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A B S T R A C T

This study estimates 137Cs emissions from Chernobyl wildfires in April 2020 using inverse modeling. Emissions
are resolved with daily resolution by particle sizes (0.4 µm, 8 µm, 16 µm) and altitudes (up to 3 km). The
inverse problem’s complexity requires regularization due to its ill-posed nature. One potential way to regularize
the problem is the use of the so-called first guess, i.e. emission taken from expert knowledge or previous
literature. However, inappropriately chosen first guess may lead to serious bias in results or its availability may
be limited for rapid response. We rather follow a Bayesian approach where all model parameters are considered
as variables to be estimated from available data. We aim to combine three key principles: modeling of sparsity
and smoothness of the emission vector, modeling of bounded ratios between released particle size/altitude
fractions, and bias correction of the atmospheric transport model. All these principles proved their significance
separately, however, we combine them in one comprehensive method to estimate the 137Cs emissions from
the Chernobyl wildfires. The total released activity was estimated to be 458 GBq with uncertainty estimated
to be 69 GBq. Our estimates also suggest that most of the activity has been released below a one-kilometer
altitude with the more dominant role towards the smallest particle fraction than was considered in other
studies. Using our estimate, we calculate the time-integrated volumetric activities of 137Cs over the domain
using the JRODOS system and our findings well agrees with previous results.
1. Introduction

Estimation of an unknown release is a key step for the evalua-
tion of accidental releases of hazardous material into the atmosphere.
Particularly important are releases of radioactive materials, especially
after Chernobyl and Fukushima Daiichi nuclear accidents (Evangeliou
et al., 2017; Li et al., 2019). The typical approach is to use available
information, such as satellite data or ambient measurements, and op-
timize the mismatch between a theoretical output and observations.
However, further assumptions are often needed due to many uncer-
tainties associated with a particular problem. In the case of wildfires,
particle size fractions or altitude release distribution are particularly
difficult to estimate (Kovalets et al., 2022). The first guess is often suc-
cessfully used when available with associated uncertainties; however,
it is also a source of possible bias in the calculations when limited
information are available. Therefore, we propose to use a different form
of regularization designed for complex multi-species scenarios such as
wildfires, where restricted ratios between species and bias correction of

∗ Corresponding author at: Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic.
E-mail address: otichy@utia.cas.cz (O. Tichý).

an atmospheric model are used. We demonstrate the approach in the
case of wildfires around Chernobyl in 2020.

During April 2020, the largest wildfires inside the exclusion zone
were observed Talerko et al. (2021a) since the Chernobyl disaster,
after other significant wildfires fires occurred in the past. In the case
of the April 2020 wildfires, the first were reported on 3 April and
lasted until 14 April when they were lowered by a cold front, rain,
and the work of firefighters. Wildfires, however, started again on 16
April and were accompanied by a dust storm that occurred between
16 and 17 April (Kovalets et al., 2022). Approximately after 21 April,
the wildfires became negligible and under the control of the author-
ities. The burned area in the exclusion zone has been estimated to
be more than 80,000 ha while also the area outside the zone has
been affected (Talerko et al., 2021a; Protsak et al., 2020). Therefore,
wildfires cause radioactive emissions of a number of radionuclides from
the soil and vegetation (Evangeliou and Eckhardt, 2020), including
137Cs which is one of the most important due to its relatively long
half-live, more than 30 years.
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Table 1
Comparison of relevant approaches for the Chernobyl wildfires case in April 2020.

