
OptimizedGeometricPooling ofProbabilities for

InformationFusion andForgetting 1

Miroslav Kárný
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Abstract

Geometric pooling of probability densities (pd) is an old but basic technique of the fusion of probabilistic knowledge. Among
its many justification, the use of the axiomatic minimum relative entropy principle (MREP) is the simplest one. Up to now,
however, the common choice of the pooling weights is unavailable. It is done by a range of techniques. Mostly, they are of a
heuristic nature and often interpret the weights as a relative trust. This paper shows that the full rigorous use of MREP enables
quantitative choice of the weights, too. It quantifies the trust while using just the properly interpreted knowledge, which is
deductively processed. The geometric pooling serves well adaptive estimation with forgetting that suits for illustration of our
result. The paper presents an adaptive Bayesian estimator with the restricted stabilized forgetting.
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1 INTRODUCTION

The geometric pooling of a finite collection of probabil-
ity densities (pd) is one of basic techniques for combin-
ing knowledge quantified by the pooled pds. It is per-
manently refined, justified and used [2,4,11,18,32]. The
rigorous choice of the pooling weights is still open. Prac-
tically, the problem has been solved by a range of (often
heuristic) techniques, which provide a prior guess of the
weights. For an insightful discussion see [8].

The axiomatic minimum relative entropy principle
(MREP) [17,31] adopted here provides the well-
grounded methodology how to extend a fragmental
knowledge (represented by pooled pds) into a pd repre-
senting this knowledge. The paper [15] adopted MREP
to the pooling problem. Among others, it confirmed the
widely used rule of thumb [10] that geometric pooling
should be used if the pooled pds have a common sup-
port. Neither that paper provides an algorithmic choice
of the pooling weights. The solution gained here via the
full exploitation of MREP is the main contribution of
this communication. It may be immediately used for
the choice of the forgetting factor used for parameter
tracking [21,24] and in adaptive systems, e.g. [25].

1 This paper was not presented at any IFAC meeting. The
author corresponds at school@utia.cas.cz.

1.1 Layout

This section further introduces the notation and recalls
the used principle. Core Sec. 2 formalizes the addressed
problem and solves it. Sec. 3 illustratively equips the
Bayesian estimation with a forgetting that makes the
Bayesian estimator adaptive. Sec. 4 provides a numerical
example. Sec. 5 offers concluding remarks.

1.2 Notation

Capital fonts mark mappings. Their discrete-valued
arguments are at their subscript. := defines the left-
hand side by the assignment (=: swaps it). Decorated
mnemonic labels are employed: v is variable in the set
v of the cardinality cv. The superscript

opt

marks opti-
mality. supp(P ) := {v ∈ v : P (v) > 0} is the support
of the pd P . ∝ is the equality up to the normalising

factor. R(P ||P0) :=
∫
v
P (v) ln

(
P (v)
P0(v)

)
dv is the rela-

tive entropy [22] of the pd P to the pd P0 on the set
v. The dominating measure [28] is either Lebesgue’s or
counting one reducing the integral to the sum. Time at
subscripts is marked by t ∈ {0, 1, . . . , ct} while 0 points
to prior objects. Symbol | separates the condition. Thus,
P0|h(v) is the prior pd on v within (conditioned by) the
hypothesis labelled by h ∈ h := {1, . . . , ch}.
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1.3 Minimum relative entropy principle

The adoptedminimum relative entropy principle chooses
a pd P opt acting on a set v ̸= ∅. Its choice complies with
the knowledge that P ∈ P ̸= ∅ while keeping the opted
pd near to its given prior guess P0 (mostly, P0 /∈ P)

P opt ∈ Arg min
P∈P

R(P ||P0). (1)

Properties of R imply that the value of the minimized
functional is finite iff there is a pd P in the knowledge-
expressing set P ⊆ {P (v) ≥ 0 :

∫
v
P (v)dv = 1}, such

that supp(P ) := {v ∈ v : P (v) > 0} ⊆ supp(P0)}.

