
Poisson-Based Framework for Predicting Count Data: Application to
Traffic Counts in Prague Areas

Evženie Uglickich*1, Ivan Nagy1,2

1Department of Signal Processing, Institute of Information Theory and Automation, Czech Academy of Sciences, Pod
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Abstract

In this paper, we address the task of modeling and predicting count data, with an application to traffic counts
on selected urban roads in Prague. We investigated the relationship between multiple counts, designating one of
them as the target variable (e.g., data from a key road section) and the others as explanatory counts. Defining
traffic count data as the number of vehicles passing through a selected road section per unit of time, we use a
framework based on Poisson models to develop a progressive methodology, which we compared with existing
models. Working with multimodal count data, we propose the following main steps for the methodology: (i)
cluster analysis of explanatory counts using recursive Bayesian estimation of Poisson mixtures; (ii) target count
model estimation via local Poisson regressions at identified locations, capturing local relationships between target
and explanatory counts; and (iii) prediction of target counts through real-time location detection. The algorithm’s
properties were first investigated using simulated data and then validated with real traffic counts. Experimental
results indicate that the proposed algorithm outperforms classical Poisson and negative binomial regressions,
decision tree and random forest classifiers, as well as a multi-layer perceptron, in predicting traffic count data
across various quality metrics, even for weakly correlated data. Applied to traffic count data, the promising
performance demonstrated by the proposed algorithm offers an optimistic vision for traffic prediction and urban
planning, suggesting its potential as a valuable tool for enhancing transportation efficiency by optimizing the
timing of city traffic lights to improve traffic flow.

Keywords: count data prediction, traffic counts, local Poisson regression, recursive Bayesian estimation of Poisson
mixtures

1 Introduction

This paper presents an advanced modeling and prediction approach for analysis of count data applied to traffic
counts at selected urban roads in Prague. Understanding traffic patterns is crucial for optimizing public transporta-
tion systems, controlling traffic flow, improving safety, urban planning, and assessing environmental impacts. Using
the definition of traffic count data as the number of vehicles passing through a selected road section per unit of time,
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the framework built upon Poisson models has been chosen to develop a progressive methodology, which was then
compared with the existing original models.

Due to the nature of count data, the Poisson distribution can fit the data well for analysis purposes. The assumption
of equidispersion limits the practical use of the Poisson distribution with empirical count data. When the assumption
is violated, the Negative Binomial (NB) distribution [1], Generalized Poisson models (GPM) [2, 3] or mixtures of
Poisson distributions [4] become key tools for describing univariate under/over-dispersed counts. Zero-inflated
Poisson (ZIP), zero-inflated NB (ZINB) and compound Poisson (CP) models are commonly employed to handle
the excess zeros often observed in count data. Zero-truncated Poisson (ZTP) and zero-truncated NB (ZTNB) models
are suitable for conducting a targeted analysis of non-zero observations within count data.

Predictive approaches aimed at understanding the relationship between multiple counts cannot use these Poisson-
based models because the Poisson distribution lacks a suitable general conditional form. Multivariate Poisson-
based distributions [5] for multidimensional count data are less developed for practical use due to the limitation of
independence consumption. In this area, [6] provide an advanced review on multivariate distributions derived from
Poisson model dividing them among marginal Poisson distributions, Poisson mixtures and conditional Poisson-
based distributions. According to [6], studies focusing on conditional Poisson generalizations are based on the use
of Poisson graphical models or Markov random fields, specified by node-conditional distributions [7, 8]. Among
them, the approach that is relatively close to the one described in this paper is to model multivariate count data by
estimating local Poisson regressions conditioned by node-neighbors of the variables in the form of local Poisson
graphical models [9–11].

Poisson regression is an important approach in predictive modeling of count data [12–17]. To address chal-
lenges such as over- or underdispersion of count data, the underlying alternative is NB regression [18–20], which
introduces auxiliary dispersion parameters to be estimated. A valuable tool for predictive modeling of count
data, which allows avoiding Poisson model assumptions, are mixtures of regression models, such as mixtures
of Poisson and Poisson-based (ZIP/CP/Tweedie) regressions [21–28], NB/ZINB regressions [29–33] and Poisson-
Gamma/Poisson-Gaussian models [34–36].

1.1 Poisson-related models in transportation domain

The use of Poisson models in transportation data analysis has a long history [37–40], and their great potential
in addressing challenges like overdispersion, truncation, and zero-inflation is effectively demonstrated in a more
recent publication [41] through practical examples. Relatively recent studies in the analysis of traffic counts have
developed methods that use Poisson and NB models. In the paper of [42], the authors proposed a spatial-temporal
NB regression with the temporal correlation of traffic volumes on multiple roads at previous time segments. [43]
introduced a traffic flow prediction method for intercity roads using convolved bilinear Poisson regression with the
incorporated latent factor model. Adopting the stochastic variational Bayes method, they continually updated model
parameters online based on the most recent observations instead of all past data, which allowed them to enhance
robustness against sparse observations and provide accurate predictions of intercity traffic flow with dynamically
changing patterns. The study [44] proposed a vacation queue model to analyze intra-cycle queue size variations
at signalized traffic intersections, modeling vehicle arrivals as a Poisson process with finite queue capacity. Using
an imbedded Markov chain approach, the model calculates transition probabilities based on analytical solutions for
different queue configurations. The authors of [45] explored a combination of the cosinor regression with Poisson,
GPM, ZIP, NB and ZINB models for a developed software tool in application to traffic counts observed during
the COVID-19 epidemic. In [46], the traffic flow state prediction model was proposed based on the relationship
between traffic flow states in different urban locations estimated via recursive Bayesian Poisson mixture estimation
using mixture pointers to identify clusters of actually measured traffic counts.
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The paper [47] employed a Poisson process to simulate the arrival of tourist agents at scenic spots, enabling an
innovative multi-agent approach to analyze and manage the dynamic interaction between tourist behaviors and
traffic states for improved congestion management around urban scenic areas. The study [48] used a Poisson model
to estimate traffic origin-destination volumes, integrating Bayesian inference and a stochastic user equilibrium
route choice model with an MCMC algorithm to address challenges in network tomography and route choice
parameter estimation. The authors of [49] proposed a compound Poisson approach to address the limitations of
current car following models, using a diffusion part to describe normal driving stochasticity and a jump part to
capture high jerk behavior, effectively replicating the speed-dependent jerk phenomenon in traffic flow analysis.
In [50], a non-stationary Poisson process was used to simulate the uneven occurrence of heavy vehicles in different
lanes on a bridge deck, providing an efficient method for modeling vehicle spatial distribution under free-flow
conditions to assess structural safety and extreme load effects on long-span bridges. The Poisson model was applied
to generate vehicle counts in the studies [51,52], which analyze the mixed traffic characteristics and driving models
of autonomous and manually driven vehicles.

Significant contributions have been made in the application of Poisson-Gamma/Poisson-Gaussian models [53] to
traffic count data, demonstrating their ability to handle the inherent variability and overdispersion found in such
datasets. In the study by [54], the authors investigated the performance of Poisson-Gamma (PG), Poisson-Log-
Normal (PLN), and Poisson-Inverse Gaussian (PIG) models in transportation origin-destination analysis using trip
data from Belgian municipalities. Within the Bayesian framework they employed, the authors demonstrated the
hierarchical and marginal forms and properties of the PG, PLN, and PIG models compared to alternative approaches.
They reported that the PIG model outperformed the other models in short-term traffic predictions. In [55], the
authors presented the PIG and PG models for evaluating the average traffic flow per minute from the California
intelligent traffic management system using a distributed online expectation-maximization method.

As evidenced in the literature, Poisson-related models are also widely used in the analysis of count data in other
transportation applications, such as vehicle crash count data [56, 57]. The application of ZIP and ZINB models to
analyzing crash counts, including those with underdispersion, can be found in [58–60]. In [61,62], the performance
of PIG and NB models was compared for highly dispersed crash data, demonstrating that PIG models either out-
perform or match NB models in terms of goodness-of-fit, variance capture, and prediction quality. The study [63]
investigated the use of the random effects PIG model for crash prediction in school zone areas, showing that it
provides the most accurate predictions compared to alternative models. The relationship between traffic states
and crash counts was explored in [64] using a Bayesian spatial Poisson model combined with machine learning
techniques and accident categorization based on the time before and after the crash. In [65], the authors explored
simulation models of crash counts, focusing on fitting Poisson and NB distributions and examining the correlation
between the number of crashes and traffic flow. Nested Poisson and NB models were applied in [66] to identify key
factors related to overdispersed crash data, such as vehicle types, the day of the week, and weather conditions in
two urban zones.

Building on the application of Poisson-based models to general traffic safety, these models have also been applied
to analyze bicycle-related accidents, including both bicycle-bicycle and bicycle-vehicle crashes, as demonstrated
by Poisson and NB regressions in [67] and PLN models in [68]. Moreover, Poisson and NB models have been
investigated for the analysis of bicycle counts in [69], as well as pedestrian traffic counts in [70, 71].