Approach Size fractions [µm] Altitudes [m] Estimate [GBq] Uncertainty
[GBq]

Evangeliou and Eckhardt (2020) bottom-up 0.25, 8, and 16; fixed to 20, 20,
60%

taken from CAMS GFASc 341 [46; 709]

Protsak et al. (2020) bottom-up – – 690 –

Talerko et al. (2021a) bottom-up fixed to 1 fixed between 0–200 574 –

Baró et al. (2021) top-down 0.17, 1.1, and 3 0–3000 and 1000–3000 600a [400; 800]

De Meutter et al. (2021) top-down N/A fixed to 500 650 [220; 1810]

Masson et al. (2021) top-down modeled using fixed deposition
velocity

fixed between 0–500 950 [700; 1200]

Kovalets et al. (2022) combined 0.25, 8, and 16; tested values [10
20]%, [0 20]%, and the rest

taken from CAMS GFASc; tested distribution 448+21b [39 1530] and
[3 93]b

our study top-down 0.4, 8, and 16; estimated
distribution

0-3000; estimated distribution 458 [389; 527]

a Only for the period 4 to 13 April.
b Separately from wildfires fires and dust storm.
c (Kaiser et al., 2012).
p

e

The emissions of 137Cs and associated consequences are of great sci-
ntific as well as public interest. However, the assessment of wildfires
ighly depends on the knowledge of the emissions, its particle frac-

tions composition, and altitude levels of smoke, which are information
not easy to estimate or measure. There are two main approaches for
emissions estimation, the bottom-up and top-down approaches (Nisbet
and Weiss, 2010). In the case of wildfires, the bottom-up approach
is based on knowledge of vegetation and soil contamination and on
the assumption of a factor of radioactivity being resuspended to the
atmosphere, while the top-down approach is based on analysis of ambi-
ent concentration measurements combined with the theoretical output
from an atmospheric transport model. The bottom-up approach was
used at an early stage for the case of the Chernobyl wildfires (Protsak
et al., 2020; Evangeliou and Eckhardt, 2020; Talerko et al., 2021a)
sing information from Fire Information for Resource Management

System (FIRMS) provided by NASA satellites. Later, estimates using top-
down approaches from ambient concentration measurements appeared
for part of the period (Baró et al., 2021) or the whole wildfire pe-
riod (De Meutter et al., 2021; Masson et al., 2021). A combination of
these two approaches has been used by Kovalets et al. (2022) where
spatial distribution and the first guess have been assumed based on
satellite data and then used by an inversion algorithm. Details on used
approaches, assumptions, and resulting estimates are given in Table 1.
Table 1 demonstrates differences in key wildfire parameters, size frac-
tions of released particles and their vertical distribution, respectively.
Here, it is shown that most of the studies rely on fixed-size fractions
of 137Cs releases or fixed ratio between multiple fractions based on
laboratory findings (Hao et al., 2018). A similar method was performed
for altitude levels of the releases where, typically, releases from a
articular altitude range is considered. To avoid such assumptions,
ultiple particle size fractions and multiple release altitudes can be
odeled using an atmospheric transport model. However, the inversion

hen becomes much more demanding since the releases are the result
f the number of time-steps times the number of size fractions times
he number of considered altitude levels. In that case, the inversion of
nknown releases is much more demanding and further regularization
s crucial for a meaningful solution.

Today, researchers focus on the top-down approaches where the
majority of methods are based on modeling the mismatch between
measurements and model predictions using Gaussian (Eckhardt et al.,
2008; Launay et al., 2024) or, more recently, log-normal distribu-
ions (Liu et al., 2017; Dumont Le Brazidec et al., 2021). For more

complex scenarios, a multi-species inversion method may be beneficial
ith assumptions of ratios between species such as that of Saunier et al.

(2013), Katata et al. (2012) for the Fukushima emissions, by Zhang
2

et al. (2017) for the sequential multi-nuclide source term estimation,
or by Tichý et al. (2018) within a Bayesian inverse model relaxing
strict ratios using a probabilistic model. To consider ratios within multi-
species emissions is highly relevant for wildfires because there are
different particle fractions as well as different emission altitudes which
are most likely correlated.

