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Abstract
Recognition of 3D objects is an important task in many bio-medical and industrial applications. The recognition algorithms 
should work regardless of a particular orientation of the object in the space. In this paper, we introduce new 3D rotation 
moment invariants, which are composed of non-separable Appell moments. We show that non-separable moments may 
outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero sur-
faces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three 
real datasets—MRI images of human brain, 3D scans of statues, and confocal microscope images of worms. We show the 
robustness to resampling errors improved more than twice and the recognition rate increased by 2–10 % comparing to most 
common descriptors. In the last section, we show how these invariants can be used in state-of-the-art neural networks for 
image recognition. The proposed H-NeXtA architecture improved the recognition rate by 2–5 % over the current networks.

Keywords  3D rotation invariants · Non-separable moments · Appell polynomials · Convolutional neural networks

Introduction

Robust recognition of 3D objects is particularly impor-
tant in bio-medical imaging, where modalities such as CT, 
MRI, and confocal microscopes yield full 3D volumetric 
data, as well as in numerous industrial applications. Two 
main approaches to this problem are via “handcrafted” and 

“learned” features. While in 2D the convolutional networks 
and deep learned features have almost completely replaced 
traditional handcrafted features, the situation in 3D recogni-
tion is not so clear-cut.

For volumetric data, there are several 2D-inspired archi-
tectures operating on voxels such as convolution networks 
[1–3], residual networks [4], U-Net [5, 6], generative mod-
els [7–11], and transformers [12–15]. However, one faces 
many practical problems when applying neural networks to 
3D data. The data size and dimension imply the demand of 
large-scale annotated training sets. Such public datasets do 
not exist, unlike for instance ImageNet, that serves as a uni-
versal training set in 2D applications. We can find only few 
specialized benchmarks for narrow areas like Kitty (dataset 
for autonomous driving) [16] and fastMRI [17] containing 
knee and brain MRI snaps. These training data can be used 
in specific areas, but do not have a potential of pre-training 
general backbones suitable for transfer learning. The prob-
lem of geometric invariance of the network, widely inves-
tigated in 2D [18], has been studied in a few very recent 
papers [19, 20]. These shortcomings give way to traditional 
methods with low-demand training and effective descrip-
tions resistant to deformations such as rotation, scale or 
translation. However, transformation robust 3D neural net-
works are already starting to appear for specific tasks, for 
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example for the recently published equivariant networks for 
object detection [19, 20].

So, there is still a clear demand to develop efficient hand-
crafted invariant features that can be used standalone out-
side neural network framework, but can be also incorporated 
into state-of-the-art hybrid network architectures to improve 
recognition of deformed objects while avoiding massive 
augmentation.

Among many possible choices, moment invariants 
were proven to be very powerful descriptors of 3D bod-
ies, because they provide invariance to the object pose and 
scale [21]. 3D moment invariants have been studied much 
less than their 2D counterparts, which means there are still 
many open questions concerning namely numerical stability 
and ability to represent objects by low-dimensional vectors. 
Both these issues are connected with the orthogonality of the 
moments (more precisely, with the orthogonality of the cor-
responding polynomial bases). Orthogonal (OG) moments 
provide generally better representation, stability and dis-
crimination power than non-orthogonal ones. On the other 
hand, rotation invariants from OG moments are generally 
more difficult to construct than those from standard non-
orthogonal moments [22, 23]. Two families of popular 3D 
rotation moment invariants composed of OG moments are 
those based on Zernike moments [24] and Gaussian-Hermite 
moments [25].

Both these systems (and actually all other ones that 
have been used in object recognition so far) are separable, 

which means their basis functions can be factorized as 
�pqr(x, y, z) = Pp(x)Pq(y)Pr(z) . Zernike moments are sepa-
rable in polar domain, Gaussian-Hermite moments are sepa-
rable in cartesian domain. Separability is convenient from 
computational point of view, but results in certain limita-
tions of the representation ability. The distribution of zeros 
of separable functions is constrained such that the zero sur-
faces fill a rectangular or polar grid (see Fig. 1). Hence, 
separable basis functions provide good representation in the 
grid directions, while the representation in “diagonal” direc-
tions may be worse. It may lead to the drop of discriminabil-
ity, if characteristic object structures exhibit a diagonal-like 
orientation and / or if we employ only a few low-order basis 
functions. This has led recently to introducing non-separable 
bases, however so far in 2D only.

