction, and M1+M2 includes variances in both horizontal and
vertical directions. Using Eqs. (13) and (14), we obtained the central
momentsM1 andM2 of the simulated images with different defocus levels.
To normalize them, both image central momentsM1 andM2 were divided
by the central moments of the original focused image.

Gaussian point spread function. For the first set of simulation
experiments, the commonly used isotropic 2D truncated Gaussian
function was chosen as the point spread function23

hðx;yÞ ¼ 1
2πσ2

exp� 1
2

x2

σ2
þ y2

σ2

� �
ð17Þ

The sequence of blurred images with different blur size σ (σ = 0.5–5,
intervals of 0.5) is shown in Fig. 4.

The centralmomentsM1 andM2 of the images in Fig. 3were calculated
using Eqs. (13) and (14), respectively. The parameter σ in Fig. 5 corresponds
to the position z of the imaging lens set. For the focused image, the imaging
lens position is z = 0. Ten different values of σwere considered.When z > 0,
σ = z/2, simulating back defocus; when z < 0, σ =−z/2, simulating front

Fig. 2 | The modulation patterns for geometric moment calculation. B1, B2, B3, B4, and B5 are used to obtain m00, m10, m20, m01, and m02 values. (Note that the image
coordinates use a Cartesian coordinate system with the origin at the lower left corner.)
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defocus. The value of σ represents the degree of blurring in the defocused
image. The larger the σ value, the greater the blurring,while the smaller the σ
value, the lesser the blurring. The vertical coordinates in Fig. 5 show the
normalized centralmomentsM1 andM2 of the simulated images at different
degrees of defocus divided by the central moments of the focused images.
Thus, when the imaging lens is in the focus position, the central moments
M1 andM2 of the focused image are equal to 1.

The central momentsM1 andM2 vary with variance σ, and the results
are shown in Fig. 5. The magnitudes of the central moments of the image
progressively decrease as the images approach proper focus (z = 0). For
isotropic images, like img1, when the PSF has equal variance σ in both the x
and y directions, the resulting blurred image’s M1 and M2 moments are
identical. For anisotropic images, such as img2, img3, and img4, despite
having a PSF with equal variance σ in x and y directions, the M1 and M2

moments of their blurred versions are distinct. However, both approach
theirminima at the focal point (z = 0). In this case, any of the threemoments
(M1,M2 or (M1+M2)/2) can be used as a focus criterion.

For the next set of simulation experiments, considering the possibility
of different variations in the point spread function along the x and y axes, we
employ an elliptic 2D Gaussian function

hðx;yÞ¼ 1
2πσxσy

exp� 1
2

x2

σ2x
þY2

σ2y

 !
ð18Þ

was chosen as the point spread function to simulate anisotropic optical
systems. The sequence of blurred images with different variances σx and σy
(σx = 0.5–5, intervals of 0.5; σy = 1–10, intervals of 1) is shown in Fig. 6.

Table 1 provides a detailed description of the relationship between the
position z of the imaging lens system and the variance of the Gaussian
function. The first row of Table 1 shows the position z of the imaging lens
system, while the second row displays the variations in the isotropic
Gaussian function variance σ. The third and fourth rows show the variations
of the variances σx and σy, respectively.

We calculated the moments M1 and M2 of the image using Eqs. (13)
and (14), respectively. The parameter σ in Fig. 7 corresponds to the position
z of the imaging lens. When z > 0, we set σx = z/2, σy = z, simulating back
defocus; when z < 0, σ =−z/2, σy =−z, that simulates front defocus. The
vertical coordinates in Fig. 7 are the central moments of the blurred images
and are normalized by dividing by the central moment of the original
focused image. Due to the variance of the elliptical 2D Gaussian function
differs in the x and y directions (that is, σx ≠ σy), for isotropic images
such as img1, the central moments M1 and M2 of the image will also
be different.

According to the results in Figs. 5 and 7, it can be observed that
regardless of whether the point spread function is an isotropic Gaussian
function or an anisotropic Gaussian function, the central moments of the
image effectively reflect the degree of image blurring. The central moment
values serve as a reliable criterion for determining focus in both of
these cases.