1.2 Alternative traffic count data models

Numerous publications are based on different interpolation methods, such as e.g. spatial interpolation with Kriging-
based methods [72], a hybrid ANN-fuzzy approach [73], combined pattern-matching and Bayesian statistics [74],
etc. The extensive overview of traffic prediction methods can be found in [75], where existing algorithms are divided
among time series models (both parametric and non-parametric), optimization approaches and neural networks.
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Recent advances in traffic count data prediction have focused on improving model accuracy and accommodat-
ing complex patterns. [76] used fully-connected feedforward multi-layer ANN to address the problem of estimating
historical hourly traffic volumes that transportation agencies need for planning and statewide performance measure-
ment. In [77], a combination of bootstrap aggregation with parametric ARIMA models was explored to improve the
traffic flow prediction accuracy. Hybrid methods based on ARIMA models were considered by [78–81]. [82] pre-
sented a spatio-temporal interpolation method that detects similar trends in the behavior of traffic counts at different
locations. In the study [83], the authors considered traffic volume prediction based on vehicle detection and road
characteristics extraction from Google aerial images via region-based convolutional neural networks. [84] focused
on estimation of turning movement count data by means of a multi-output multilayer ANN with exogenous variables
from intersection infrastructure point-of-interest data. [85] evaluated the temporal variation of traffic flows during
the COVID-19 pandemic lockdown by means of comparison of the smartphone-based traffic count predictions with
traffic quantification methods.

1.3 Main features of the presented paper

The author of [57] noted that although Poisson and NB models have been used extensively for the analysis of count
data, the distributional assumptions make them more appropriate for cross-sectional count data rather than time
series count data, where these assumptions limit the consideration of serial correlation of observations, which can
be critical in the case of traffic counts. In this paper we present an approach to understanding the behavior of cross-
sectional multiple count data by analyzing their locations recognized in the data space and capturing the evolution
of the data over time with the main aim of predicting the target count variable. In the paper, these locations are
defined as clusters of data. In general, they can be identified within the framework of preliminary offline data
analysis, e.g., using clustering algorithms [86, 87], etc. However, the use of model-based location identification
provides the pre-estimated parameterized models which, in the case of their recursive estimation, can be used for
re-learning during the online prediction phase. The relationship between the count variable selected as the target
and the rest of multiple counts utilized as explanatory data is described by estimating local Poisson regressions in
the detected locations, which should be recognized online in order to use the pre-estimated (or re-learned) location
models for prediction. Thus, the main features of the presented paper are as follows:

• Analysis of explanatory multiple counts and detection of their locations with the help of recursive Bayesian
estimation of Poisson mixtures;

• Target count model estimation via local Poisson regressions at the locations;

• Target count prediction using online location detection;

• Application of the proposed approach to traffic counts at selected locations in Prague.

The proposed solution continues the line started in the paper by [88], who considered explanatory data of a mixed
nature, including count and categorical data measured in real time, i.e., locations were directly indicated by the
measurements. Here, this relatively trivial task is elaborated for recursive Poisson mixture estimation for unknown
locations with subsequent construction of Poisson regressions on them.

Regarding the differences and novel contributions of our approach to traffic count data analysis compared to al-
ternative methods, they can be summarized as follows: Unlike alternative methods, our approach relies solely on
multivariate traffic counts. Among these, the count from the target road section is selected as the target, while traffic
counts from other road sections serve as explanatory counts. Since these counts are multimodal, we allow them
to exhibit higher variability and account for overdispersion. We identify recognizable locations in the explanatory
traffic counts and develop Poisson models for these locations using one-pass recursive Bayesian estimation with a
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dynamic update of statistics. For each identified location, we construct local Poisson regressions, linking the target
count to the clustered explanatory counts. This enables us to explain the behavior of traffic counts at the target road
section based on the localized traffic counts from the explanatory road sections. In the online phase, explanatory
traffic counts are dynamically clustered in real time, and the Poisson regression model corresponding to the detected
location is employed for online target prediction. This structure allows the models to be updated efficiently, as the
location-based Poisson models can be readily re-learned whenever necessary.

Our approach captures both localized and real-time dynamics between the target and explanatory traffic counts,
reflecting spatial and temporal patterns. Specifically, spatial relationships are preserved by clustering explanatory
counts based on location, ensuring that target predictions remain contextually linked to specific areas. Temporal
patterns are captured through real-time clustering, enabling predictions to adapt dynamically to current conditions.
This methodology provides an effective solution for traffic count prediction in dynamic environments.

The remainder of this paper is organized as follows: Section 2 briefly recalls basic facts about the models and algo-
rithms used. In Section 3, the theoretical background of the proposed approach is presented, including the problem
specification and a detailed description of the general solution to the problem. The properties and advantages of the
proposed theoretical approach are then thoroughly investigated through experiments with simulations under various
conditions and comparisons with Poisson regression. Section 4 evaluates the empirical performance of the proposed
technique in application to traffic counts, comparing it with existing algorithms that also focus on addressing the
prediction task, and discusses potential applications and practical limitations of the approach. Finally, Section 5
concludes the paper by summarizing the main contributions of the approach and providing directions for future
research.

2 Preliminaries

To facilitate the presentation of the main idea, basic facts about the Poisson model, Poisson regression, and recursive
Bayesian mixture estimation are recalled in this section, along with a discussion of their limitations in the context
under consideration.

2.1 Basis for Poisson model

The Poisson distribution describes the behavior of a discrete valued random variable xt measured at discrete time
instants t = 1, 2, . . ., whose realizations represent a number of random independent events per time unit, i.e., xt is
a count variable and its Poisson model is given by the probability distribution

f(xt|λ) = e−λλ
xt

xt!
, (1)

where the unknown non-negative parameter λ expresses both the expectation and the variance of xt. The point
estimate of the parameter λ is known to be obtained as the average of the count observations λ̂ = 1/T

∑T
t=1 xt.

The assumption regarding the parameter λ and the lack of the conditional form in (1) are known to be the main
limitations of this model in practice.

2.2 Basis for Poisson regression

The Poisson regression describes the relationship between the target count Poisson-distributed variable yt and a
vector of N independent explanatory variables1 xt = [x1;t, x2;t, . . . , xN ;t]

′ via the logarithm of its conditional
1In general, independent variables in Poisson regression need not be count data, but here we assume that xt is a vector of count variables.
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expectation ln(E[yt|xt]) equal to a linear combination of unknown regression coefficients θ = [θ0, θ1, . . . , θN ]′

ln(E[yt|xt]) = θ0 + θ1x1;t + θ2x2;t + . . .+ θNxN ;t, (2)

which can also be written inversely

λy ≡ E[yt|xt] = eθ0+θ1x1;t+θ2x2;t+...+θNxN ;t ≡ eθ
′xt , (3)

where λy stands for the mean and the variance of yt, and the vector xt is concatenated to 1. The well-known
maximum likelihood estimation of the Poisson regression parameters is obtained by maximizing the log-likelihood
function of θ with substituted training data

lnL(θ|yt, xt) = ln
T∏
t=1

1

yt!
e−eθ

′xt
eytθ

′xt , (4)

where T corresponds to the capacity of the training data set. Since the maximization of lnL(θ|yt, xt) has no
close-form solution, the point estimates of the regression coefficients θ are computed numerically as

θ̂ = argmax
θ

lnL(θ|yt, xt). (5)

Practical limitations of Poisson regression are related to the Poisson assumption of equidispersion of the target
variable and to offline parameter estimation.

2.3 General scheme of recursive Bayesian mixture estimation

The general scheme of the recursive Bayesian mixture estimation theory [89–92] is used in this paper. According to
this theory, data behavior is described by a mixture of parameterized components in the general form fi(datat | Pc),
i = {1, 2, . . . , Nc}, representing specific either static or dynamic models with their parameters Pc. An essential part
of the adopted methodology’s mixture model is a pointer [89], which is an unmeasurable discrete random variable
with realizations i ∈ {1, 2, . . . , Nc} indicating the component active at time t. Generally, the parameterized model
of the pointer takes the form of a static/dynamic categorical distribution f(pointert | Pp) with the parameters
Pp representing probabilities of component activity. The primary objectives of the recursive Bayesian mixture
estimation are (i) component parameter estimation (clustering) and (ii) pointer estimation (classification), both
based on continuously measured data and performed online in real time.

By applying the Bayes and chain rules [93] to the joint probability density function (pdf) of all unknown parameters
and the pointer, the general scheme for deriving their posterior pdf [89, 90] is

f(Pc,Pp, pointert | all data) ∝ f(datat,Pc,Pp, pointert | past data)

= fi(datat | Pc) f(Pc | past data)︸ ︷︷ ︸
conjugate prior

×f(pointert | Pp) f(Pp | past data)︸ ︷︷ ︸
conjugate prior

, (6)

where appropriate conjugate prior pdfs are selected for the distributions of the components used ∀i ∈ {1, 2, . . . , Nc},
and the conjugate prior Dirichlet pdf is applied for estimating the parameters of the pointer model [90].

According to [89,90,92], the relation (6) is marginalized over the unknown parameters. In one-pass estimation, this
gives the proximities of the data value measured at time t to the components [46, 92, 94]. In the normalized form
(generally multiplied by the prior estimate of Pp), the proximities provide weights of the components. The weights
are incorporated into recursive updates of the statistics of the involved conjugate pdfs. The updated statistics are
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then used to recompute the prior point estimates of Pc and Pp. This part of the scheme is utilized to update the
location of the components. The maximum weight provides the point estimate of the pointer at time t, which
classifies the actual data value into the active component. More details can be found in the mentioned sources.