Bedratyuk et al. [26] introduced 2D non-separable Appell 
moment invariants. In this paper, we generalize their idea 
into 3D and we demonstrate their usage as standalone 
descriptors and we also show how they can be incorporated 
into novel network architectures.

The paper is organized as follows. The basic idea is out-
lined in “Basic Idea Behind 3D Invariants”. “3D Appell 
Polynomials and Moments” introduces the Appell polyno-
mials in 3D and their use for the design of rotation invari-
ants. and “Experiments with Appell Invariants as Standalone 
Features” describes numerical experiments on real data of 
various kind. “Appell Moments in Convolutional Networks” 
deals with the possible usage of the Appell moments in 

Fig. 1   Slices of 3D polynomials 
showing the zero distribution: a 
separable Zernike ℜ

(

Z
5

15,9

)

 , xy 
plane, b separable Gaussian–
Hermite G456 , xy plane, c 
non-separable Appell U456 , xy 
plane, d non-separable Appell 
V456 , xy plane. The black curves 
are the zero sets
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convolutional neural networks and “Conclusion” concludes 
the paper.

Basic Idea Behind 3D Invariants

To design 3D rotation invariants as functions of non-sepa-
rable moments, we need to find basis polynomials that are 
quasi-monomials, are not separable, and there exists a stable 
and fast algorithm for their evaluation. Quasi-monomials 
are polynomials, that are transformed under coordinate rota-
tion exactly in the same way as monomials xpyqzr [27]. This 
property is crucial for the invariant design. We can simply 
substitute the quasi-monomial moments into well-known 
invariants of geometric moments (i.e. moments w.r.t. the 
monomial basis) [21]. There is no need of designing invari-
ant “from scratch”. However, quasi-monomials are rare. 
Among all separable polynomials, Hermite polynomials 
were proved to be the only quasi-monomials [28]. Among 
non-separable polynomials, there is no such necessary and 
sufficient condition. Bedratyuk et al. [26] proved that Appell 
polynomials [29] are quasi-monomials in 2D. As is shown 
below, this key property is preserved in 3D as well. In the 
next section, we present 3D Appell polynomials, Appell 
moments and original recurrent relations for their efficient 
computation.

3D Appell Polynomials and Moments

The term Appell polynomials (APs, named after Paul Émile 
Appell, a French mathematician) denotes two families of 
multivariate non-separable polynomials U and V. Appell 
polynomials are bi-orthogonal, which means any two poly-
nomials, one being from U and the other one from V, are 
orthogonal (with a weight) on a unit sphere.

The definition of 3D Appell polynomials via expansion 
into standard powers is the following (for more details on 
the APs see [29]).

(1)
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where (a)k = a(a + 1)(a + 2)⋯ (a + k − 1) is Pochhammer 
symbol.

An equivalent definition by means of generating functions 
is given as

Appell polynomials U and V from (1) or (2) are bi-orthogo-
nal on the unit sphere B = {(x, y, z) | x2 + y2 + z2 ≤ 1} . The 
relation of bi-orthogonality is

where �ij is the Kronecker delta function, the weight func-
tion is

and the normalizing constant is

Note that W (s)(x, y, z) = 1 for s = 1 . However, neither of the 
above definitions is convenient for numerical evaluation due 
to possible overflows. In Appendix B, we present recurrent 
formulas for stable and fast computation.

The generating functions play a crucial role in the fol-
lowing theorem.
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Theorem  1  Let us suppose that the polynomial family 
{Bm,n,o(x, y, z); m, n, o ∈ ℕ0} is defined by a generating 
function

Then all Bm,n,o are quasi-monomials if and only if G is a 
function of ux + vy + wz, x2 + y2 + z2 and u2 + v2 + w2 only.

For the proof of Theorem 1 see Appendix A. Now we 
can easily see that Appell polynomials are quasi-monomials, 
because their generating functions satisfy Theorem 1.