The majority of methods modeling the mismatch between mea-
surements and predictions, however, do not address the bias caused
by inaccurate atmospheric modeling. There were attempts to directly
correct some of atmospheric transport coefficients or weather reanalysis
arameters (Bocquet, 2012; Mao et al., 2021; Kovalets et al., 2009)

which, however, aim to correct only a part of a hypothetical bias. A
general bias in atmospheric modeling has been corrected by the use
of an ensemble (Crawford et al., 2022), when possible. Recently, there
have been attempts to correct bias in atmospheric modeling formulated
as a correction of the source-receptor-sensitivity (SRS) matrix within
the minimization procedure (Li et al., 2018; Fang et al., 2021) where
a preconditioning of the SRS matrix is used based on the spatial
distance between every pair of measurements and calculated autocor-
relation scale. The method has been later improved by emission rate
oscillation-free regularization (Fang et al., 2022) which is relevant for
long-distance modeling as well as for complex building scenarios (Dong
et al., 2024). The complex information on the measuring network
topology has been used for a bias correction model by Tichý et al.
(2022) where the key assumption is that corrections of neighboring
measurements are correlated preventing overparametrization.

In this paper, we combine the benefits of these two approaches,
namely the multi-species inversion and the bias correction, in one
inversion scheme to estimate the 137Cs emissions released during
wildfires around Chernobyl in April 2020. Each specie is specified by
its particle size fraction and altitude level. Similarly to Evangeliou and
Eckhardt (2020) or to Kovalets et al. (2022), we assume 3 different
particle fractions with mean diameters 0.4 µm, 8 µm, and 16 µm,
respectively. However, we do not restrict the solution to given ratios
assumed for the whole period as in Evangeliou and Eckhardt (2020) or
a discrete hypothesis on ratios as in Kovalets et al. (2022). We assume
7 altitude levels of the 137Cs emissions ranging from 0 to 3000 meters
since even 3000 meters level may be relevant for wildfires (Savenets
t al., 2024) on a continental modeling scale. Rather than a setting of

fixed ratios between these 21 combinations for each day of April 2020,
we use wide intervals regularizing ratios between species (Tichý et al.,
2018), letting the model fit measurements within these intervals. For
the bias correction, we follow the model of Tichý et al. (2022) and we
use the knowledge of measuring network topology to calculate the bias
correlation of each SRS coefficient. We apply the method to the dataset
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with 137Cs concentration measurements taken from Masson et al.
(2021) with the use of the atmospheric transport model FLEXPART
10.4 (Pisso et al., 2019). The estimated emissions are then used in
the JRODOS system to calculate time-integrated volumetric activities
of 137Cs and to compare them to findings by Talerko et al. (2021a).

2. Case description, data, and atmospheric transport modeling

2.1. State of the art on Chernobyl fires

We shortly review the current state of the art regarding the Cher-
obyl wildfires in 2020. Evangeliou and Eckhardt (2020) used a
ottom-up approach to estimate the total released activity at nearly 400
Bq across multiple radionuclides, with 341 GBq attributed specifically

to 137Cs. Protsak et al. (2020) estimated 137Cs emissions to be 690
Bq which was later updated by Talerko et al. (2021a) to 574 GBq
ased on detailed analysis of Chernobyl exclusion zone landcover and
ire locations using Fire Information for Resource Management System
rovided by NASA. A top-down approach was used by Baró et al. (2021)
onstraining the disproportion between measurements and the FLEX-
ART output using Bayesian methodology obtaining 137Cs emissions
n the order of 600 GBq with uncertainty of 200 GBq for the period 4 to
3 April. De Meutter et al. (2021) analyzed the case using the Bayesian
ource reconstruction tool proposed in De Meutter and Hoffman (2020)
lso using FLEXPART dealing, notably, also with non-detections with a
osterior median of 650 GBq with the uncertainty interval from 220
o 1810 GBq. A comprehensive study of the April 2020 Chernobyl

wildfires case was proposed by Masson et al. (2021) with, to our knowl-
dge, the most complete 137Cs concentration measurement dataset. For
nverse modeling, they used the Eulerian 1dx model within the C3X
perational platform (Quélo et al., 2007) and the logarithmic model