Among the specific limitations of this methodology is the necessity to operate with distributions that have reproduc-
ing statistics to ensure closed-form computations. The methodology has been well-studied for mixtures of normal
and categorical components [89–91]. The general approach for different types of components with reproducing
statistics was presented by [92]. Subsequently, it has been applied to exponential [95, 96], uniform [97], bino-
mial [98], and Poisson [46] components. A recursive algorithm for a mixture of Poisson regressions using the
mentioned approach is not feasible due to the lack of a closed-form estimator. This motivated the development of a
technique presented in this paper, which describes the relationship between multiple counts in detected locations.

The general theory of the presented technique is presented in the section below.

3 Online Count Prediction with Local Poisson Regressions on Poisson-Mixture
Locations

3.1 General problem specification

The problem formulation is based on the need to predict the values of the target count variable yt given multiple
independent explanatory counts xt, i.e., the main aim is the online prediction of yt. Let us consider a system
that generates the vector [yt, xt]′ = [yt, x1;t, x2;t, . . . , xN ;t]

′ with all entries measured for time t ≤ T , but only
xt is observed for time t > T . It implies that through analysis of the explanatory count vector xt measured
simultaneously with the target yt the behavior of yt has to be explained. To avoid the unfulfilled single-distribution
assumptions, an approach based on local models is appropriate, as it enables the capture of the data behavior under
different conditions. Consequently, the locations for constructing the local models need to be determined, which
means the data should be clustered. Moreover, in order to utilize the explanatory counts xt online for time t > T ,
the solution is expected to facilitate online identification of locations so that the data can be classified to them later
in the prediction phase. In the considered context, assuming the independence of individual explanatory counts
and recalling the general definition of locations as clusters, we propose achieving this by combining local Poisson
regressions on Poisson locations. The subgoals of the paper are specified as follows:

For t = 1, 2, . . . , T (offline analysis of training data)

1. ∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc}, identify the i-th location of the explanatory count xj;t as
the Poisson component (1) and recursively (pre-)estimate the component parameters via (6);

2. Estimate the Poisson mixture pointer in the joint explanatory data space;

3. ∀i ∈ {1, 2, . . . , Nc}, at the i-th location indicated by the pointer, estimate the parameters of the Poisson
regression (3) to explain the dependence between yt and all xj;t classified to this location;

For t = T + 1, T + 2, . . . (online prediction with testing data)

1. Estimate the Poisson mixture pointer and detect the active location of the count vector xt;

2. Optionally re-estimate the component parameters;

3. Predict the expectation of the target yt using the local pre-estimated Poisson regression (3) at the active
location by incorporating the actual measured explanatory counts xt.
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3.2 General solution steps

3.2.1 Training data analysis

Mixture initialization Identifying the locations in the data space of the explanatory counts xt for t = 1, 2, . . . , T
via the general scheme (6) inspired by [89, 90] requires the initialization of the recursive mixture estimation al-
gorithm, namely, the number Nc of Poisson components (1) and their initial statistics should be set before the
algorithm start. In this paper, independent explanatory counts xj;t ∀j ∈ {1, 2, . . . , N} are modeled individually.
This essentially facilitates the mixture initialization procedure through heuristic techniques of prior count histogram
analysis, which involves guessing the number of single Poisson models along with prior point estimates of their pa-
rameters (it will be demonstrated in Section 4). Denoting the prior point estimate of the i-th component parameter
of each count xj;t ∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc} by λ̂i;j;t, the initial statistics is straightforward

Si;j;t = λ̂i;j;tκi;j;t, for t = 0, (7)

where κi;j;t is the initial counter initialized to 1.

Location search in explanatory data space The scheme (6) applied to the Poisson mixture with the gamma prior
conjugate pdf with the initialized statistics Si;j;t and κi;j;t (see derivations in [99]) suggests the recursive update of
the statistics in the form

Si;j;t = Si;j;t−1 + wi;txj;t, κi;j;t = κi;j;t−1 + wi;t, for t = 1, 2, . . . , T, (8)

where the weight wi;t expresses the probability of activity of the i-component at time t in the joint data space of
explanatory data counts. The weights are computed using the entry-wise product of the proximities Mi;j;t [92] of
the counts xj;t to the i-th components ∀i ∈ {1, 2, . . . , Nc}, which provides the joint proximity Mi;t (recalling the
explanatory count independence assumption) as follows:

Mi;t ∝
∫
λ∗
i;1

fi(x1;t | λi;1)︸ ︷︷ ︸
Component (1)

f(λi;1 | {x1;t}T−1
t=0 )︸ ︷︷ ︸

gamma conjugate prior

dλi;1

︸ ︷︷ ︸
Mi;1;t

⊙ . . .⊙
∫
λ∗
i;N

fi(xN ;t | λi;N )︸ ︷︷ ︸
Component (1)

f(λi;N | {xN ;t}T−1
t=0 )︸ ︷︷ ︸

gamma conjugate prior

dλi;N

︸ ︷︷ ︸
Mi;N ;t

,

(9)
where the prior point estimate of the pointer in (6) is assumed to be uniform and omitted for simplicity. The
results Mi;j;t of individual integrals in (9) are called the proximities and represent the computed values of the
Poisson probability functions (1) with the incorporated realizations of the count xj;t at time t and the prior point
estimates λ̂i;j;t−1 of the component parameters. The weights at time t are thus simply given by normalizing the
joint proximities

wi;t =
Mi;t∑Nc

k=1Mk;t

(10)

and utilized in (8). The updated statistics (8) naturally provide the re-computed point estimates of the Poisson
component parameters

λ̂i;j;t =
Si;j;t

κi;j;t
(11)

∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc} at time t, which are substituted into the relation (9) instead of λi;j

at the next time instant under the adopted recursive methodology. This part of the solution corresponds to step 1
in the time loop for t = 1, 2, . . . , T of analysis of training data in Section 3.1. Subsequently, the locations of the
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explanatory independent counts are identified through their models in the form of Poisson components, which are
pre-estimated for later use in the prediction phase and can also be optionally re-estimated.

For step 2 of the above time loop, the pointer of the Poisson mixtures in the joint explanatory data space is estimated
as the argument of the maximum value of the whole weighting vector

argmaxwt ≡ argmax [w1;t, . . . , wNc;t]
′ (12)

at each time t. The obtained index i ∈ {1, 2, . . . , Nc} of the maximum weight denotes the component where the
value observed at time t should be classified.

In this way, steps 1 and 2 via (9), (10), (8), (11), and (12) are prepared to be used as long as new measurements of
the explanatory counts arrive.

Local Poisson regressions on Poisson-mixture locations As stated in step 3 of the time loop for t = 1, 2, . . . , T
of analysis of training data in Section 3.1, the pointer estimated in (12) is necessary to model the spatio-temporal
relationships of the explanatory counts xt and the target count yt measured simultaneously at the same locations
indicated at time t. This is achieved by estimating the regression coefficients of Nc Poisson regressions (3) at the
Nc locations. This procedure is specified as the search for Nc sets of time indices τi such that

τi = {t| argmaxwt = i︸ ︷︷ ︸
via (12)

}, t = 1, 2, . . . , T, ∀i ∈ {1, 2, . . . , Nc}. (13)

Following this, the data set {yτi , x1;τi , x2;τi , . . . , xN ;τi} for each i includes the target and multiple explanatory
counts in the i-th Poisson-mixture location detected by the above algorithm. These sets are then incorporated into
the log-likelihood function (4) to compute the point estimates of the regression coefficients [θ̂0, θ̂1, . . . , θ̂N ]′i at each
i-th location numerically, as defined by (5). This part of the solution completes the analysis of the training data.

3.3 Online testing data prediction

Online location recognition At this stage of the solution for the time t = T + 1, T + 2, . . . (refer to steps 1
and 2 of online prediction with testing data in Section 3.1), the currently measured explanatory counts xj;t are used
for the online prediction of the target count yt. There are two options for using the pre-estimated Poisson models
obtained during the training data analysis:

1. Use of the final point estimates of the Poisson component parameters Here, the point estimates λ̂i;j;t=T are
continuously substituted into the relation (9) along with the values of of the explanatory counts xj;t observed
at the actual time instant t = T + 1, T + 2, . . ., each into their component (1). This computes the real-
time proximity Mi;t, which, via (10) and (12), provides the required point estimate of the real-time pointer,
allowing the detection of the active location.

2. Re-estimation of the Poisson component parameters In this case, the above option is enhanced by the recur-
sive update of statistics (8) to re-compute (11) and utilize the new point estimates λ̂i;j;t in (9) at each time t
or for occasional re-learning. This enables refining weights of the components during the online prediction.

At each time, both options provide the current value of the pointer (12), indicating the active location where the
current explanatory counts xj;t belong.
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Target count prediction At the final step 3 of the time loop for the time t = T + 1, T + 2, . . ., the vector of the
currently measured explanatory counts xt, classified in the previous step, is utilized in the local Poisson regression
(3) for the online prediction of the target count yt. Embedding the current realizations into (3) allows computation
of the expectation of the target count

ŷt = exp{[θ̂0, θ̂1, . . . , θ̂N ]′i=argmaxwt
xt} (14)

with the point estimates of the regression coefficients [θ̂0, θ̂1, . . . , θ̂N ]′i=argmaxwt
corresponding to the location

i = argmaxwt indicated by the current pointer value (12) at time t.