2 PROBLEM AND ITS SOLUTION

We have a finite number of hypotheses h ∈ h :=
{1, 2, . . . , ch}, ch > 1, each stating that a given pd
P0|h(v) is the best available prior description of the
modelled variable v ∈ v ̸= ∅. The pds P0|h, h ∈ h, to be
pooled differ but all have v as the support.

The prior pd (weight)W0h > 0 on h ∈ h is assumed to be
available. It is chosen either subjectively [29] or it results
from a Bayesian learning [3], possibly using the exten-
sions of the set h of hypotheses [14]. As the last resort,
it is chosen as uniform when exploiting “insufficient-
reasons arguments” [23].

A joint pd Jh(v) := P (v)Wh, acting on (v,h), is opted.
The enforced independence of v and h expresses the
wish to construct a single representative P ∈ P :=
{all pds on v} of the pooled pds (P0|h(v))h∈h,v∈v. The
weights (pds on h) W ∈ W := {Wh > 0 :

∑
h∈h Wh =

1} are opted, too. Symbolically, J ∈ J := PW. The
pooled pds P0|h and the prior pd W0h provide the prior
guess J0 of the joint pd J via the chain rule for pds
J0h(v) := P0|h(v)W0h, v ∈ v, h ∈ h. Thus, all inputs to
MREP are available. The next proposition applies it.

Proposition 1 (Geometric Pooling by MREP (1))
For the given pooled pds (P0|h(v))h∈h,v∈v and the prior
weights (W0h)h∈h, giving the prior guess J0h(v) :=
P0|h(v)W0h of the joint pd Jh(v) = P (v)Wh, MREP
provides

Jopt :=P optW opt ∈ Argmin
J∈J

R(J ||J0), with

P opt(v) ∝
∏
h∈h

P
wopt

h

0|h (v). The optimal weight values are

wopt ∈Arg min
w∈w

F (w), w :=
{
wh ≥ 0,

∑
h∈h

wh = 1
}

F (w) :=R(w||w0)− ln
(∫

v

∏
h∈h

Pwh

0|h(v)dv
)

(2)

wh :=Wh, wopt
h := W opt

h , w0h := W0h, h ∈ h.

The MREP-optimal weight values wopt prescribed by (2)
are unique and belong to the interior of the set of W -
values.

Proof R to be minimized reads R(PW ||P0W0) =

∑
h∈h

∫
v

P (v)Wh ln

(
P (v)Wh

P0|h(v)W0h

)
dv

=
∑
h∈h

Wh

[
ln

(
Wh

W0h

)
+

∫
v

P (v)

(
P (v)

P0|h(v)

)
dv

]
=
∑
h∈h

Wh ln

(
Wh

W0h

∫
v

∏
h∈h PWh

0|h (ṽ)dṽ

)

+

∫
v

P (v) ln

(
P (v)∏

h∈h
P

Wh
0|h (v)∫

v

∏
h∈h

P
Wh
0|h (ṽ)dṽ

)
dv.

For values wh := Wh, the last summand above reaches
its smallest zero value for the claimed geometric mean.
For the chosen w0h := W0h, the remainder to be mini-
mized coincides with the function F (w) (2).

The following induction proves that the optimal weights
are in the interior of the set of possible W -values.

First, the case ch = 2 is handled.W has values in {w, 1−
w} given by the optional w ∈ [0, 1]. The optimal wopt

minimizes the function F (w) + (1 − w)γ with a fixed
γ ≥ 0 (γ = 0 in this case) over w ∈ [0, 1]. The function
and its derivatives read

F (w) =w ln

(
w

w0

)
+ (1− w) ln

(
1− w

1− w0

)
− ln

(∫
w

[
P0|1(v)

P0|2(v)

]w
P0|2(v)dv

)
+ (1− w)γ

dF (w)

dw
= ln

[
w(1− w0)

w0(1− w)

]
−
∫
v

ln

[
P0|1(v)

P0|2(v)

]
P (v|w)dv

− γ, where P (v|w) :=
Pw
0|1(v)P

1−w
0|2 (v)∫

v
Pw
0|1(v)P

1−w
0|2 (v)dv

.

d2F (w)

dw2
=

1

w
+

1

1− w
− variance

(
ln

[
P0|1

P0|2

])
,

the variance of the ln

[
P0|1

P0|2

]
is with respect to P (v|w).