of residuals between measurements and model outputs (Saunier et al.,
2019). The estimated total emission was between 700 to 1200 GBq with
maximal activities estimated to be 362 GBq and 241 GBq for 16 and
19 April, respectively. An interesting combination of the bottom-up and
the top-down approaches was proposed by Kovalets et al. (2022). Here,
orty emission locations were identified together with three areas of
missions due to resuspension during the dust storm on 16 and 17 April.
or these locations, several assumptions such as particles aerodynamic
iameter, emission altitude distribution, or the first guess from work
y Talerko et al. (2021a) were considered based on previous studies

to construct the inverse problem. The estimated 137Cs emissions were
448 GBq from the wildfires, with uncertainty interval between 39 and
1530 GBq, and 21 GBq from the dust storm, with uncertainty interval
between 3 and 93 GBq.

2.2. 137Cs measurements

There are numerous separated measurements of the Chernobyl 2020
ildfires such as from Ukraine (Protsak et al., 2020), IRSN, or IAEA.

However, we use here the largest dataset from this event published
by Masson et al. (2021). The dataset consists of more than thousand
measurements from the first half of the year 2020 over Europe. From
his dataset, we selected those measurements related to the April 2020
hernobyl fires. We also consider only those measurements that are
ithin the Chernobyl Exclusion Zone (CEZ) as was similarly done
y Kovalets et al. (2022). This choice is motivated by the selected

spatial discretization step, 0.5 degree, which is too coarse for short
distance modeling. We end up with 792 relevant measurements used in
this study. Note that there are large differences between measurements
in measuring intervals (vary from 1 day to almost a month) and
measured concentrations levels (from 0 to 700 µBqm−3).

2.3. Atmospheric transport modeling in FLEXPART

To construct the SRSs, we use the Lagrangian particle dispersion
model FLEXPART version 10.4 (Pisso et al., 2019) in the backward
3

“retroplume” mode. The model releases computational particles that
are tracked backward in time using hourly ERA5 (Hersbach et al.,
2020) assimilated meteorological analyses from the European Center
for Medium-Range Weather Forecasts (ECMWF) with 137 vertical lay-
ers and a horizontal resolution of 0.5◦ × 0.5◦. FLEXPART simulates
urbulence (Cassiani et al., 2015), unresolved mesoscale motions (Stohl

et al., 2005) and convection (Forster et al., 2007). Particles are assumed
to be spherical and influenced by gravitational settling, dry deposition,
nd in-cloud and below-cloud scavenging (Grythe et al., 2017). We

tracked 137Cs particles 20 days backward in time for three different
aerodynamic particle diameters (0.4 µm, 8 µm, 16 µm). The output
resolution was set to 0.5◦× 0.5◦ and the vertical resolution to seven lay-
ers (0–100, 100–500, 500–1000, 1000–1500, 1500–2000, 2000–2500,
2500–3000 m).

3. Standard inversion methodology with first guess

We adopted the concept of the source-receptor-sensitivity (SRS)
atrix (Seibert and Frank, 2004) applied already in a number of atmo-

spheric inverse modeling continental scenarios such as our case. Here,
the relation between the potential point-source and a measurement,
iven by its coordinates and measurement time interval, is modeled
s a sensitivity to a unit release by an atmospheric transport model.
y doing this repetitively for each measurement and potential emission

nterval, we obtain the coefficient 𝑚𝑖,𝑗 for each measurement 𝑖 and each
ime-step 𝑗, forming a SRS matrix 𝐌. Denoting the measurement vector
s 𝐲 and the emission vector 𝐱, we can formulate the link between the
easurements and reconstructions as

𝐲 = 𝐌𝐱 + 𝐞, (1)

where the term 𝐞 stands for model errors. The goal is to estimate
unknown emission 𝐱 from linear model (1). While it may seem like
 simple problem, it is complicated for two essential properties of the
RS matrix 𝐌:

1. ill-conditioned, the solution of (1) is not unique.
2. only an estimate of the true SRS matrix is available, due to uncer-

tain weather fields. The observations are, in reality, generated by
the model 𝐲 = 𝐌gt𝐱gt, where subscript gt denotes ground truth
of variable, hence the residue 𝐞 also contains contributions from
mismodelling 𝐌 = 𝐌gt +∆.