Performance analysis. In this section, we delve into the impact of noise
on the accuracy of autofocusing andmeticulously evaluate the robustness
and reliability of the proposed autofocusing criterion when confronted
with typical noise disturbances. To comprehensively understand the
potential implications of noise on the focus determination mechanism,
we simulate the introduction of prevalent noise types found in imaging
systems onto test images: Gaussian noise. This analytical step aims to
reveal the performance of the method under complex real-world con-
ditions, ensuring that the proposed approach is not only effective under
ideal circumstances but also remains sturdy when faced with practical
challenges.

Let g(x,y) represent the noise-free blurry image, and n(x,y) denote the
additive noise. The resulting noisy blurry image, g’(x,y), is then given by

g 0ðx; yÞ ¼ gðx; yÞ þ nðx; yÞ ð19Þ

Fig. 3 | Images for simulating experiments. Binary
images img1 and img2 and gray-level images img3
and img4 used for the simulation experiments.
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The momentsM’ of the noisy image can be expressed as

M0 ¼ uðg
0Þ

pq ¼ uðgÞpq þ uðnÞpq ¼ M þMn ð20Þ

WhereM is the moment of the image, andMn is the moment of the noise.
Suppose the additive noise follows aGaussian distributionwithmean0

and variance Var(N), For zero-mean noise, assuming the noise function is

n(x,y), then E[n(x,y)] = 0, and thus we have:

E½Mn� ¼
Z 1

�1

Z 1

�1
E½xpyqnðx; yÞ� dxdy ¼ 0 ð21Þ

This means that the contribution of the noise to the expected value of
imagemoments is zero, E[M’] = E[M]. Zero-mean noise, due to its property

Fig. 4 | Defocused images of objects with different
levels of blurring. a–dA sequence of blurred images
of img1, img2, img3, and img4, respectively. As σ
increases, the images become more blurred.

https://doi.org/10.1038/s44172-024-00288-z Article

Communications Engineering |           (2024) 3:140 5

www.nature.com/commseng


of having a zero expectation value, is averaged out during the calculation of
imagemoments,making its effect on themmild, thuspreserving the stability
of image moments. For specific instances of noise appearance, the expected
value of the moments may be non-zero but still very low. This is because
particular forms of noise might introduce some offset, causing the expected
value of the moments to deviate slightly from zero. Nevertheless, such
deviations are usually very small and can be negligible for most practical
applications. The central moment values of a noisy image primarily depend
on the central moment values of the original image. Therefore, during the
blurring process, changes in the central moments are still predominantly
influenced by the point spread function.

Next, we analyze the characteristics of central moment variations
in blurred images under noisy conditions using the four images
depicted in Fig. 3. To simulate blur, we convolve the images with iso-
tropic two-dimensional Gaussian point spread functions of varying
variances(σ = 0.5–5, intervals of 0.5), followed by the addition of Gaussian
noise with a mean of 0 and a variance of 0.01, as illustrated in Fig. 8. After
noise addition, the signal-to-noise ratios (SNRs) for Images 1 through 4 are
measured to be 20.02 dB, 10.73 dB, 15.07 dB, 14.01 dB, respectively.

Similarly, we used Eqs. (13) and (14) to calculate the central moments
M1 andM2 for imageswithvaryingdegrees of blur, including thepresenceof
noise, as depicted in Fig. 9. It is evident that all three focusmeasures perfectly
pinpoint the focus, demonstrating the robustness of themethod despite the
introduced noise.

Taking the analysis a step further, we addedGaussian noise at varying
variance to the images and computed the changes in the central moments
of the images with added noise. Specifically, for img1, we applied Gaussian
noisewith varianceof 0.01, 0.02, 0.05, and0.1.Theoutcomesof this process
are illustrated in Fig. 10 below. Images subjected to these noise variance

exhibited respective signal-to-noise ratios (SNRs) of 20.02 dB, 17.01 dB,
13.18 dB, and 10.23 dB. Likewise, the effects of different noise variance on
the central moments of blurred images are showcased in Fig. 11. From
these results, it becomes evident that even at an SNR as low as 10 dB, using
central moments as a metric for determining focus remains robust and
effective.