3.4 Properties and limitations of the proposed approach

The properties and limitations of the proposed approach were first investigated through simulations using Scilab
(www.scilab.org), a free and open-source programming environment for engineering and scientific computations. In
the local-model-based approach, the relationship between the quality of the target count prediction and the accuracy
of classification of explanatory counts can have a significant impact. To investigate this relationship, we explored
the dependence between the coefficient of determination R2 and the accuracy of classification Acc. Here, R2 is
defined as

R2 = 1−
∑K

t=T+1(yt − ŷt)
2∑K

t=T+1(yt − ȳ)2
(15)

where K − T represents the capacity of testing simulated data sets, and ŷt is the predicted value of the target count
from (14). Additionally, Acc is defined as the ratio of the number of correct pointer estimates (12) to the total
number of pointer estimates calculated during the prediction part of the algorithm.

For this part of the validation experiments, randomly generated parameters were used for the four Poisson com-
ponents of explanatory counts, and the mixture initialization, identical for all experiments, was set to exclude the
influence of experimental settings. Each simulated data set contained 1000 realizations of two explanatory counts
x1;t and x2;t as well as the target count yt.

To examine whether lower accuracy in classifying explanatory count data xt affects the prediction quality of the
target count variable yt, three types of experiments were conducted. They involved simulations from:

1. Distant Poisson components with highly different parameters for both x1;t and x2;t;

2. Close Poisson components with parameters close to each other for both x1;t and x2;t;

3. A mix of both, featuring distant Poisson components for x1;t and close components for x2;t.

The distance between the components was defined as the range of absolute differences between the component
parameters of each explanatory count

Rj = max(|λi;j − λk;j |)−min(|λi;j − λk;j |), ∀i, k ∈ {1, 2, . . . , Nc}, ∀j ∈ {1, 2, . . . , N}. (16)

Each type of the experiments was conducted 30 times with a different choice of standard deviations used for random
generation of the Poisson component parameters. Table 1 shows the average values of the ranges R1 and R2 of the
component parameters of the explanatory counts, as well as the average values of R2 and Acc in percent obtained
for each type of experiment, in comparison with the R2 of the classical Poisson regression denoted by R2

PR. The
table shows that Acc is naturally higher for distant components, which are generally more easily recognizable,
although classifying Poisson components with at least approximate equidispersion is not trivial, unlike Gaussian
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Table 1: Explanatory data classification vs. target data prediction
Experiment type R1 R2 Acc R2 R2

PR

Distant components 15.318 17.917 95.854 93.798 86.258
Close components 5.209 5.721 61.924 49.047 39.358
Mixed components 39.712 4.850 98.093 92.334 89.364

components; see histograms of distant and mixed components in Figure 1 (left). The closer the components are, the
lower the accuracy Acc, especially for small values of the parameters and consequently with small variances. As
expected, the target prediction quality, determined through R2, is affected by the lower Acc and decreases as well
(note the y-axis values in the plots of Figure 1 (right)). However, for all types of experiments shown in Figure 1
(right) and in Table 1, it holds that R2 > R2

PR, meaning that the quality of prediction with the proposed method
is higher than with classical Poisson regression. This holds true even for the case of close components, where the
simulations have been prepared with higher standard deviations during generation, causing the data to almost lose
their multimodality. This facilitates the prediction for Poisson regression, and the difference between R2 and R2

PR

is small for some of the simulations in Figure 1 (right). The improvements in prediction resulting from the proposed
method are clearly evident.

Figure 1: Explanatory data classification accuracy impact on target data prediction

Another important property of the proposed algorithm is that the target count variable yt does not need to have a
distinctly multimodal character to capture its relationship with the explanatory counts at their recognized locations.
This can be seen in Figure 2, where the histograms of the target count yt for each type of the above experiments lack
distinct peaks. This indicates that clustering of the count variable yt in the joint data space with explanatory variables
x1;t and x2;t will not provide new information. Even in the case of such clustering, the mixture initialization would
be a rather challenging task.
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Figure 2: Histograms of target counts for various distances between explanatory data components

More experiments comparing the proposed approach with alternative existing algorithms applied to real traffic
counts will be presented later in Section 4. Here, the general properties of the approach have been investigated and
are summarized in Table 2.

Table 2: General properties of the approach compared to alternative methods
Alternative methods The proposed approach

Poisson/ZIP/ZTP regression No single-distribution assumptions
NB/ZINB/ZTNB regression, GPM Local models for their later recognition

in prediction
Mixture of Poisson/NB-related regressions,
CP, Poisson-Gamma/Gaussian models

One-pass recursive estimation for
online re-learning/prediction

Centroid-based clustering Parametrized cluster models for prediction

Investigating the properties of the proposed algorithm, its limitations were also outlined. Naturally, a significant
correlation between the target and explanatory variables is expected, but this holds for all predictive models. Ex-
amples of Spearman’s test p-values are 2.58D-130 obtained for yt and x1;t, and 2.945D-78 for yt and x2;t, with
Spearman’s rank correlation coefficients 0.6073 and 0.4946, respectively. Additionally, the presence of at least
slight multimodality in the explanatory counts is required to facilitate mixture initialization and detect locations.

Application of the proposed approach to real count data is presented in the next section.

4 Application to traffic counts in selected areas in Prague

Here, the presented approach was implemented using the Python programming language (www.python.org).
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4.1 Data description and preliminary correlation analysis

The data sets were provided by the mobile measuring laboratory MobiLab from the Czech Technical University in
Prague (https://mobilab.fd.cvut.cz) and can be downloaded from [100].

Traffic counts were measured every minute over a 24-hour period at the following four selected areas in Prague:
Stodůlky (September 2021), Barrandov (June 2022), Radlice (September 2022), and Velká Chuchle (October 2022),
resulting in four data sets. At each location, 3 to 6 points were chosen where traffic counts were collected in all
possible directions along the corresponding road section/intersection. The measuring points are denoted by red
circles in the map screenshots shown in Figure 3.

The four provided data sets were used for the experiments as follows: Within each data set from a specific area, 2
to 3 data samples were created, each utilizing one of the available traffic count variables as the target count variable
yt, indicating that the traffic counts in the chosen direction will be predicted, with the remaining traffic counts used
as the explanatory variables xt = [x1;t, x2;t, . . . , xN ;t]

′. Each resulting data sample has a different target count
variable. In total, ten data samples have been prepared as follows: two for Stodůlky, with the target count variables
at points S1 and S2 as shown in Figure 3; three for Barrandov (B1–B3), two for Radlice (RD1, RD2), and three for
Velká Chuchle (VC1–VC3).

Figure 3: Map screenshots of four locations in Prague (www.mapy.cz ©Seznam.cz, a.s. 2024, ©AOPK ČR –
ochrana přírody a krajiny, ©Přispěvatelé OpenStreetMap, ©Natural Earth, Tom Patterson)

The correlation between the target and individual explanatory counts within each data sample was tested using the
Spearman’s rank correlation test in the SciPy library [101]. All obtained p-values were lower than the significance
level of 0.05, indicating a statistically significant dependence between the variables. The Spearman’s rank cor-
relation coefficients rs between the target and individual explanatory counts are provided in Table 3, which also
indicates that the number of explanatory counts N differed among the data samples chosen according to specific
road sections.
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Table 3: Spearman’s rank correlation coefficients
Data sample rs(yt, x1;t) rs(yt, x2;t) rs(yt, x3;t) rs(yt, x4;t)

Stodůlky S1 0.856 0.949 – –
Stodůlky S2 0.846 0.861 – –

Barrandov B1 0.671 0.846 0.779 0.831
Barrandov B2 0.699 0.78 0.765 0.758
Barrandov B3 0.491 0.767 0.774 0.805
Radlice RD1 0.954 0.822 – –
Radlice RD2 0.83 0.977 – –

Velká Chuchle VC1 0.384 0.382 – –
Velká Chuchle VC2 0.381 0.377 – –
Velká Chuchle VC3 0.622 0.612 – –

4.2 Poisson mixture initialization for explanatory traffic counts

Each of the ten data samples was split into 75% training and 25% testing data. The histograms of the explanatory
training traffic counts were used to initialize the Poisson components of each mixture. To conserve space, Fig-
ure 4 displays histograms of the traffic counts for one data sample from each of the Prague areas used (S1, B1,
RD1, and VC1). Lighter colors correspond to explanatory traffic counts, while brighter colors represent the target
counts. Notice that only explanatory counts are used for initialization, while the histograms of the target data do
not necessarily have to duplicate the form of the histograms of the explanatory counts. The number of Poisson
components Nc in the explanatory count mixtures was heuristically initialized based on the visually recognizable
number of peaks in the histograms of the explanatory counts, as illustrated in Figure 4. The prior point estimates of
the Poisson component parameters λ̂i;j;t for t = 0 for individual explanatory traffic counts within each data sample
were initialized based on the centers of the histogram peaks. For example, the data sample Stodůlky S1 includes
two explanatory traffic counts, x1;t and x2;t, each described by three components of the Poisson mixture. The initial
point estimates of their component parameters are [3, 22, 50]′ for x1;t and [2, 25, 49]′ for x2;t, as indicated by the
red lines in Figure 4. Similarly, for the data sample Barrandov B1, there are four explanatory traffic counts, each
with two Poisson components. Their initialization values are [1, 12]′ for x1;t, [2, 50]′ for x2;t, [1, 20]′ for x3;t, and
[2, 17]′ for x4;t. The initial statistics of the components were then calculated according to (7).