These two fundamental issues need to be solved using some form of
egularization of the inversion task. We now briefly review the first
uess approach that is commonly used.

3.1. First guess

If the first guess of the source term 𝐱0 is available, it is advantageous
to use it as a regularizer of Eq. (1), by defining the estimate as a
minimizer of the loss function (Eckhardt et al., 2008; Tichý et al., 2020;
Kovalets et al., 2022)

𝐽 (𝐱) = (𝐲 −𝐌𝐱)𝑇 𝐑−1 (𝐲 −𝐌𝐱) +
+𝜆

(

𝐱 − 𝐱0
)𝑇 𝐁−1 (𝐱 − 𝐱0

)

, (2)

where 𝐑 is the covariance matrix stands for tolerance of deviation be-
tween measurement and model reconstruction and 𝐁 is the covariance
matrix which weights the penalization of proximity of the estimated
mission from the first guess. We have intentionally introduced a scal-

ing factor 𝜆 that scaled the regularization term for a given covariance
matrix 𝐁.

This regularization has essentially two tuning parameters:

𝐱0 is the nominal value of the source term,

𝐁 the sensitivity matrix governing in which direction the estimate can
deviate from the first guess.
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Fig. 1. Illustration of solutions of the toy inverse problem (3). The data loss is
illustrated with a red color heatmap with a minimum denoted by the dashed line.
The prior loss is illustrated in a blue heatmap with the first guess denoted by a circle.
Solutions of the joint inverse problem for selected values of 𝜆 are displayed by crosses.

While selection of the first guess is often possible from other data,
selection of the sensitivity matrix 𝐁 is more challenging. It may be
diagonal (Kovalets et al., 2022), or a weighted combination of diagonal
and differential operator (Eckhardt et al., 2008).

3.2. Issues with the first guess

While the first guess approach is easy to understand, its conse-
quences are not always obvious. Consider a trivial inverse problem with
a single observation,
𝑦 = 1, 𝐌 = [0.25, 0.5] 𝐱0 = [4, 3],

𝐑 = 𝐈2 𝐁 = diag([0.5, 2]).
(3)

The solutions of this inverse problem for various choices of 𝜆 is dis-
played in Fig. 1. Note that the minimum of the data loss function (red
color) is achieved on a line (i.e. the inverse has an infinite number of
solutions) due to matrix 𝐌 being ill-posed. Even a very small contri-
bution from the regularization (𝜆 = 10−10) is sufficient to select one
solution from this infinite set (red cross). With an increasing value of
𝜆, the solution is approaching the first guess (circle) with the last (blue)
cross of the joint solution displayed for 𝜆 = 103. The lower values of 𝜆
thus solve the fundamental problem of ill-posed 𝐌,while higher values
of 𝜆 are needed to divert the solution from the second fundamental
problem of potentially incorrect solutions due to inaccurate estimate
of 𝐌.

This test experiment helps to clarify the severe sensitivity of the
solution not only on the first guess 𝐱0 but perhaps more importantly
on matrix 𝐁. Note that solutions of the inverse problem for all values
of 𝜆 lie on a line going through the first guess in the direction given
by eigenvalues of (𝐌⊤𝐑−1𝐌+𝜆𝐁−1). While the first guess can often be
obtained from other data, the choice of matrix 𝐁 is often arbitrary.