It remains to check the solvability of dF (w)
dw = 0 in (0, 1).

This equation gets the form

ln

[
w(1− w0)

w0(1− w)

]
=

∫
v

ln

[
P0|1

P0|2

]
P (v|w)dv+γ =:H(w). (3)

The left-hand side of (3) increases in w ∈ [0, 1] and cov-
ers the whole real line [−∞,∞]. The right-hand side
H(w) also increases in w. Its bounded range is [γ −
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R(P0|2||P0|1), γ+R(P0|1||P0|2)]. Thus, due to the conti-
nuity of both sides for w ∈ (0, 1), there is a finite number
of solutions of (3). The strict convexity of R (2), which
is unspoiled by the added term (1 − w)γ, implies that
the minimizer is uniquely one of them.

The induction step extends the properties of the solution
to ch > 2 hypotheses. Let w̃h := wh

1−wch
, w̃0h := w0h

1−w0ch
,

h ∈ {1, . . . , ch − 1}, and w̃opt be the MREP solution,
i.e. it is the best w̃. We minimize F (w) + (1 − wch)γ,
γ ≥ 0 for ch > 2. The minimization relies on the next
re-arrangements of F (w) + (1− wch)γ :=

R(w||w0)− ln

(∫
v

∏
h∈h

Pwh

0|h(v)dv

)
+ (1− wch)γ

= wch ln

(
wch

w0ch

)
+ (1− wch) ln

(
1− wch

1− w0ch

)
+ (1− wch)

[
γ +

ch−1∑
h=1

wh

1− wch

ln

(
wh(1− w0ch)

(1− wch)w0ch

)]

− ln

[ ∫
v

P
wch

0|ch (v)
( ch−1∏

h=1

P

wh
1−wch

0|h (v)
)1−wch

dv

]
= wch ln

(
wch

w0ch

)
+ (1− wch) ln

(
1− wch

1− w0ch

)
+ (1− wch)

[
γ +

ch−1∑
h=1

w̃h ln

(
w̃h

w̃0h

)]

− ln

[ ∫
v

P
wch

0|ch (v)

( ∏ch−1
h=1 P w̃h

0|h(v)∫
v

∏ch−1
h=1 P w̃h

0|h(v)dv

)
︸ ︷︷ ︸

P̃ (v):=

1−wch

dv

]

− (1− wch) ln

(∫
v

ch−1∏
h=1

P w̃h

0|h(v)dv

)
≥ wch ln

(
wch

w0ch

)
+ (1− wch) ln

(
1− wch

1− w0ch

)
− ln

(∫
v

P
wch
0ch (v)P̃ 1−wch (v)dv

)
+ (1− wch)×{[

γ +

ch−1∑
h=1

w̃opt
h ln

(
wopt

h

w̃0h

)]
− ln

[ ∫
v

ch−1∏
h=1

P
w̃opt

h

0|h (v)dv

]}
︸ ︷︷ ︸

γ̃:= (γ̃≥γ≥0)

.

The optimality of w̃opt (inductively assumed for
ch − 1) implies the above inequality and the claimed
properties of w̃opt. The made rearrangement reduces
the lower bound to the two-dimensional case with
P0|1(v) := P0|ch(v), w := wch , P0|2(v) = P̃ (v) and γ̃

replacing γ. This gives unique wopt
ch ∈ (0, 1) and re-

normalizes the solution wopt
h := (1 − wopt

ch )w̃opt
h ∈ (0, 1)

for h ∈ {1, . . . , ch − 1}. 2

3 ADAPTIVE BAYESIAN ESTIMATOR

The survey [18] and its references inform on the uses of
geometric pooling in the knowledge fusion. This allows
us to focus on its role in Bayesian adaptive learning. Our
illustration considers one scenario. For others, see [7].