The Appell moments M of a 3D image f(x, y, z) are its 
projections onto the set of Appell polynomials

where P stands either for U or for V. To obtain Appell invari-
ants, these moments are substituted directly into geometric 
moment invariants [21, 30] (this is possible because APs 
were proven to be quasi-monomials), so we end up with 
formulas such as (the superscript (P) in M(P)

pqr
 is omitted)

Using the list of invariants from [30], we obtain a complete 
and independent set of 213 invariants up to the 9th moment 
order.
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In this paper, we calculate the moments and the invari-
ants globally from the entire object. Local application, for 
instance to small overlapping blocks as proposed in [31] 
is also possible and might be used for objects that are not 
completely visible. However, the efficient computational 
tricks based on matrix factorization [31] cannot be applied 
because Appell moments are not separable. Local applica-
tion of Appell invariants is beyond the scope of this paper.

Experiments with Appell Invariants 
as Standalone Features

We present recognition experiments on three different data 
collections. In all these experiments, the 3D Appell invari-
ants were used as traditional handcrafted features, which 
means no neural networks were employed and a simple near-
est neighbor rule was used for classification.

Human Brain MRI

The aim of the first experiment is to numerically verify the 
rotation invariance. We used two MRI measurements of the 

brain of the same patient (Fig. 2) downloaded from [32]. 
Their original sizes are 192 × 224 × 224 and 193 × 229 × 193 
voxels. We generated 8 random 3D rotations of each snap 
with bilinear interpolation and then computed 77 rotation 

Fig. 2   Brain MRI images used 
in the experiment: a slice 96 
(out of 192) of the first snap, 
b slice 97 (out of 193) of the 
second snap
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invariants up to the sixth order. We computed the Appell 
moment invariants both of U and V families by recurrence 
formulas (19)–(24) and compared them with the invariants 
from complex moments [23], geometric moments [22], 
Gaussian–Hermite moments [25] and Zernike moments 
[24].

As a measure of quality we used the error relative to aver-
age (ERA)

where ni is the number of invariants ( ni = 77 for sixth order), 
nr = 8 is the number of rotations, and Ii

j
 is jth invariant of ith 

rotation. ERA is similar to more common mean relative 
error (MRE), which is, however, unstable for invariants 
being close to zero. The average ERAs of all invariants are 
shown in Table 1. It is apparent that both Appell U and V 
invariants actually exhibit the rotation invariance, even with 
smaller error than traditional separable invariants. The ERAs 
of the individual invariants are in Fig. 3. The invariants 
sorted by order are on the horizontal axis.
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The Statues

This experiment demonstrates the ability of the Appell 
invariants in a simple object recognition task. We scanned 
five visually similar small sculptures by a 3D scanner. It 
is based on projection of a special moving pattern on the 
scanned object and capturing it by a camera. The object 
lays on a rotating table enabling 8 scans from 8 different 
directions by 45◦ . The accessory software then creates the 
3D model from the 8 scans as the triangulated surface, (see 
Fig. 4a–e for the models). We use neither texture on the 
surface nor any structure inside.

The original models were used as the training samples. 
Eight random rotations of each statue were classified by the 
same invariants that were used in the MRI experiment. We 
applied a simple nearest-neighbor classifier in the space of 
invariants. If there is no noise, all methods classified all stat-
ues correctly. To make the problem more challenging, we 
added random noise inside the circumscribed sphere around 
each test sample (see Fig. 4f for an example), that simulates 
scanner errors in recovering 3D surface. Noisy objects are 
more difficult to recognize and performance differences of 
individual methods become apparent, as is documented in 
Table 2.

We can see that the Appell U moments are the best per-
forming ones, the only unsatisfactory result is for low order 
of the moments. Looking at the other results, it is interest-
ing that good recognition rate does not necessarily corre-
spond with low ERA value (compare complex and geometric 
invariants).

The Worms

In this experiment, we tested recognition via template 
matching. We used 3D data from confocal microscope that 
are publicly available [33]. The dataset was captured by 
Leica microscope with 63× oil objective [34] and consists 
of 28 volumes of worms Caenorhabditis elegans at the larval 
stage1 and corresponding stacks of 555 ground-truth anno-
tated cell nuclei, see Fig. 5.