4.3 Explanatory traffic count locations and local target Poisson regressions

Figure 5 illustrates detected locations in the training explanatory traffic counts for each sample plotted against the
values of the target traffic counts. In each plot, coefficients of local Poisson regression for recognized locations are
positioned near their centers where it was possible due to overlapping clusters. To enhance clarity, the color themes
of the plots align with those in Figure 4: blue denotes Stodůlky, green represents Barrandov, plum signifies Radlice,
and orange indicates Velká Chuchle. It can be seen that the data samples from the areas of Stodůlky (blue), Radlice
(plum), and Velká Chuchle (orange) each have three local Poisson regressions (3) with two explanatory counts,
resulting in three point estimates of the regression coefficients [θ̂0, θ̂1, θ̂2]′i in each plot for each location, i.e.,

E[yτi |xτi ] = eθ̂0;i+θ̂1;ix1;τi
+θ̂2;ix2;τi , i = {1, 2, Nc = 3}, (17)

where the indices τi of the traffic counts belonging to the locations are defined in (13). The data samples from
Barrandov (green B1 to B3) each have two local Poisson regressions with four explanatory counts, demonstrating
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Figure 4: Histograms for one data sample from each of the Prague areas used for initialization

five coefficients in each plot for each location, i.e.,

E[yτi |xτi ] = eθ̂0;i+θ̂1;ix1;τi
+θ̂2;ix2;τi

+θ̂3;ix3;τi
+θ̂4;ix4;τi , i = {1, Nc = 2}. (18)

Notice that the data samples from the busier roads (blue S1, S2, and green B1 to B3) with a traffic count range of up
to 85 vehicles per minute have clearly recognizable locations in the plots, even when they overlap. The data samples
from Radlice (plum RD1 and RD2), with a traffic count range of up to 28, have significantly overlapping locations.
The data values from samples VC1 to VC3 (orange) should have been jiggled for plotting, as their ranges are up to
5 and the centers of the locations are close to each other. This indicates that searching for Poisson-based locations
in the explanatory data space with a low number of realizations is not a trivial task. As discussed in Section 3.4,
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the clustering quality will impact the prediction error in the online target prediction phase of the algorithm, which
utilizes the point estimates obtained in individual locations. The results of the target traffic count prediction are
compared among all data samples and alternative well-known techniques in the next section.

Figure 5: Detected explanatory traffic count locations and local target Poisson regression estimates

4.4 Validation of target traffic count prediction

For the validation of the proposed algorithm (PA), each data sample was randomly shuffled during each execution
of the algorithm and used for comparison with the following methods: (i) Poisson (PR) and NB regressions from
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statsmodels.api (www.statsmodels.org) [102]; (ii) decision tree classifier (DT) from sklearn.tree; (iii)
random forest classifier (RF) from sklearn.ensemble; and (iv) multi-layer perceptron (MLP) available from
sklearn.neural_network, all from www.scikit-learn.org [103].

The quality of the prediction of the traffic count variable yt within each shuffle of each data sample was evaluated
using root mean squared error (RMSE), mean absolute error (MAE), mean squared logarithmic error (MSLE)

MSLE =
1

K

K∑
t=T+1

(ln(1 + yt)− ln(1 + ŷt))
2, (19)

the negative log-likelihood (NLL) capturing the discrepancy between the observed target traffic counts and the
predicted counts according to the Poisson distribution

NLL = −
K∑

t=T+1

ln

(
ŷytt e−ŷt

yt!

)
, (20)

and the coefficient of determination R2, all from sklearn.metrics (www.scikit-learn.org) [103]. For all met-
rics, T = 1079 indicates the capacity of training traffic data, while K = 1440 denotes the total capacity of each data
sample, i.e., 360 data values were used for testing. Each data sample was shuffled 30 times. Tables 4–7 compare
prediction error metrics of all data samples, where PA denotes the row with results of the proposed algorithm. For
each prediction metric, its average value obtained across 30 shuffles of the data sample, along with the standard
deviation, is shown. The color themes of the tables (blue, green, plum, and orange) align with those in Figures 4
and 5, corresponding to Prague areas.

4.5 Results in Prague areas with busier traffic flow

Analysis of the obtained results shows that in areas with busier traffic flow (Stodůlky, Barrandov and Radlice in
Tables 4 (blue), 5 (green), and 6 (plum)), where the target traffic ranges are between 25 and 80 vehicles per minute
(as shown on the y-axes of the blue, green, and plum plots in Figure 5), the R2 of the proposed algorithm reaches
values from 0.615 to 0.891. This signifies an accurate and reliable model, particularly when compared to alternative
methods.

The comparison of the average prediction quality, as shown in Tables 4-6, indicates that the RMSE, MAE, MSLE,
and NLL of the proposed algorithm are the lowest among the compared methods, with a small standard deviation,
while R2 is the highest. This reflects that the predictions of target traffic counts obtained with the proposed algo-
rithm were the most precise. The prediction quality produced by the alternative methods for these data samples is
relatively high, except for NB, which exhibits higher deviations and even a negative R2 value in Table 6. Never-
theless, it remains lower than that achieved by the proposed algorithm. For the data sample B2 in Table 5, where
the R2 of the proposed algorithm is only 0.615, some of the other methods yield significantly worse results. For
example, DT and RF have average R2 values of 0.223 and 0.321, respectively.

In this part of the validation experiments, the overall success of the prediction methods is influenced by the higher
ranges of the traffic counts, where observations on busier roads resemble continuous data, and small deviations
between predictions and data are not as significant. The higher correlation shown in Table 3 also impacts the
predictions. For this reason, it is worth examining how the proposed algorithm performs with traffic counts charac-
terized by small ranges and lower correlation coefficients shown in Table 3. These results will be presented in the
next section.
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Table 4: Target count prediction errors – Stodůlky S1 and S2
RMSE MAE MSLE NLL R2

Proposed algorithm 3.168±0.177 2.179 ±0.096 0.09±0.008 792.1± 15.92 0.891± 0.012
Poisson regression 5.762±0.943 4.006±0.248 0.508±0.046 1136.08±25.85 0.634±0.113

Negative Binomial
regression

6.669±1.356 4.165±0.334 0.473±0.043 1138.32±33.16 0.505±0.194

Decision tree 4.098±0.234 2.782±0.165 0.129±0.009 978.77±55.33 0.818±0.016
Random forests 4.061±0.223 2.745±0.144 0.124±0.01 948.9±49.84 0.821±0.016

Multi-layer perceptron 3.484±0.257 2.31±0.145 0.093±0.007 914.1±96 0.868±0.014
RMSE MAE MSLE NLL R2

Proposed algorithm 6.843±0.438 4.578±0.229 0.316±0.058 1151.75±38.29 0.771±0.03
Poisson regression 8.531±0.516 6.209±0.262 0.665±0.064 1484.97±41.66 0.643±0.046

Negative Binomial
regression

8.703±0.55 6.256±0.278 0.652±0.064 1483.46±42.93 0.629±0.051

Decision tree 9.623±0.441 6.388±0.294 0.642±0.074 2020.09±151.86 0.547±0.047
Random forests 9.199±0.529 6.186±0.31 0.535±0.079 1861.59±147.96 0.586±0.049

Multi-layer perceptron 7.553±0.554 4.987±0.311 0.386±0.076 1623.15±226.35 0.72±0.042

Table 5: Target count prediction errors – Barrandov B1, B2, and B3
RMSE MAE MSLE NLL R2

Proposed algorithm 8.676±0.345 6.515±0.289 0.134±0.021 1292.66±24.96 0.871±0.011
Poisson regression 12.282±0.549 9.444±0.356 0.312±0.037 1668.82±39.68 0.741±0.025

Negative Binomial
regression

12.416±0.578 9.488±0.37 0.306±0.036 1668.85±40.07 0.736±0.027

Decision tree 11.089±0.332 8.323±0.273 0.214±0.025 1608.94±53.7 0.789±0.017
Random forests 10.385±0.354 7.791±0.259 0.195±0.021 1523.64±43.59 0.815±0.015

Multi-layer perceptron 10.803±0.506 7.971±0.365 0.185±0.022 1531.66±64.14 0.8±0.021
RMSE MAE MSLE NLL R2

Proposed algorithm 4.965±0.195 3.64±0.14 0.248±0.016 1044.84±25.05 0.615±0.024
Poisson regression 5.399±0.218 4.008±0.151 0.358±0.02 1137.6±29.43 0.544±0.037

Negative Binomial
regression

5.465±0.221 4.034±0.152 0.35±0.019 1139±29.65 0.532±0.04

Decision tree 7.042±0.368 5.038±0.277 0.455±0.037 1749.9±83.91 0.223±0.084
Random forests 6.585±0.269 4.702±0.208 0.403±0.028 1694.89±72.77 0.321±0.054

Multi-layer perceptron 6.017±0.328 4.319±0.233 0.372±0.027 1813.67±111.72 0.433±0.059
RMSE MAE MSLE NLL R2

Proposed algorithm 4.247±0.133 3.154±0.112 0.207±0.017 964.89±18.89 0.735±0.016
Poisson regression 5.263±0.202 4.012±0.155 0.379±0.033 1128.09±25.46 0.592±0.037

Negative Binomial
regression

5.374±0.213 4.06±0.163 0.365±0.031 1129.51±26.59 0.575±0.04

Decision tree 5.652±0.179 4.116±0.129 0.332±0.03 1499.34±71.68 0.53±0.035
Random forests 5.16±0.229 3.747±0.176 0.301±0.025 1427.98±75.72 0.608±0.039