3.3. Multi-dimensional source terms

These issues become much more apparent when the source term has
multiple dimensions, such as those mentioned in Section 2.3 for the
Chernobyl fires. In this case, the source term has 28 time steps with
3 size fractions that are being released at 7 altitude levels. Therefore,
the inverse model has to consider that all of them contribute to the
observations.
4

As an input data, we have 792 measurements forming vector 𝐲 ∈
𝐑792. The SRS coefficients are calculated for 3 size fractions and 7
altitude levels, aiming to explain measurements using these 21 com-
binations, hence, the Eq. (1) can be reformulated as

𝐲 =
∑

f=1…3,a=1…7
𝐌f,a𝐱f,a + 𝐞, (4)

where f and a are indices of the fraction and altitude level, respec-
tively. Model (4) can be rewritten into the standard form (1) by forming
matrix 𝐌 ∈ 𝐑792×(7∗3∗28) by composing blocks of 𝐌f,a and corresponding
𝐱f,a into a single emission vector, 𝐱 ∈ 𝐑7∗3∗28. This results in even
more ill-conditioned inverse problem which is motivation for further
regularization. Note that design of the first guess, as well as matrix 𝐁
becomes much more problematic.

The applicability of the first guess approach becomes complicated
and alternative approaches are explored. Existing approaches use a very
crude form of regularization, e.g. by splitting the vector of measure-
ments 𝐲 into contributions from size fraction: 𝐲 =

∑3
f=1 𝐲f and solving

independent inversions (Evangeliou et al., 2017). In this paper, we seek
more intuitive and fundamental alternatives.

4. Alternative regularizations in inverse modeling

Here, we describe alternative building blocks of our combined
inverse methodology for multi-species inversion with bias correction.
We use two elementary tools for regularization: (i) hard constraints
that have physical meaning, and (ii) estimation of unknown hyper-
parameters (such as 𝐁) from the data. Both of these tools violate the
analytical solution of the least squares inversion and we need to find
a numerical solution. Since we are interested also in the uncertainty
of the source term estimation, we use the Bayesian interpretation of
inversion.

4.1. Bayesian approach

In probabilistic interpretation, (2) has the meaning of negative
logarithm of a joint model of data likelihood and prior:

𝑝 (𝐲|𝐱) = (𝐌𝐱,𝐑)

∝ exp
(

−1
2
(𝐲 −𝐌𝐱)𝑇 𝐑−1 (𝐲 −𝐌𝐱)

)

, (5)

𝑝 (𝐱) =
(

𝝁𝐱 ,𝐁
)

∝ exp
(

−1
2
(𝐱 − 𝝁𝐱)𝑇𝐁−1(𝐱 − 𝝁𝐱)

)

, (6)

where symbol ∝ denotes proportional equality (up to normalizing
constant) and  denotes (multivariate) normal distribution with given
mean and covariance. Considering the minimization of logarithm of
this probabilistic model, the maximum aposteriori solution of (5)–(6)
for 𝝁𝐱 = 𝐱0 is exactly the same as the solution of minimization of (2).
The key advantage of the Bayesian approach is that it allows extension
of the model to unknown variables 𝐑 and 𝐁 such as that they can be
estimated from the data. This is not possible with formulation (2) where
matrices 𝐑 and 𝐁 need to be selected manually.

Estimation of the additional parameters 𝜽, e.g. elements of 𝐁, can be
obtained using the variational Bayes methodology (Šmídl and Quinn,
2006) which approximates the posterior by conditionally independent
factors satisfying conditions:

�̃�(𝐱|𝐲) ∝ exp (E�̃�(𝜽|𝐲) ln 𝑝(𝐲, 𝐱,𝜽)
)

, (7)

�̃�(𝜽|𝐲) ∝ exp (E�̃�(𝐱|𝐲) ln 𝑝(𝐲, 𝐱,𝜽)
)

, (8)

where E () denotes expected value of given argument. When more
than one additional variable is considered, each new variable adds it
approximate posterior analogically to (8).

The set of implicit Eqs. (7)–(8) is typically solved iteratively by
a coordinate descent algorithm by sequentially updating the estimate
of each variable. I.e. estimating �̃�(𝐱) from (7) using previous estimate
of �̃�(𝜽), followed by estimating �̃�(𝜽) using previous �̃�(𝐱) until conver-
gence. An advantageous property of this approach is that solution of
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Fig. 2. The schemes of the matrix 𝐋 implying the structure of the covariance matrix in the case of the sparsity and smoothness model (a) and the multi-species inversion with
bounded ratios (b). All light yellow elements are zeros while yellow elements with ‘1’ sign are ones. Orange elements denote variables of the sparsity and smoothness model and
black elements denote variables of the multi-species inversion with bounded ratios model, respectively. Both are estimated within the variational Bayes procedure.
�̃�(𝐱) is typically closely related to (2), giving the procedure a nice
interpretation as automatic tuning of coefficients of the well known
problem.