Our simulation conclusions reveal that under conditions of varying
noise variance, a proportional relationship exists between the degree of
image blur and its central moments. Therefore, it is possible to perform
autofocus by searching for theminimumvalue of one of the three examined
focus measures, thereby affirming the feasibility and robustness of utilizing
central moments as a metric for assessing and optimizing image focus in a
wide range of scenarios and challenges.

Generally, it is recommended to use preferably M1+M2, because
this criterion is rotation invariant and isotropic. For our constructed
optical verification system, the point spread function is symmetric along
the horizontal and vertical directions on the optical axis. Therefore, the
central momentM1 can be taken as the standard parameter for obtaining
the position of the focal point. In this case, three modulation modes (B1,
B2, andB3) are used to obtain the values of geometricmoments (m00,m10,
andm20), and then the central momentM1 is calculated. Leaving outM2

speeds-up the process without sacrificing the accuracy of the focus point
detection.

Real experiments results
Experimental hardware design. To verify the proposed autofocusing
technique in practice, we designed an experimental hardware system (see
Fig. 12). A light source is used to illuminate the object. The light passes
through the lens and reaches a digital micromirror device (DMD).

Fig. 5 | The variation of central moments during the process of isotropic blurring of the images. Relationship between central moments (M1, M2, and M1+M2) and
variance (σ) of the 2D Gaussian point spread function for img1 (a), img2 (b), img3 (c), and img4 (d).
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DMD displays a 2D modulation pattern generated by a computer. In
our case, low-order polynomials are used tomodulate the image (see Fig. 1).
The patterns are loaded onto theDMDusing the spatial ditheringmethod24.
Themodulated optical signal is captured by a single-pixel detector. The SPI
value, which is in fact an optically calculated image geometric moment, is
passed to a computer to calculate centralmoments and to evaluate the focus
measure. This process is iterated over a certain range of the lens positions

and the position providing the optimal focus is determined as theminimum
of the criterion function.

A light-emitting diode (LED) (M530L4-C1, Thorlabs) with a max-
imum power of 200mW, wavelength of 530 nm, and bandwidth of 35 nm
was used as the light source. A combined lens set was used as the imaging
lens set and was placed on a motorized displacement stage (Zolix TSA100-
B) with a total travel distance of 100mm. For the same traveling distance,

Fig. 6 | Defocused images of objects with different
levels of blurring. a–dA sequence of blurred images
of img1, img2, img3, and img4, respectively. σx and
σy are the variance of the 2D Gaussian point spread
function in the horizontal and vertical directions,
respectively. As σx and σy increases, the images
become more blurred.
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four experiments with different focusing speedwere conducted to verify the
effectiveness of the method proposed in this paper by controlling the
moving speed of the motorized displacement stage. The moving speed was
10, 15, 20, and 30mm s−1, respectively. The total distance traveled by the
imaging lens was 60mm. Focusing was performed by gradually moving
closer to and then further away from the focal point. The light modulator
(DMD) was a Texas Instruments Discovery V7000 with 1024 × 768
micromirrors (the effective usage area of DMD is the middle 768 × 768
micromirrors).The modulated light from the DMD was reflected using a
silver-platedmirror, the reflected lightwas collectedusing a convex lenswith
a focal length of 31.5mm, and the modulated light signal was captured by a
single-pixel detector (PDA100A2 Thorlabs). The detector output signals
were sampled and acquired using a high-speed digitizer (ADLINK
PCI-9816H).

Experimental results. Autofocusing experiments were conducted using
the system described above. Two objects were manufactured of a metal
plate with hollow patterns, as shown in Fig. 13. During the experiment,
the imaging lens moved horizontally at a constant speed to change the
image of the object on the DMD. The modulation time of the three

patternsmodulated by theDMDwas set to 1000 µs, and the sampling rate
of the acquisition card was 100 kHz. Equation (13) was used to calculate
the central moment of the object at different imaging lens positions.