Multi-layer perceptron 4.998±0.245 3.591±0.173 0.293±0.033 1509.3±106.08 0.633±0.031

4.6 Results in Prague areas with less busy traffic flow

In the areas with less busy traffic flow (Velká Chuchle), the target traffic ranges are 7 and 8 vehicles per minute
for VC1 and VC2, respectively, and 18 for VC3. These ranges can be seen on the y-axes of the orange plots in
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Table 6: Target count prediction errors – Radlice RD1 and RD2
RMSE MAE MSLE NLL R2

Proposed algorithm 2.903±0.154 1.4±0.103 0.123±0.025 406.22±26 0.74±0.022
Poisson regression 4.784±0.615 2.668±0.172 0.536±0.019 871.41±38.69 0.287±0.179

Negative Binomial
regression

6.08±1.163 2.85±0.27 0.48±0.02 867.42±45.19 -0.173±0.44

Decision tree 4.088±0.232 1.91±0.141 0.277±0.046 668.45±60.1 0.485±0.05
Random forests 4.045±0.241 1.891±0.153 0.229±0.037 585.99±51.04 0.495±0.062

Multi-layer perceptron 3.504±0.242 1.647±0.127 0.162±0.028 497.45±44.16 0.621±0.047
RMSE MAE MSLE NLL R2

Proposed algorithm 2.495±0.118 1.151±0.074 0.042±0.009 350.48±18.41 0.882±0.01
Poisson regression 5.598±0.981 2.86±0.21 0.382±0.007 791.61±29.35 0.39±0.222

Negative Binomial
regression

6.908±1.519 3.06±0.322 0.331±0.007 791.71±34.73 0.056±0.43

Decision tree 3.453±0.298 1.575±0.153 0.089±0.023 471.36±47.97 0.774±0.033
Random forests 3.266±0.283 1.49±0.138 0.069±0.012 426.37±33.6 0.798±0.031

Multi-layer perceptron 2.826±0.148 1.296±0.091 0.053±0.008 383.38±23.97 0.849±0.017

Figure 5. Results obtained in these areas, as shown in Table 7 (orange), are not as successful when compared across
all methods.

Analysis of the R2 for data samples VC1 and VC2 shows that the proposed algorithm has the highest R2 among
the compared methods, although it also indicates a weak goodness of fit for the model, with average values of only
0.151 and 0.173. However, predictions from the remaining methods, except for PR, were poor, with negative R2

values. This can be explained by the low correlation in the data.

Upon examining the prediction errors for data samples VC1 and VC2, it becomes apparent that the RMSE and
MSLE of the proposed algorithm are the lowest, but its MAE is higher than those of DT, RF, and MLP. Attributed
to the narrow range of counts in these data samples, this is explained by the sensitivity of MAE to small changes in
data, highlighting its ability to detect even subtle variations in predictions. However, to assess the prediction quality
from various perspectives, the NLL of the proposed algorithm is significantly lower than that of the other methods,
indicating better predictive performance of the model.

When considering the results for the data sample VC3, which has a slightly wider target traffic count range of 18,
they differ from those for VC1 and VC2. All the metrics in Table 7 (orange) for VC3 show the better performance
of the proposed algorithm compared to other methods. There are no negative R2 values in the average results;
however, NB still exhibits very low R2 values close to zero, with high standard deviation. The proposed algorithm
achieves an R2 value of 0.472, with MLP being the only method close to it. This difference in prediction quality
for VC3 is also attributed to the higher correlation coefficients compared to VC1 and VC2 (refer to Table 3).

4.7 Discussion

In the experimental part of the work, differently-aimed metrics were specially chosen to evaluate the prediction
quality of the proposed algorithm from different perspectives. These include: (i) assessing differences between
predicted and actual values via RMSE, MAE, and MSLE; (ii) measuring the proportion of variance in the target
variable explained by the explanatory variables, representing the overall goodness of fit of the model by R2; and (iii)
evaluating the model’s ability to predict probabilities that align with the actual data distribution, providing insight
into the model’s predictive performance through NLL. To summarize the results of the experiments, it can be
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Table 7: Target count prediction errors – Velká Chuchle VC1, VC2, and VC3
RMSE MAE MSLE NLL R2

Proposed algorithm 1.166±0.063 0.83±0.032 0.268±0.015 445.29±22.58 0.151±0.032
Poisson regression 1.23±0.067 0.903±0.033 0.291±0.013 470.92±22.95 0.054±0.044

Negative Binomial
regression

1.326±0.091 0.93±0.042 0.3±0.019 476.94±25.06 -0.104±0.145

Decision tree 1.413±0.088 0.794±0.059 0.409±0.035 2091.02±190.12 -0.246±0.055
Random forests 1.408±0.09 0.794±0.061 0.404±0.036 2030.3±173.75 -0.238±0.064

Multi-layer perceptron 1.373±0.09 0.762±0.061 0.377±0.035 1913.24±187.54 -0.177±0.051
RMSE MAE MSLE NLL R2

Proposed algorithm 1.198±0.053 0.869±0.028 0.272±0.015 456.8±18.47 0.173±0.029
Poisson regression 1.268±0.06 0.937±0.027 0.296±0.011 479.51±15.16 0.073±0.059

Negative Binomial
regression

1.369±0.107 0.959±0.035 0.303±0.016 484.07±18.18 -0.087±0.163

Decision tree 1.488±0.073 0.873±0.048 0.455±0.036 2452.05±184.01 -0.277±0.071
Random forests 1.47±0.069 0.861±0.045 0.441±0.035 2353.73±178.5 -0.246±0.075

Multi-layer perceptron 1.48±0.072 0.856±0.049 0.445±0.038 2419.27±218.4 -0.264±0.084
RMSE MAE MSLE NLL R2

Proposed algorithm 2.468±0.111 1.798±0.065 0.399±0.028 752.64±22.24 0.472±0.036
Poisson regression 2.894±0.217 2.13±0.079 0.544±0.032 850.01±24.96 0.271±0.107

Negative Binomial
regression

3.342±0.427 2.199±0.109 0.522±0.029 855.17±28.31 0.016±0.257

Decision tree 3.116±0.171 2.002±0.128 0.614±0.058 2076.31±166.15 0.16±0.066
Random forests 3.024±0.142 1.945±0.105 0.57±0.046 1985.84±147.84 0.207±0.08

Multi-layer perceptron 2.773±0.162 1.809±0.116 0.521±0.048 1923.28±144.66 0.334 ±0.062

stated that traffic count data prediction with the proposed algorithm was more successful across all applied metrics
compared to alternative methods, even in the case of weakly correlated data, with the exception of insignificant
differences in MAE for two data samples used. The obtained results report that for traffic counts with higher
ranges, corresponding to busier urban roads, the proposed approach provided the most accurate model among the
methods used, yielding the lowest RMSE, MAE, MSLE, and NLL, as well as the highest R2.

Concerning traffic counts with lower ranges, which in the used data samples indicated less busy urban roads, it is
noted that despite the overall weak goodness of fit observed across all methods, the proposed algorithm performed
more accurately even in this scenario. However, the application of all compared methods under these conditions
may be limited, as low ranges of traffic data may also be caused by congestion. Additionally, it is important to
consider the impact of correlation within the data sample. This underscores that, in addition to the limitations
outlined in Section 3.4, low ranges of count data, particularly when accompanied by weak correlations, can further
constrain the algorithm’s performance.

Based on the above discussion, it can be concluded that the main aim of the paper, as stated in Section 1.3, to predict
the target count variable by analyzing cross-sectional count data in identified locations and capturing data evolution
over time, has been successfully achieved. The proposed approach contributes to understanding the spatio-temporal
relationships between traffic counts across different locations on urban roads. This is believed to pave the way
for its potential application in intelligent transportation systems, particularly in the areas of urban planning, traffic
management, and infrastructure development. Such application offers enhanced decision-making capabilities and
resource allocation strategies, ultimately aiming to optimize transportation efficiency.
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5 Conclusion

This study aimed to address a task of modeling and prediction of count data with the application to traffic counts at
selected urban roads in Prague. The key ideas of the approach included (i) exploring multiple explanatory counts
and identifying their locations through recursive Bayesian estimation of Poisson mixtures; (ii) estimating the target
count model using local Poisson regressions at specific locations; and (iii) predicting target counts through real-time
location detection. The findings from the conducted experiments are promising, indicating that the proposed algo-
rithm demonstrates improvements in prediction quality, outperforming the alternative methods used for comparison.
The main contributions of the proposed approach to the area of count data models are as follows:

(i) Focus on multivariate counts, allowing for the selection of one count as the target;

(ii) Handling multimodal and overdispersed data, permitting greater variability in the data;

(iii) A location-based framework using one-pass recursive estimation for efficient online re-learning and prediction;

(iv) Integration of local Poisson regressions, linking the target count to clustered explanatory counts;

(v) Real-time clustering with localized and context-aware online predictions, enabling predictions to continuously
adapt to evolving traffic patterns;

(vi) Capture of spatio-temporal dynamics through location-based models and real-time clustering, providing a com-
prehensive understanding of the relationships between target and explanatory counts.