3.1 Estimation with the restricted stabilized forgetting

The modelled variable is the parameter m ∈ m entering
the parametric model M(dt|t− 1,m). It is the pd relat-
ing the predicted data dt ∈ dt at discrete time, labelled
by t ∈ {1, 2, ..., ct}, to the available knowledge and the
unknown values m ∈ m. The pd Pt−1(m) quantifies the
knowledge about the values m ∈ m. After getting dt,
Bayes’ rule [26] updates this pd to the pd

P̃t(m) =
M(dt|t− 1,m)Pt−1(m)∫

m
M(dt|t− 1,m)Pt−1(m)dm

(4)

∝ M(dt|t− 1,m)Pt−1(m), prior pd Po is given.

Notice that Bayes’ rule (4) re-shapes Pt−1(m) only
on the set mM ⊂ m on which the model-parameter-
dependent likelihood (M(dt|t− 1,m) with the inserted
observed data) varies.

The gained pd P̃t(m) serves as the prior pd for time t
under the hypothesis, h = 1, that the parameter is fixed
between observations of data, i.e. P0|1(m) := P̃t(m).

The estimation should model parameter changes and
solve the filtering task [12] if the hypothesis h = 1 is
doubtful. Instead, the adaptive estimation considers the
hypothesis, h = 2, that the changes make another pd
P0|2(m) := P0(m) a better model of m than P0|1(m).

The used pessimistic alternative hypothesis, h = 2, ad-
mits that all made observations of data are irrelevant
for the description of the current parameter P0|2 := P0.
It ignores the observed data even on the set mM . More-
over, no modification is considered out of this set. The
assumption that significant parameter changes occur on
the set corrected by data underlies the adopted restricted
forgetting [19,20].

The geometric pooling with the used ch = 2 gives

Pt(m) ∝ Mw(dt|t− 1,m)Pw
t−1(m)P 1−w

0 (m) on mM

Pt(m) ∝ Pt−1(m) out of the set mM . (5)

The updating (5) on mM is known as the stabilized for-
getting [7]. It flattens the prior pd Pt−1(m) in the way
known as exponential forgetting but “returns” the for-
gotten part of the prior pd P 1−w

0 (m). Thus, P0(m) pre-
serves. It is important when the processed data is non-
informative. Prop. 1 guides how to choose w = wopt. It
just needs a qualified guess w0 := W01, W02 = 1− w0.
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3.2 Parameter estimation of Markov-chain-type model

This part illustrates the theory on parameter estimation
when both data dt ∈ d and regressors rt−1 ∈ r (the
knowledge part entering the parametric model) have fi-
nite amounts of possible values, d := {1, 2, . . . , cd}, cd <
∞, r := {1, 2, . . . , cr}, cr < ∞. In this case, the most
general parametric model takes the transition probabil-
ities m := (md|r)d,r∈d as unknowns M(dt|t− 1,m) :=

Mdt|rt−1
(m) := mdt|rt−1

=
∏
d∈d

∏
r∈r

m
∆ddt∆rrt−1

d|r

∆vṽ :=

{
1 if v = ṽ

0 otherwise
(6)

m ∈ m :=

{
md|r ≥ 0, d ∈ d,

∑
d∈d

md|r = 1, ∀r ∈ r

}
.

The last form of the parametric model in (6) helps to see
that the next Dirichlet’s pd of the parameter reproduces
its form [9,16]

Pt(m) = Pt|St
(m) :=

∏
r∈r

Γ

(∑
d̃∈d

Std̃|r

)∏
d∈d

m
Std|r−1

d|r

Γ(Std|r)

Γ(s) :=

∫ ∞

0

vs−1 exp(−v)dv, s > 0, see [1]. (7)

It is given by the statistic St := (Std|r)d∈d,r∈r with pos-
itive entries. The statistic is sufficient one, i.e. it com-
prises all available information about the unknown m.