Table 1   ERAs of the rotation 
invariants of the brains in %

The averages over all invariants are used

Invariants Appell U Appell V Complex Geometric  G-H Zernike

Brain 1 1.2067 0.9720 2.6408 2.6392 3.4373 1.4609
Brain 2 1.4592 1.1898 3.5169 3.5168 3.8445 1.8552
Average 1.3329 1.0809 3.0788 3.0780 3.6409 1.6580
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Fig. 3   ERAs of the rotation invariants—whole brains. Horizontal 
axis contains the labels of the invariants

1  The dimension of the chosen volume is 1244 × 140 × 140 , the pixel 
size is 0.122 × 0.116 × 0.116 μm
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Now we tried to detect the nuclei via template matching. 
Ten nuclei were chosen for training, i.e. we computed their 
invariants of all kinds up to the sixth order. Then we passed 
through the scan of the worm, computed invariants in the 
neighborhood of each voxel and compared them with the 
invariants of the training set. There is a hypothesis that the 
nuclei of different cells are very similar in their shape and 

appearance, but differ from one another by orientation in 3D 
space, so rotation invariance of the features is required. We 
optimized the radius of the spherical neighborhood for each 
type of moments individually to get the best performance 
(the optimal radius depends on the shape of the basis func-
tions, so it cannot be the same in all cases).

The voxel is considered to be the center of the nucleus if 
the two following conditions are satisfied:

Fig. 4   Statues used in the experiment: a small angel, b medium-sized angel, c big angel, d lying angel, e pieta, and f rotated and noisy sample of 
the big angel to be recognized

Table 2   Success rates and 
relative errors of various 
rotation invariants of the statues 
in % for noisy objects

The first column shows the maximum order of the moments used

Max. order Appell U Appell V Complex Geometric  G-H Zernike

2 60 62.2 100 60 93.3 95.6
3 100 91.1 97.8 100 100 100
4 100 100 97.8 100 100 95.6
5 100 88.9 97.8 97.8 80 95.6
6 100 93.3 97.8 100 86.7 95.6
ERA 0.246 0.303 2.675 0.324 2.744 2.506
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–	 The feature distance must be below a user-defined thresh-
old and must form the local minimum in the 3 × 3 × 3 
neighborhood of the voxel in question.

–	 The detected nucleus cannot overlap the nuclei detected 
before.

The quality of the detection was evaluated by means of 
the ground-truth masks. If the spatial distance between the 
detected nucleus and the nearest mask is less than 10 voxels, 
the detection is considered correct.

The results are summarized in Table 3. Again, Appell U 
invariants detected almost all nuclei and won the contest, 
followed by Complex, Geometric, and Zernike invariants.

Due to the high computation demand of a pattern match-
ing problem, the source code was implemented in PyTorch 
framework allowing us to run the algorithm in parallel on 
Nvidia A100 GPU. Thanks to this, the task run by several 
orders faster than in case of traditional implementation, 
but still it took about two hours due to a large number of 
template positions to be tested. A speed up via pyramidal 
search and / or sparse space sampling would definitely be 
possible, but the runtime was not the issue we were primar-
ily interested in. Therefore, the invariant calculation in each 
voxel took about two hours using Nvidia A100 GPU. The 
source codes are available at https://github.com/
karellat/nuclei.

Appell Moments in Convolutional Networks

Convolutional neural networks (CNN) have attracted a 
noticeable attention of image processing community only 
since 2012, when a CNN named AlexNet won the ImageNet 
Large Scale Visual Recognition Challenge [35]. Soon the 

recognition rate have surpassed the human performance [36] 
thanks to a substantial increase of the computer performance 
at that time.

After a dynamic development in 2012-20, when many 
successful applications were reported, some limitations of 
the CNNs became apparent. One of the most significant ones 
is the non-invariance of CNNs even to very simple transfor-
mations such as shift and rotation of the images. Since these 
transformations are very often involved into intra-class vari-
ations, the non-invariance substantially decreases the rec-
ognition power of the network. A model that was optimized 
without these transformations in the training set is unable to 
process the changed features correctly and can be producing 
even random results.

Traditional CNNs handle this problem by the augmenta-
tion of the training set [37], which is in fact a brute-force 
approach, where we first artificially generate many trans-
formations of training samples and the CNN is trained on 
this augmented set. This is an extremely time and memory 
consuming process that still does not guarantee the same 
network performance as on data without deformations [38]. 
Also, as shown by Zeiler and Fergus [39], the models trained 
with augmentation contain redundant filters that are rotated, 
scaled, and translated copies of each other.

The geometric non-invariance of classic CNNs has been 
a widely studied problem in the last few years. We refer to a 
survey paper [40], where the reader can find over 200 refer-
ences to various approaches how to make CNN invariant to 
geometric transformations. Many of them incorporate vari-
ous handcrafted features into the network [41–49]. Appell 
invariants can be used in these methods as well.