To address the remaining challenges in models for count data, the proposed methodology can be extended to use
dynamic local Poisson regressions at detected locations. This extension is expected to offer significant advantages,
such as efficiently updating models in real-time, capturing spatio-temporal interactions, managing computational
complexity, and ensuring robustness against noisy data. Addressing these issues is crucial for enhancing prediction
accuracy and scalability in real-world applications. As the proposed approach is not limited to the current presen-
tation, another noteworthy challenge lies in analyzing the impact of explanatory variables of non-count-data nature
on the target count. For instance, in crash count analysis, this would involve explaining crash occurrences based
on traffic conditions or other accident-related factors. Addressing this task requires tailoring the location-based
framework to the distributions of the explanatory data (e.g., mixtures of Gaussian [89–92], uniform [97], categori-
cal [90, 92], binomial [98], or exponential [95] models) and subsequently constructing local Poisson regressions to
link crash counts to clustered traffic conditions.

Applied to traffic flow analysis, the main findings of the proposed algorithm pertain to the improved quality of traffic
count predictions based solely on available traffic counts from other roads. This represents a cost-effective solution
that reduces reliance on extensive traffic sensor networks. The algorithm’s promising performance demonstrates its
potential as a valuable tool for enhancing transportation efficiency, with the incorporation of more accurate traffic
models impacting the following key areas of traffic flow management:

(i) Optimized traffic signal timing: Adaptive traffic signal systems can dynamically adjust timings based on real-time
traffic flow. For example, extending green lights on busy roads or reducing wait times at less congested intersections
can help decrease stop-and-go traffic, shorten travel times, and minimize fuel consumption and emissions;

(ii) Congestion management: Redirecting vehicles to alternative routes before traffic volumes reach critical levels
helps prevent the formation of queues and reduces congestion;

(iii) Public transportation systems: Optimization of bus routes, schedules, and frequencies ensures timely arrivals,
reduces overcrowding, and enhances the reliability of public transit systems;

(iv) Traffic safety: Identifying traffic patterns associated with higher accident risks – such as excessive volume at
high-speed intersections – enables the timely implementation of measures like reduced speed limits or increased
enforcement to improve safety;
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(v) Support for smart cities and autonomous vehicles: Real-time traffic predictions facilitate vehicle-to-infrastructure
communication and help autonomous vehicles select optimal routes, enhancing the integration of technology for
smarter, safer urban mobility.

To summarize the approach’s benefits, the development of novel real-time and adaptive technologies contributes to
more efficient decision-making in intelligent transportation systems.

Acknowledgements

European Funding: Under grant ECSEL 101007321, StorAIge is co-funded by the European Union. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or Chips Joint Undertaking. Neither the European Union nor the granting authority can be held responsible
for them. The project is supported by the CHIPS JU and its members (including top-up funding by France, Belgium,
Czech Republic, Germany, Italy, Sweden, Switzerland, Turkey).

National Funding: ÚTIA is partner in project StorAIge. ÚTIA has received national funding from the Ministry of
Education, Youth and Sports of the Czech Republic (MEYS) under grant agreement MSMT 8A21009.

CRediT authorship contribution statement

Evženie Uglickich: Writing – review & editing, Writing – original draft, Visualization, Validation, Software,
Methodology, Investigation, Conceptualization. Ivan Nagy: Writing – review & editing, Software, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The data sets analyzed for this study are available in [100].

References

[1] Fisher, P., 1941. Negative Binomial Distribution. Annals of Eugenics, 11, pp.182-787.

[2] Consul, P.C., Famoye, F., 1992. Generalized Poisson regression model. Commun Stat Theor Methods, 21, 89–109.

[3] Yadav, B., Jeyaseelan, L., Jeyaseelan, V., Durairaj, J., George, S., Selvaraj, K.G., Bangdiwala, S. I., 2021. Can Generalized
Poisson model replace any other count data models? An evaluation, Clinical Epidemiology and Global Health, 11, 100774.

[4] Congdon, P., 2005. Bayesian Models for Categorical Data. John Wiley & Sons.

[5] Johnson, N.L., Kotz, S., Balakrishnan, N., 1997. Discrete Multivariate Distributions. Wiley Series in probability and
Statistics. John Wiley &Sons, inc. New York.

[6] Inouye, D.I., Yang, E., Allen, G.I. and Ravikumar, P., 2017. A review of multivariate distributions for count data derived
from the Poisson distribution. Wiley Interdisciplinary Reviews: Computational Statistics, 9(3), p.e1398.

22



[7] Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society:
Series B (Methodological), 36(2), pp.192-225.

[8] Yang, E., Ravikumar, P.K., Allen, G.I. and Liu, Z., 2013. On Poisson graphical models. Advances in neural information
processing systems, 26, 1–9.

[9] Allen, G.I. and Liu, Z., 2013. A local Poisson graphical model for inferring networks from sequencing data. IEEE trans-
actions on nanobioscience, 12(3), pp.189-198.

[10] Hadiji, F., Molina, A., Natarajan, S. and Kersting, K., 2015. Poisson dependency networks: Gradient boosted models for
multivariate count data. Machine Learning, 100, pp.477-507.

[11] Han, S.W. and Zhong, H., 2016. Estimation of sparse directed acyclic graphs for multivariate counts data. Biometrics,
72(3), pp.791-803.

[12] Heeringa, S.G., West, B.T., Berglung, P.A., 2010. Applied Survey Data Analysis. Chapman & Hall/CRC.

[13] Falissard, B., 2012. Analysis of Questionnaire Data with R. Chapman & Hall/CRC, Boca Raton.

[14] Armstrong, B.G., Gasparrini, A., Tobias, A., 2014. Conditional Poisson models: a flexible alternative to conditional
logistic case cross-over analysis. BMC Medical Research Methodology, 14, 122.

[15] Long, J. S., Freese, J., 2014. Regression Models for Categorical Dependent Variables Using Stata. 3rd edn. Stata Press.

[16] Agresti, A., 2018. An Introduction to Categorical Data Analysis. 3rd Ed. Wiley, 2018.

[17] Diallo, A. O., Diop, A., Dupuy, J.-F., 2018. Analysis of multinomial counts with joint zero-inflation, with an application
to health economics, Journal of Statistical Planning and Inference, 194, 85–105.

[18] Ver Hoef, J.M. and Boveng, P.L., 2007. Quasi-Poisson vs. negative binomial regression: how should we model overdis-
persed count data?. Ecology, 88(11), 2766–2772.

[19] Berk, R. and MacDonald, J.M., 2008. Overdispersion and Poisson regression. Journal of Quantitative Criminology, 24,
269–284.

[20] Hilbe, J. M., 2011. Negative binomial regression. Cambridge University Press.

[21] Wang, K., Yau, K.K., Lee, A.H. and McLachlan, G.J., 2007. Two-component Poisson mixture regression modelling of
count data with bivariate random effects. Mathematical and Computer Modelling, 46(11-12), 1468–1476.

[22] Cui, Y. and Yang, W., 2009. Zero-inflated generalized Poisson regression mixture model for mapping quantitative trait
loci underlying count trait with many zeros. Journal of theoretical biology, 256(2), 276–285.

[23] Lim, H.K., Li, W.K. and Philip, L.H., 2014. Zero-inflated Poisson regression mixture model. Computational Statistics &
Data Analysis, 71, 151–158.

[24] Papastamoulis, P., Martin-Magniette, M.L. and Maugis-Rabusseau, C., 2016. On the estimation of mixtures of Poisson
regression models with large number of components. Computational Statistics & Data Analysis, 93, 97–106.

[25] Bao, J., Durango-Cohen, E.J., Levontin, L. and Durango-Cohen, P.L., 2022. Analysis of factors influencing recurring
donations in a university setting: A compound poisson mixture regression model. Journal of Business Research, 151,
489–503.

[26] Abonazel, M.R., Alzahrani, A.R.R., Saber, A.A., Dawoud, I., Tageldin, E. and Azazy, A.R., 2023. Developing ridge
estimators for the extended Poisson-Tweedie regression model: Method, simulation, and application. Scientific African,
23, e02006.

[27] Olivares, K.G., Meetei, O.N., Ma, R., Reddy, R., Cao, M. and Dicker, L., 2024. Probabilistic hierarchical forecasting
with deep poisson mixtures. International Journal of Forecasting, 40(2), 2024, 470-489.

[28] Zeeshan, M., Khan, A., Amanullah, M., Bakr, M.E., Alshangiti, A.M., Balogun, O.S. and Yusuf, M., 2024. A new
modified biased estimator for Zero inflated Poisson regression model. Heliyon. 10, e24225.

[29] Park, B.J., Lord, D. and Hart, J.D., 2010. Bias properties of Bayesian statistics in finite mixture of negative binomial
regression models in crash data analysis. Accident Analysis & Prevention, 42(2), pp.741–749.

23



[30] Zou, Y., Zhang, Y. and Lord, D., 2014. Analyzing different functional forms of the varying weight parameter for finite
mixture of negative binomial regression models. Analytic methods in accident research, 1, 39–52.

[31] Tzougas, G. and di Cerchiara, A.P., 2021. The multivariate mixed negative binomial regression model with an application
to insurance a posteriori ratemaking. Insurance: Mathematics and Economics, 101, 602–625.

[32] Hajihosseini, M., Amini, P., Saidi-Mehrabad, A. and Dinu, I., 2023. Infants’ gut microbiome data: A Bayesian Marginal
Zero-inflated Negative Binomial regression model for multivariate analyses of count data. Computational and Structural
Biotechnology Journal, 21, 1621–1629.