The predictive pd corresponding to (7) reads

Pd|r,S =
Sd|r∑
d̃∈d Sd̃|r

, d ∈ d, r ∈ r. (8)

Bayes’ rule yields the statistic S̃td|r := S(t−1)d|r +
∆ddt

∆rrt−1
. The restricted stabilized forgetting pre-

serves Dirichlet’s form with the updated statistic, d ∈ d,

Std|rt−1,w = w(S(t−1)d|rt−1
+∆ddt

) + (1− w)S0d|rt−1

Std|r,w = Std|r = S(t−1)d|r for r ̸= rt−1, (out of mM ).

Properties of the non-linear function F (w) (2) for w ∈
(0, 1) make its numerical minimisation simple. This al-
lows us to use the MATLAB optimizer FMINBND to
find wopt. The next explication of F (w) omits time t and
the fixed condition rt−1 and uses auxiliary sums

S̃d := S̃td|rt−1
, C̃ :=

∑
d∈d

S̃d :=
∑
d∈d

S̃td|rt−1

Sd := S0d|rt−1
, C :=

∑
d∈d

Sd :=
∑
d∈d

S0d|rt−1
.

The use of (7) gives the specific form of the minimized

F (w) := w

[
ln

(
w

w0

)
− ln(Γ(C̃)) +

∑
d∈d

ln(Γ(S̃d))

]
+ (1− w)

[
ln

(
1− w

1− w0

)
− ln(Γ(C)) +

∑
d∈d

ln(Γ(Sd))

]
+ ln[Γ(wC̃ + (1− w)C)]−

∑
d∈d

ln[Γ(wS̃d + (1− w)Sd)].

4 NUMERICAL EXAMPLE

This part numerically illustrates the estimation with for-
getting. It simulates Markov chain with the observed
states dt ∈ d := {1, 2, 3, 4} and the regressor rt−1 =
dt−1, for t ∈ {1, . . . , ct}with ct = 2000. The simulatedM
has the transition probabilities (Mdt|rt−1

)dt,rt−1∈d :=

αt


0.0 0.3 0.7 0.0

0.7 0.0 0.0 0.3

0.3 0.0 0.0 0.7

0.0 0.7 0.3 0.0

+ (1− αt)


0.5 0.7 0.0 0.0

0.5 0.3 0.0 0.0

0.0 0.0 0.2 0.6

0.0 0.0 0.8 0.4

 . (9)

Its components, taken from [30] Fig. 13(b), Fig. 13(d),
have uniform and [0.583 0.417 0 0] stationary proba-
bilities, respectively. The simulated component weight
αt = | sin(2πt/500)| makes the transition probabilities
time-dependent. The prior statistic S0 has constant en-
tries 0.5 and w0 = 0.5 corresponds to the insufficient-
reasons arguments.

The maximizer of the predictive pd (8) serves as the
one-step-ahead point prediction of the state. The eval-
uation of prediction errors uses them. Fig. 1 illustrates
the typical results. The values of the mean and standard
deviation of absolute values of prediction errors were
[0.86, 1.41]. They were smaller than [0.92,1.45] gained
for the constant, non-optimized w0 = 0.5. The values
are typical but exceptions exist.

5 CONCLUDING REMARKS

The optimized choice of the weights in the geometric
pooling is the key paper result. It opens many oppor-
tunities due to its wide use. For instance, for: ▶ various
versions of forgetting [6,7]; ▶ estimation of varying
trusts into reliability of the external knowledge [27];
▶ an objective, widely applicable way quantifying a
unified group opinion [5,13], and generally ▶ knowledge
fusion [18,33,34]. This communication indicates that
the expended implementation effort will be rewarded.
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Fig. 1. Typical results for the random generator with the seed
13. They consist of the histogram of states, the time course
of the simulated component weight αt in (9), the histograms
of the prediction errors and of the forgetting factors.
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and L. Tesař. Optimized Bayesian Dynamic Advising: Theory
and Algorithms. Springer, London, UK, 2006.
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