When the imaging lens moves to different positions within the range,
the change of the central moment of the object “USTC” is shown in Fig. 14.
Figure 14a–d shows the results for focusing speeds of 10, 15, 20, and
30mm s−1, respectively. The central moment was calculated using the
detections under pattern modulation of modes B1, B2, and B3 at different
focusing positions (the patterns were pre-computed and stored off-line).
The blue curves are the calculated data for the central moment. The hor-
izontal axis represents distance in millimeters, and the central moment is
plotted along the vertical axis. To eliminate the impact of noise, fluctuations
in the detector signals, and other factors, the calculated centralmoment data
curves were fitted using the curve fitting method. This process ensured a
smooth data curve, shown in orange. As shown in Fig. 14, the four
experiments initially approached the focal point and then moved away. As
the lens moved, the imaging pattern transitioned from blurry to clear and
back to blurry. The orange smooth-fitting curves in Fig. 14a–d show that the
central moment of the objects in all four experiments reached its minimum
at the focal point (z = 30mm). Because of the time interval between the
signal acquisition by the acquisition card and the start of lensmovement, the
centralmoment curve initially exhibits a period offlatness. FromFig. 14a–d,
it can be observed that the centralmoment isminimumat the sameposition
(z ≈ 29.4mm) for each of the four focusing speeds, indicating that the
corresponding optical system has the same focal point.

The image of the object on the DMD during the 10mm s−1 speed
experiment was for illustration captured using a Xiaomi 13 mobile phone,
and the results are shown in the images indicated by theblackdashed arrows
in Fig. 14a. The seven images in Fig. 14(i–vii) are images of the objects

Fig. 7 | The variation of central moments during the process of anisotropic blurring of the images. Relationship between central moments (M1,M2 andM1+M2) and
variance (σx and σy) of the elliptic 2D Gaussian point spread function for img1 (a), img2 (b), img3 (c), and img4 (d).

Table 1 | Relationship between focus position x and Gaussian
function variance

position z 0 1 2 3 4 5 6 7 8 9 10

σ 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

σx 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

σy 0 1 2 3 4 5 6 7 8 9 10
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capturedwhen the imaging lensmoved approximately to positions 0, 10, 20,
30, 40, 50, and 60mm, respectively. In the supplement (see “Supplementary
Movie 1”), some distortion can be observed in the images due to the
shooting angle of the mobile phone. The angle between the mobile phone
lens and the DMD target surface is ~45°.

In addition to video, taking by the mobile phone, we performed
another test that enables visual assessment. In addition to polynomial

modulation, which was used for moment calculation, we applied modula-
tion by Hadamard basis functions.

Then the SPI values can be used for image reconstruction. This process
is known as the Hadamard single-pixel imaging and was originally
employed in compressed sensing. We employed the differential Hadamard
single-pixel imaging technique and utilized 32,768 Hadamard patterns to
reconstruct the image on a 128 × 128 pixel grid (note that for a complete

Fig. 8 | Noisy defocused images of objects with
different levels of blurring. a–d A sequence of
Gaussian noise blurred images of img1, img2, img3,
and img4, respectively. As σ increases, the images
become more blurred.
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Fig. 9 | The variation of central moments during the isotropic blurring process of the noisy images.Relationship between central moments (M1,M2, andM1+M2) and
variance (σ) of the 2D Gaussian point spread function for img1 (a), img2 (b), img3 (c), and img4 (d), under Gaussian noise conditions.

Fig. 10 | Noise images for simulating experiments.
Img1 with Gaussian noise of different variance,
where the noise variance for a, b, c, and d are 0.01,
0.02, 0.05, and 0.1, respectively.
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reconstruction, this technique requires two times more SPI values than the
number of reconstructed pixels)25–29.

The reconstructions are shown in Fig. 14e–g. Figure 14f shows the
image at the focused position, whereas Fig. 14e, g show the imaging
results at 10 mm to the left of the approximate focus position (green

dots on the curves in Fig. 14b–d) and 10 mm to the right (yellow dots on
the curves in Fig. 14b–d), respectively. The object image appears the
sharpest at the calculated focal point, which supports the results
measured by the mobile and illustrates the effectiveness of the
proposed method.