In this section, we show how Appell invariants can 
be incorporated into so-called group equivariant CNN 
(G-CNN).

Fig. 5   The worm used in the 
experiment: a cross-section, b 
longitudinal section, c ground-
truth nucleus masks in the 
cross-section, d ground-truth 
nucleus masks in the longitudi-
nal section

Table 3   The numbers of 
correctly detected worm cell 
nuclei out of 545 instances

Invariants Appell U Appell V Complex Geometric G-H Zernike

# Detected nuclei 528 359 473 437 338 414
Radius [voxels] 13 11 11 13 15 17
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Group Equivariant Networks

Cohen et al. introduced G-CNN [50], a general idea applied 
to 90 rotations and mirror reflections, where the main prin-
ciple was rotating and mirroring convolutional filters. The 
work then inspired many other authors, similar ideas are 
used in [51, 52]. A very promising and widely studied 
branch of equivariant networks came with applying steer-
able filters, introduced in [53]. The first steerable CNNs 
were introduced by Cohen and Welling [54] and Worrall 
et al. [55] and they were followed by [56, 57], where the 
authors used complex circular harmonics for constructing 
steerable convolutional filters. All these works get rid of 
the equivariant term after the last equivariant convolutional 
layer to be invariant at the output. This can be achieved by 
a variety of poolings like standard Global Average Pool-
ing, Max Pooling or even Zernike moments [58] and Polar 
Harmonic Transforms [59]. Most recently, Karella et al. 
[60] further improved H-Net [55]. Their H-NeXt is a mod-
ular invariant architecture with an equivariant backbone 
followed by invariant pooling. For the pooling part, they 
tested Global Average Pooling, Zernike moments, and also 
Multi-Head Self-Attention Pooling. This can be general-
ized to any other roto-translation invariant pooling, such 
as Appell moments.

H‑NeXtA Network

Here we demonstrate that invariant pooling by Zernike 
moments can be in the H-NeXt architecture replaced by 
Appell moments. We call the new network H-NeXtA (see 
Figs. 6, 7 for visual explanation).

Due to lack of 3D data, we tested the performance of 
H-NeXtA (with Appell invariants simplified to 2D) on 
rotated MNIST dataset [61], which is a common image 
benchmark. It consists of 62,000 handwritten digits all 
randomly rotated. Only the 10,000 images were used for 
training, while 2000 were used for validation and 50,000 
were used for testing. (Validation dataset is a subset reserved 
during model training to estimate model performance while 
tuning hyperparameters. The test dataset is used solely 
to provide an unbiased evaluation of the final model’s 
performance.)

As you can see in Fig. 8, H-NeXtA outperforms not only 
the classical CNN, which is inherently not rotation invariant, 
but also the same CNN trained on extensively augmented set 
(each training image was randomly rotated at each epoch). 
Since the confidence intervals are disjoint, the differences 
of the performance are statistically significant.

Table 4 also compares the complexity of the networks. 
H-NeXtA has six times fewer parameters than the CNN, 
showing that the invariant networks use parameters more 
efficiently than the classical CNN. As an example of CNN 

Fig. 6   H-NeXt / H-NeXtA net-
work invariant with respect to 
the roto-translation (T ∈ D

T ,R) 
consisting of three blocks: 
equivariant backbone � , invari-
ant pooling � (using Zernike or 
Appell moments), and classifier 
network. The equivariant back-
bone � is commutative with the 
roto-translation. The output of 
invariant pooling � is the same 
regardless of the roto-translation 
of an input

Fig. 7   Invariant pooling � by 
constructing Appell invariants 
from backbone feature maps. 
Channels are translated to 
have a center of gravity in the 
middle. Aligned channels are 
multiplied by Appell polynomi-
als and finally Appell invariants 
are generated



SN Computer Science          (2024) 5:1166 	 Page 9 of 16   1166 

SN Computer Science

architecture, we choose an extended version of LeNet [62]. 
All classical CNNs perform similarly, including small 
ResNets [63], AlexNet [37] and VGG [64]. For the hyperpa-
rameters and other details of the experiment see Appendix C.

Conclusion

We introduced new 3D rotation moment invariants, which 
are composed of non-separable Appell moments. To the best 
of our knowledge, this is the first application of 3D non-
separable polynomials in object recognition. The design of 
the invariants was possible because the Appell polynomials 
are quasi-monomials. At this moment, we are not aware of 
any other non-separable quasi-monomials. Furthermore, we 
proposed recursive formulae for fast and stable computation.