[33] Pho, K.H. and Lukusa, T.M., 2024. Parameter Estimations on Zero-Inflated Negative Binomial Model with Incomplete
Data. Applied Mathematical Modelling, 129, 207–231.

[34] Mothafer, G.I., Yamamoto, T. and Shankar, V.N., 2016. Evaluating crash type covariances and roadway geometric
marginal effects using the multivariate Poisson gamma mixture model. Analytic methods in accident research, 9, 16-26.

[35] Yu, J., Gwak, J. and Jeon, M., 2016, October. Gaussian-Poisson mixture model for anomaly detection of crowd behaviour.
In 2016 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 106-111. IEEE.

[36] Silva, A., Rothstein, S.J., McNicholas, P.D. and Subedi, S., 2019. A multivariate Poisson-log normal mixture model for
clustering transcriptome sequencing data. BMC bioinformatics, 20(1), pp.1-11.

[37] Kinzer, J. P., 1934. Application of the Theory of Probability to Problems of Highway Traffic, thesis submitted in partial
satisfaction of requirements for degree of B.C.E., Polytechnic Institute of Brooklyn. Abstracted in: Proceedings, Institute
of Traffic Engineers, 5, pp. 118–124.

[38] Adams, W. F., 1936. Road traffic considered as a random series, Institution of Civil Engineers, 4, 121–130.

[39] Greenshields, B. D., Shapiro, D., Ericksen, E. L., 1947. Traffic Performance at Urban Street Intersections, Technical
Report No. 1, Yale Bureau of Highway Traffic.

[40] Gerlough, D. L. and Schuhl, A., 1955. Use of Poisson Distribution in Highway Traffic. The Probability Theory Ap-
plied to Distribution of Vehicles on Two-Lane Highways. Eno Foundation for Highway Traffic Control. US Transportation
Collection. https://rosap.ntl.bts.gov/view/dot/16299

[41] Washington, S., Karlaftis, M.G., Mannering, F., Anastasopoulos, P., 2020. Statistical and Econometric Methods for
Transportation Data Analysis (3rd ed.). Chapman and Hall/CRC.

[42] Daraghmi, Y.A., Yi, C.W. and Chiang, T.C., 2012, November. Space-time multivariate negative binomial regression for
urban short-term traffic volume prediction. In 2012 12th International Conference on ITS Telecommunications, pp. 35-40.
IEEE.

[43] Okawa, M., Kim, H. and Toda, H., 2017, May. Online traffic flow prediction using convolved bilinear Poisson regression.
In 2017 18th IEEE International Conference on Mobile Data Management (MDM), pp.134–143. IEEE.

[44] Motie, M., Savla, K., 2017. On a vacation queue approach to queue size computation for a signalized traffic intersection.
IFAC-PapersOnLine, 50(1), p. 9700-9705.

[45] Velikajne, N. and Moškon, M., 2022. RhythmCount: A Python package to analyse the rhythmicity in count data. Journal
of Computational Science, 63, 101758.

[46] Uglickich, E. and Nagy, I., 2023. Using Poisson proximity-based weights for traffic flow state prediction. Neural Network
World, 4, 291–315.

[47] Cheng, J., Wu, L., Gao, Y., Tian, X., 2023. A multi-agent model of traffic simulation around urban scenic spots: From
the perspective of tourist behaviors, Heliyon, 9(10), e20929.

[48] Hazelton, M. L., Najim, L., 2024. Using traffic assignment models to assist Bayesian inference for origin–destination
matrices, Transportation Research Part B: Methodological, 186, 103019.

[49] Qi, H., 2024. Are current microscopic traffic models capable of generating jerk profile consistent with real world obser-
vations? International Journal of Transportation Science and Technology, 15, p. 226–243.

[50] Wang, X., Ruan, X., Casas, J. R., Zhang, M., 2024. Probabilistic model of traffic scenarios for extreme load effects in
long-span bridges, Structural Safety, 106, 102382.

24



[51] Bai, Y., Tu, P., Ong, G. P., 2024. An extended intelligent driving model for autonomous and manually driven vehicles
in a mixed traffic environment with consideration to roadside crossing, International Journal of Transportation Science and
Technology, In Press, Corrected Proof. https://doi.org/10.1016/j.ijtst.2024.07.007.

[52] Xu, L., Lu, J., Zheng, Y., He, K., Zhang, S., 2024. Study on mixed traffic characteristics around highway on-ramp
bottleneck using a microscopic simulation model, Physica A: Statistical Mechanics and its Applications, 654, 130134.

[53] Hilbe, J. M., 2014. Poisson Inverse Gaussian Regression. In Modeling Count Data, pp. 162–171. chapter, Cambridge:
Cambridge University Press.

[54] Perrakis, K., Karlis, D., Cools, M., Janssens, D., 2015. Bayesian inference for transportation origin-destination matrices:
the Poisson-inverse Gaussian and other Poisson mixtures. Journal of the Royal Statistical Society Series A: Statistics in
Society, 178(1), 271–296.

[55] Wang, Q., Guo, G., Qian, G., Jiang, X., 2023. Distributed online expectation-maximization algorithm for Poisson mixture
model, Applied Mathematical Modelling, 124, 734–748.

[56] Lord, D., Washington, S.P. and Ivan, J.N., 2005. Poisson, Poisson-gamma and zero-inflated regression models of motor
vehicle crashes: balancing statistical fit and theory. Accident Analysis & Prevention, 37(1), 35–46.

[57] Quddus, M.A., 2008. Time series count data models: an empirical application to traffic accidents. Accident analysis &
prevention, 40(5), 1732–1741.

[58] Liu, C., Zhao, M., Li, W. and Sharma, A., 2018. Multivariate random parameters zero-inflated negative binomial regres-
sion for analyzing urban midblock crashes. Analytic methods in accident research, 17, 32–46.

[59] Lukusa, M.T. and Phoa, F.K.H., 2020. A Horvitz-type estimation on incomplete traffic accident data analyzed via a
zero-inflated Poisson model. Accident Analysis & Prevention, 134, 105235.

[60] Simmachan, T., Wongsai, N., Wongsai, S., Lerdsuwansri, R., 2022. Modeling road accident fatalities with underdisper-
sion and zero-inflated counts. PLoS ONE 17(11): e0269022. doi: 10.1371/journal.pone.0269022

[61] Zha, L., Lord, D., Zou, Y., 2015. The Poisson inverse Gaussian (PIG) generalized linear regression model for analyzing
motor vehicle crash data. Journal of Transportation Safety & Security, 8(1), 18–35.

[62] Khattak, M. W., De Backer, H., De Winne, P., Brijs, T., Pirdavani, A., 2022. Development of crash prediction models
for urban road segments using Poisson Inverse Gaussian regression. In International Conference on Transportation and
Development 2022, p.107-119

[63] Park, J., Abdel-Aty, M., Lee, J., 2019. School zone safety modeling in countermeasure evaluation and decision, Trans-
portmetrica A Transport Science, 15(2), p. 586–601.

[64] Li, D., Fu, C., Sayed, T., Wang, W., 2023. An integrated approach of machine learning and Bayesian spatial Poisson
model for large-scale real-time traffic conflict prediction, Accident Analysis & Prevention, 192, 107286.

[65] Leich, A., Nippold, R., Schadschneider, A., Wagner, P., 2024. Physical models of traffic safety at crossing streams,
Physica A: Statistical Mechanics and its Applications, 640, 129669.

[66] Eliane, H. G. M., Angelica, L., 2024. Analysis of road accidents in two mixed industrial urban zones, using nested
Poisson and Negative Binomial models. Transportation research procedia, 78, 377–383.

[67] Ding, H., Sze, N. N., Li, H., Guo, Y., 2020. Roles of infrastructure and land use in bicycle crash exposure and frequency:
A case study using Greater London bike sharing data. Accident Analysis & Prevention, 144, 105652.

[68] Ding, H., Sze, N. N., 2022. Effects of road network characteristics on bicycle safety: A multivariate Poisson-lognormal
model. Multimodal transportation, 1(2), 100020.

[69] Miah, M.M., Hyun, K.K. and Mattingly, S.P., 2024. A review of bike volume prediction studies. Transportation Letters,
1-28.

[70] Zaouche, M. and Bode, N.W., 2023. Bayesian spatio-temporal models for mapping urban pedestrian traffic. Journal of
transport geography, 111, 103647.

[71] Strongylis, L., Petraki, V. and Yannis, G., 2023. Critical impact factors of pedestrians traffic combining multiple data
sources in Athens. Transportation research procedia, 72, 3332–3339.

25



[72] Wang, X. and Kockelman, K. M., 2009. Forecasting Network Data: Spatial Interpolation of Traffic Counts from Texas
Data. Transportation Research Record, 2105(1), 100–108. doi: 10.3141/2105-13

[73] Gastaldi, M., Gecchele, G. and Rossi, R., 2014. Estimation of Annual Average Daily Traffic from one-week traffic counts.
A combined ANN-Fuzzy approach. Transportation Research Part C: Emerging Technologies, 47, 86–99.

[74] Bagheri, E., Zhong, M. and Christie, J., 2015. Improving AADT estimation accuracy of short-term traffic counts using
pattern matching and Bayesian statistics. Journal of Transportation Engineering, 141(6), A4014001.

[75] Vlahogianni, E.I., Karlaftis, M.G. and Golias, J.C., 2014. Short-term traffic forecasting: Where we are and where we’re
going. Transportation Research Part C: Emerging Technologies, 43, 3–19.
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