Fig. 11 | The variation of central moments during the isotropic blurring process of noisy image1. The relationship between the central moments of img1 with Gaussian
noise of different variance and the variance (σ) of a 2D Gaussian point spread function, where the noise variance for a, b, c, and d are 0.01, 0.02, 0.05, and 0.1, respectively.

Fig. 12 | The experimental hardware for testing the
proposed autofocus technique. The light illumi-
nates the object, passes through the lens, is modu-
lated on theDigitalMicromirrorDevice (DMD) and
continues to the single-pixel detector. The experi-
ment is monitored by a mobile phone.

https://doi.org/10.1038/s44172-024-00288-z Article

Communications Engineering |           (2024) 3:140 11

www.nature.com/commseng


Figure 15 shows the results of an identical experiment conducted on
the resolution plate shown in Fig. 13b. The blue curves in Fig. 15a–d
represent the original central moment data of the object obtained by the
imaging lens at various positions using the detections under pattern mod-
ulation of modes B1, B2, and B3 at different focusing positions. The orange

curves show the results of fitting the original blue data curves to achieve a
smoothed representation. The black dashed arrows pointing to i–vii in
Fig. 15a are the images of the object capturedwithaXiaomi13mobile phone
when the imaging lens moved about 0, 10, 20, 30, 40, 50, and 60mm,
respectively. In the supplemental document (see “SupplementaryMovie 2”),

Fig. 13 | Objects used for the experiments. a The
letters “USTC” and b part of the USAF1951 reso-
lution plate.

Fig. 14 | Experimental results for the USTC object. a–d The results under moving
speeds of 10, 15, 20, and 30 mm s−1, respectively. i–vii are the photographed images
using a Xiaomi 13 mobile phone when the imaging lens moved at the positions of 0,
10, 20, 30, 40, 50, 60 mm, respectively. e–g The Hadamard single-pixel

reconstructions of the object 10 mm left of the focal point, at the focal point of the
central moment minimum, and 10 mm to the right of the focal point, respectively
(see Supplementary Movie 1 for more details).
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some distortion can be observed in the images due to the shooting angle of
the mobile phone.

The central moment values of the object in all four experiments shown
in Fig. 15a–d varied from large to small and then to large, and the image
reached the focal point when the central moment value was the smallest.
Regardless of the focusing speed, theminimumvalue of the centralmoment
was reached at the same position (z ≈ 29.35mm).

The Hadamard single-pixel reconstruction was used again to visualize
the results (see Fig. 15e–g).

It is worth noting that the proposed technique actually works in real
time. Themodulation frequency of the DMDwas up to 22.2 kHz, and each
calculation required three modulation modes. Therefore, the achievable
frequency for obtaining the focus parameters is 7.4 kHz. In other words,
calculation of focus parameters, including signal modulation and single-
pixel detection, requires negligible time comparing to the timeof travelingof
the lens from one distance to another.

Conclusion
In this study, a moment-detection fast autofocusing technique was pro-
posed, and the effectiveness of the method was verified through theoretical
and experimental analysis. Themain advantages of the proposed technique
are as follows: First, it assesses image sharpness and focus quality in real time

using a non-imaging hardware-implementedmethod and achieves accurate
focusing results. Unlike local differential focus criteria, the moment-based
measure is integral and hence robust to noise. Even in the presence of noise
and with a low signal-to-noise ratio, the method still performs well. On the
other hand, there exist a limitation of our method which is implied by the
global nature of the moments. To be precise, our focus measure requires
objects on a black background along the imageborders. If this is not the case,
we face so-called boundary effect, which means that the moment values of
the blurred image are influencedby theobjects laying outside the visualfield.
Fortunately, if the blur is small comparing to the image size, the boundary
effect does not violate the performance of the method significantly. The
single-pixel moment-detection fast autofocusing technology reduces the
cost and complexity. Comparing to active techniques, our method does not
require any distance measurement using a rangefinder or a similar device
and our method does not need any timing circuits. In comparison with
traditional image processing-based autofocusing techniques, where the
entire image is captured in each focus position and the focus measure is
calculated numerically, our technology uses one light detection unit to
measure the light intensity. Both approaches of course require scanning
along the optical axis, so they need to move the lens. This simplified
structure renders the technology more practically and conveniently for
various applications. Furthermore, our technique utilizes a single-pixel