To show the performance of the new Appell invariants in 
practice, we presented three experiments of different kind 
– invariance verification on MRI scans, object recognition 
of real 3D objects, and template matching in a volumetric 
microscopic images. In all of them, Appell invariants out-
performed the competitors. This is mainly due to more even 
distribution of zeros of the Appell polynomials over the 
image space, which leads to a better representation ability 
of the Appell moments, especially if only low-order features 
are used.

At the end, we demonstrated the possibility of incor-
porating Appell invariants into state-of-the-art network 

architectures that use both learned and handcrafted features 
in order to reduce training data and increase the performance 
on rotated images.

Appendix 1: Proof of Theorem 1

•	 (⇒) : Let {Bm,n,o(x, y, z)} be a quasi-monomial family. 
First, consider a coordinate rotation around the z-axis by 
� . 

 Let us derive the equation by � and assign � = 0 to the 
derivative. We get 

 for all m, n, o ∈ ℕ0 if we set B−1,n,o = Bm,−1,o = 0 for any 
m, n, o ∈ ℕ0 . Thus, the generative function obeys 

(9)

Bm,n,o(x
�, y�, z)

= Bm,n,o(x cos � − y sin �, x sin � + y cos �, z)

=

m
∑

i=0

n
∑

j=0

(−1)i
(

m

i

)(

n

j

)

× (cos �)m−i+j(sin �)n−j+iBm+n−i−j,i+j,o(x, y, z).

(10)
x
�Bm,n,o(x, y, z)

�y
− y

�Bm,n,o(x, y, z)

�x

= nBm+1,n−1,o(x, y, z) − mBm−1,n+1,o(x, y, z)

Fig. 8   a Recognition rate of 
H-NeXtA on rotated MNIST 
dataset [61]. b Examples from 
the rotated MNIST dataset [61]. 
The goal of this benchmark is 
to classify rotated handwriting 
digits. The training set has only 
10,000 images, and all digits, 
including the test, training, 
and validation sets, are rotated. 
This is in contrast to traditional 
MNIST [62], where all digits 
are upright and the training set 
has 50,000 examples
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 Doing the same trick with the rotation around the y-axis 
and the x-axis, we get the following system of three dif-
ferential equations 

 The coefficient matrix of the system has the rank 3 
which determines the number of independent solutions 
by 6 − 3 = 3 . Obviously, x2 + y2 + z2, u2 + v2 + w2 and 
ux + vy + wz are solutions and they are independent. 
Hence, G is a function of x2 + y2 + z2, u2 + v2 + w2 and 
ux + vy + wz only.

•	 (⇐) : A rotation R in ℝ3 can be decomposed as 
R = Rx(�)Ry(�)Rz(�) where Rx,Ry,Rz are rotations 
around x-axis, y-axis and z-axis and the argument is the 
angle of the rotation. First, we prove that a rotation of Bm,n,o 
around the z-axis behaves exactly like the rotation of the 
monomial xmynzo . The rotation around z-axis transforms 
the coordinates as 

 Therefore, the monomial xmynzo is transformed as 

(11)

x
�G

�y
− y

�G

�x
=

∞
∑

m,n,o=0

(

x
�Bm,n,o(x, y, z)

�y
− y

�Bm,n,o(x, y, z)

�x

)

um

m!

vn

n!

wo

o!

=

∞
∑

m,n,o=0

(

nBm+1,n−1,o(x, y, z) − mBm−1,n+1,o(x, y, z)
)um

m!

vn

n!

wo

o!

= v

∞
∑

m,o=0,n=1

Bm+1,n−1,o(x, y, z)
um

m!

vn−1

(n − 1)!

wo

o!

− u

∞
∑

n,o=0,m=1

Bm−1,n+1,o(x, y, z)
um−1

(m − 1)!

vn

n!

wo

o!

= v

∞
∑

m,n,o=0

Bm+1,n,o(x, y, z)
um

m!

vn

n!

wo

o!

− u

∞
∑

m,n,o=0

Bm,n+1,o(x, y, z)
um

m!

vn

n!

wo

o!

= v
�G

�u
− u

�G

�v
.

(12)

x
�G

�y
− y

�G

�x
= v

�G

�u
− u

�G

�v

x
�G

�z
− z

�G

�x
= w

�G

�u
− u

�G

�w

z
�G

�y
− y

�G

�z
= v

�G

�w
− w

�G

�v
.

(13)
x� = x cos � − y sin �,

y� = x sin � + y cos �,

z� = z.

 If we set 

 we can easily verify the following equalities 

 Therefore,  the generat ing function obeys 
G(x�, y�, z�, u, v,w) = G(x, y, z, u, v,w) . It follows that 

 By matching the coefficients of the same powers of u, v 
and w, we get 

(14)

(x′)m(y′)n(z′)o =

=
m
∑

i=0

n
∑

j=0
(−1)i

(

m
i

)(

n
j

)

(cos �)m−i+j(sin �)n−j+ixm+n−i−jyi+jzo.

(15)
u ∶= u cos � + v sin �,

v ∶= v cos � − u sin �,

(16)

ux� + vy� + wz� = ux + vy + wz,

x�2 + y�2 + z�2 = x2 + y2 + z2,

u
2
+ v

2
+ w2 = u2 + v2 + w2.

(17)

∞
∑

m,n,o=0

Bm,n,o(x
�, y�, z�)

um

m!

vn

n!

wo

o!

=

∞
∑

m,n,o=0

Bm,n,o(x, y, z)
(u cos � + v sin �)m

m!
⋅

⋅
(v cos � − u sin �)n

n!
⋅
wo

o!
.
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 which corresponds to the rotation of monomials in (14). 
It is easy to see that the rotations around the y-axis and 
then the x-axis will again behave the same. This observa-
tion completes the proof. □

Appendix 2: Recurrence Formulas

In this Appendix, we present recurrent relations for fast 
and stable computation of 3D Appell polynomials. The 
polynomials Um,n,o = Um,n,o(x, y, z) satisfy the recurrences

(18)

Bm,n,o(x
�, y�, z�) =

m
∑

i=0

n
∑

j=0

(−1)i
(

m

i

)(

n

j

)

(cos �)m−i+j(sin �)n−j+i⋅

⋅ Bm+n−i−j,i+j,o(x, y, z),

(19)

Um+1,n,o = x(2m + n + o + 1)Um,n,o + moxzUm,n,o−1 + mnxyUm,n−1,o

+ 2mnoxyzUm,n−1,o−1 + m((y2 + z2 − 1)m + (y2 + 2z2 − 1)o

+ (2y2 + z2 − 1)n)Um−1,n,o + moz((y2 − 1)(m + o − 1)

+ (3y2 − 1)n)Um−1,n,o−1 + mny((3z2 − 1)o + (z2 − 1)(m + n + 1))

× Um−1,n−1,o − 2mnoyz(m + n + o − 2)Um−1,n−1,o−1

and the polynomials Vm,n,o = Vm,n,o(x, y, z) satisfies the recur-
rence relations

with the initial conditions

(20)

Um,n+1,o = y(m + 2n + o + 1)Um,n,o + noyzUm,n,o−1 + mnxyUm−1,n,o

+ 2mnoxyzUm−1,n,o−1 + n((x2 + z2 − 1)n + (x2 + 2z2 − 1)o

+ (2x2 + z2 − 1)m)Um,n−1,o + noz((x2 − 1)(n + o − 1)

+ (3x2 − 1)m)Um,n−1,o−1 + mnx((3z2 − 1)o + (z2 − 1)(m + n − 1))

× Um−1,n−1,o − 2mnoxz(m + n + o − 2)Um−1,n−1,o−1

(21)

Um,n,o+1 = z(m + n + 2o + 1)Um,n,o + moxzUm−1,n,o + noyzUm,n−1,o

+ 2mnoxyzUm−1,n−1,o + o((x2 + y2 − 1)o + (2x2 + y2 − 1)m

+ (x2 + 2y2 − 1)n)Um,n,o−1 + mox((y2 − 1)(m + o − 1)

+ (3y2 − 1)n)Um−1,n,o−1 + noy((x2 − 1)(n + o − 1)

+ (3x2 − 1)m)Um,n−1,o−1 − 2mnoxy(m + n + o − 2)Um−1,n−1,o−1

(22)