Fig. 15 | Experimental results for the USAF1951 resolution plate. a–d The results
under moving speeds of 10, 15, 20, and 30 mm s−1, respectively. i–vii are the pho-
tographed images using a Xiaomi 13 mobile phone when the imaging lens moved at
the positions of 0, 10, 20, 30, 40, 50, 60 mm, respectively. e–g The Hadamard single-

pixel reconstructions of the object 10 mm left of the focal point, at the focal point of
the central moment minimum, and 10 mm to the right of the focal point, respec-
tively(see Supplementary Movie 2 for more details).
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detector, which performs well even under low-light conditions. It has
advantages in acquiring optical signals within specific wavelength bands,
such as the infrared and terahertz ranges. Moreover, this single-pixel
moment detection fast autofocusingmethod requires only three single-pixel
detection values at each focus position, which results in less computational
data and faster focusing. In summary, the proposed single-pixel moment-
detection fast autofocusing technique provides an innovative solution for
achieving fast and accurate autofocusing. This technique has significant
advantages in the field of autofocusing, including high speed, accurate
focusing, low cost, and low complexity, making it ideal for application in
various imaging and projection fields.

Data availability
The data underlying the results presented in this paper are not publicly
available at this time butmay be obtained from the authors upon reasonable
request.

Code availability
The programming code used to compute all the results in this paper was
implemented using Matlab Version R2022b. The code can be obtained by
contacting the author upon reasonable request.

Received: 16 April 2024; Accepted: 30 September 2024;

References
1. Kong-feng, Z. & Wei, J. New kind of clarity-evaluation-function of

image. Infrared Laser Eng. 34, 464–468 (2005).
2. Subbarao, M. & Tyan, J.-K. Selecting the optimal focus measure for

autofocusing and depth-from-focus. IEEE Trans. Pattern Anal. Mach.
Intell. 20, 864–870 (1998).

3. Kwon, O.-J., Choi, S., Jang, D. & Pang, H.-S. All-in-focus imaging
using average filter-based relative focus measure. Digit. Signal
Process. 60, 200–210 (2017).

4. Li, H., Li, L. & Zhang, J. Multi-focus image fusion based on sparse
feature matrix decomposition and morphological filtering. Opt.
Commun. 342, 1–11 (2015).

5. Zan, G. An auto-adaptive algorithm to auto-focusing. Acta Opt. Sin.
26, 1474–1478 (2006).

6. Strobl, K. H. & Lingenauber, M. Stepwise calibration of focused
plenoptic cameras.Comput. Vis. Image Underst. 145, 140–147 (2016).

7. Kautsky, J., Flusser, J., Zitova, B. & Simberova, S. A new wavelet-
based measure of image focus. Pattern Recognit. Lett. 23,
1785–1794 (2002).

8. Liu, Y. et al. Multi-focus image fusionwith a deep convolutional neural
network. Inf. Fusion 36, 191–207 (2017).

9. Rizvi, S., Cao, J. & Hao, Q. Deep learning based projector defocus
compensation in single-pixel imaging. Opt. Express 28,
25134–25148 (2020).

10. Qin, X. X., Zou, H. X., Yu, W. & Wang, P. Superpixel-oriented
classification of PolSAR images using complex-valued convolutional
neural network driven by hybrid data. IEEE Trans. Geosci. Remote
Sens. 59, 10094–10111 (2021).

11. Jinxing, Li. et al. DRPL: deep regression pair learning for multi-focus
image fusion. IEEE Trans. Image Process. 29, 4816–4831 (2020).

12. Ma, B. Y. et al. SESF-Fuse: an unsupervised deep model for multi-
focus image fusion. Neural Comput. Appl. 33, 5793–5804 (2021).

13. Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects
for single-pixel imaging. Nat. Photonics 13, 13–20 (2018).