(2(m + n + o + 1) + s)xVm,n,o = Vm+1,n,o − n(n − 1)Vm+1,n−2,o

− o(o − 1)Vm+1,n,o−2 + m(m + 2n + 2o + 1 + s)Vm−1,n,o

(23)

(2(m + n + o + 1) + s)yVm,n,o = Vm,n+1,o − m(m − 1)Vm−2,n+1,o

− o(o − 1)Vm,n+1,o−2 + n(2m + n + 2o + 1 + s)Vm,n−1,o

(24)

(2(m + n + o + 1) + s)zVm,n,o = Vm,n,o+1 − m(m − 1)Vm−2,n,o+1

− n(n − 1)Vm,n−2,o+1 + o(2m + 2n + o + 1 + s)Vm,n,o−1

(25)

U0,0,0 = 1 V0,0,0 = 1

U1,0,0 = (2s − 1)x V1,0,0 = (2s + 1)x

U0,1,0 = (2s − 1)y V0,1,0 = (2s + 1)y

U0,0,1 = (2s − 1)z V0,0,1 = (2s + 1)z

U2,0,0 = (2s − 1)((2s + 1)x2 + y2 + z2 −1) V2,0,0 = (2s + 1)((2s + 3)x2 −1)

U0,2,0 = (2s − 1)(x2 + (2s + 1)y2 + z2 −1) V0,2,0 = (2s + 1)((2s + 3)y2 −1)

U0,0,2 = (2s − 1)(x2 + y2 + (2s + 1)z2 −1) V0,0,2 = (2s + 1)((2s + 3)z2 −1)

U1,1,0 = 2s(2s − 1)xy V1,1,0 = (2s + 1)(2s + 3)xy

U1,0,1 = 2s(2s − 1)xz V1,0,1 = (2s + 1)(2s + 3)xz

U0,1,1 = 2s(2s − 1)yz V0,1,1 = (2s + 1)(2s + 3)yz.
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Since the magnitudes of the both families are unbalanced, 
we can balance them by

(26)

Ũm,n,o = Um,n,o

1

((m + n + o)!)
9

32

×

√

√

√

√

√

2(m + n + o) + 3

4𝜋

(

Γ
(

m+n+o

3
+ 1

))
3

2

(Γ(m + n + o + 1))
1

2

(27)

Ṽm,n,o = Vm,n,o

1

((m + n + o)!)
23

32

×

√

√

√

√

√

2(m + n + o) + 3

4𝜋

(

Γ
(

m+n+o

3
+ 1

))
3

2

(Γ(m + n + o + 1))
1

2

.

Note that (26) and (27) are functions of the sum m + n + o 
only, so the rotation invariance is not violated.

If we use the recurrence relations, we must compute all 
the polynomials from the zeroth degree up to the desired 
maximum degree. The entire algorithm is described in 
form of a pseudo-code (see Algorithm 1). Provided that the 
processed image can be inscribed into a sphere of radius r, 
then we need 2r + 1 coordinate values in each direction. The 
precomputed array P is then used for computation of Appell 
moments by (6).

Algorithm 1   Computation of Appell polynomials by recurrence formulas.
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Appendix 3: H‑NeXtA: Training Setup

This Appendix provides more detailed descriptions of the 
experiments summarized in Table 4. Except for the last row 
(CNN [62]+AUG), all models are trained without augmenta-
tion, and the experiments share the same hyperparameters and 
regularization techniques listed in Table 5. The convolutional 

architecture used for comparison is based on the original LeNet 
[62], but as shown in Fig. 9, it has been updated with mod-
ern features like batch normalization and ReLU activation 
functions.

Table 4   Recognition statistics 
of H-NeXtA on the rotated 
MNIST dataset [61]

The test accuracy represents the mean and standard deviation across 10 runs with different random seeds

Architecture Test accuracy Train samples Augmentation Number of param

CNN [62] 93.33 ± 0.30% 10,000 ✗ 113 262
CNN + AUG [62] 96.55 ± 0.12% 10,000 ✓ 113 262
H-NeXt + A 98.16 ± 0.02% 10,000 ✗ 19 800

Table 5   Hyperparameters for 
H-NeXtA experiments

Hyperparameter Value

Batch size 64
Number of epochs 50–100
Optimizer AdamW
Learning rate 0.007
Label smoothing 0.1
Weight decay 0.01

Fig. 9   Architecture of the modified LeNet with batch normalization and ReLU. Refered as CNN [62] in Table 4
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