14. Lu, T. A. et al. Comprehensive comparison of single-pixel imaging
methods. Opt. Lasers Eng. 134, 106301 (2020).

15. Gibson, G. M. et al. Single-pixel imaging 12 years on: a review. Opt.
Express 28, 28190–28208 (2020).

16. Phillips, D. B. et al. Adaptive foveated single-pixel imaging with
dynamic supersampling. Sci. Adv. 3, e1601782 (2017).

17. Qi, S. T. et al. Image-free active autofocusing with dual modulation
and its application to Fourier single-pixel imaging. Opt. Lett. 48,
1970–1973 (2023).

18. Deng, Z., Qi, S. T., Zhang, Z. & Zhong, J. Autofocus Fourier single-
pixel microscopy. Opt. Lett. 48, 6076–6079 (2023).

19. Zhang, Y., Zhang, Y. & Wen, C. A new focus measure method using
moments. Image Vis. Comput. 18, 959–965 (2000).

20. Flusser, J., Suk, T. & Zitova, B. 2D and 3D ImageAnalysis byMoments
(Wiley, 2016).

21. Flusser, J. & Suk, T. Degraded image analysis: an invariant approach.
IEEE Trans. Pattern Anal. Mach. Intell. 20, 590–603 (1998).

22. Goodman, J. W. Fourier Optics, 3rd edn (Roberts and Company
Publishers, 2005).

23. Kostkova, J. et al. Handling Gaussian blur without deconvolution.
Pattern Recognit. 103, 107264 (2020).

24. Zha, L. et al. Single-pixel tracking of fast-moving object using
geometric moment detection. Opt. Express 29, 30327–30336 (2021).

25. Zhang, Z. B. et al. Hadamard single-pixel imaging versus Fourier
single-pixel imaging. Opt. Express 25, 19619–19639 (2017).

26. Yu, W.-K. Super sub-Nyquist single-pixel imaging by means of cake-
cutting Hadamard basis sort. Sensors 19, 4122 (2019).

27. Sun, S. et al. DCT single-pixel detecting for wavefront measurement.
Opt. Laser Technol. 163, 109326 (2023).

28. Wang, Z. et al. DQN based single-pixel imaging. Opt. Express 29,
15463–15477 (2021).

29. Ma,M. et al. Direct noise-resistant edgedetectionwith edge-sensitive
single-pixel imaging modulation. Intell. Comput. 2, 0050 (2023).

Acknowledgements
This studywas supportedby theYouth InnovationPromotionAssociationof
the Chinese Academy of Sciences (Grant No. 2020438), HFIPS Director’s
Fund (Grant No. YZJJ202404-CX), and Czech Science Foundation (Grant
No. GA21-03921S).

Author contributions
DongfengShi proposed the ideaof applying single-pixelmoment detection to
autofocusing and supervised all research for the paper. Jan Flusser provided
theoretical analysis support regarding moments. Huiling Chen designed the
method and conducted the experiments and computational analysis. Zijun
Guo, Runbo Jiang, and Linbin Zha contributed to the data analysis, inter-
pretation, and evaluation. Huiling Chen wrote the manuscript. Yingjian Wang
and Jan Flusser performed the final review of the manuscript. All authors
discussed the progress of the research and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44172-024-00288-z.

Correspondence and requests for materials should be addressed to
Dongfeng Shi.

Peer review information Communications Engineering thanks Richard
Bowman, Yusuke Saita, and the other, anonymous, reviewer for their
contribution to the peer review of this work. Primary Handling Editors:
Anastasiia Vasylchenkova.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s44172-024-00288-z Article

Communications Engineering |           (2024) 3:140 14

https://doi.org/10.1038/s44172-024-00288-z
http://www.nature.com/reprints
www.nature.com/commseng


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s44172-024-00288-z Article

Communications Engineering |           (2024) 3:140 15

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commseng

	Fast autofocusing based on single-pixel moment detection
	Methods
	Results
	Simulations results
	Gaussian point spread function
	Performance analysis

	Real experiments results
	Experimental hardware design
	Experimental results


	Conclusion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