However, estimation of the full matrices 𝐑 and 𝐁 form the data is
unrealistic since their number of parameters is much higher than the
number of available data. Therefore, we need to make some modeling
choices that are described next.

4.2. Sparsity and smoothness model (Ss)

The sparsity and smoothness prior model of the emission vector is
based on a specific form of covariance matrix from the prior model
(6), see full details and sensitivity study in Tichý et al. (2020). It is
assumed that the covariance matrix 𝐁, since it is symmetric matrix, can
be represented in a specific form of modified Cholesky decomposition,
so that

𝐁 = 𝐋𝐕𝐋𝑇 , (9)

where 𝐕 = diag (𝐯) is the diagonal matrix favoring a sparse solution and
𝐋 is a lower bi-diagonal matrix with ones on its diagonal and unknown
elements on its second lower diagonal, see the scheme in Fig. 2(a).
Hence, the sub-diagonal vector 𝐥 forming the matrix 𝐋 stores correlation
coefficients between neighboring elements of the emission vector 𝐱. The
essence of the model is that by joint estimation of 𝐯 and 𝐥 from data, it
preserves the sparse character of the emissions when there is evidence
for sparsity in the data, while it favors the locally smooth character of
emission when element 𝐥 is estimated close to value −1.

For detailed derivation and estimation of posteriors of 𝐱, 𝐯, and 𝐥,
we refer to Tichý et al. (2020).

4.3. Multi-species inversion with bounded ratios (Br)

For multi-species emissions, it may be beneficial to assume ratios
between species within the emission vector 𝐱. In our case, species
refer to 137Cs attached to 3 different particle sizes released at 7
different heights. Assuming 𝑚 species forming the emission vector 𝐱 =
[

𝐱𝑇1 ,… , 𝐱𝑇𝑚
]𝑇 (in our particular case, 𝑚 = 21), we will reformulate the

model (9) to reflect ratios between one specific species, 𝑚th, and all the
others (Tichý et al., 2018). These ratios can be then fixed when known,
or bounded within the estimation procedure to a specific interval. In
this paper, we bound these ratios between species elements (index 𝑡)
as
5

𝑥𝑘,𝑡 = 𝑟𝑘,𝑡𝑥𝑚,𝑡, 𝑎𝑘,𝑡 < 𝑟𝑘,𝑡 < 𝑏𝑘,𝑡, ∀𝑘 = 1,… , 𝑚 − 1, (10)
where 𝑟𝑘,𝑡 is ratio between 𝑚th and 𝑘th element of 𝐱 at 𝑡th time step.
Boundaries 𝐚 and 𝐛 can be selected based on prior knowledge, however,
since we have any in this case, we select them to 𝐚 = 0.1 and 𝐛 = 10
to obtain a reasonable range for each element. These boundaries can
be transformed into the covariance matrix model (9), 𝐁 = 𝐋𝐕𝐋𝑇 , by
modification of the matrix 𝐋 as shown in the scheme in Fig. 2(b). By
estimation of coefficients 𝑟𝑘,𝑡 forming the matrix 𝐋, the model can,
when evidence is present in data, prefer the ratio between the 𝑚th and
all other species. Note that ratios set, e.g., to [0.1; 10] do not imply that
the final estimate of species in 𝐱 will be exactly in this ratio since the
model still has a degree of freedom in estimation of vector 𝐯 which can
shift results significantly. For the specific 𝑚th specie, we keep the Ss
prior model as demonstrated in Fig. 2(b).

For detailed derivation and estimation of posteriors of 𝐱, 𝐯, and
matrix 𝐋, we refer to Tichý et al. (2018).

4.4. Correction of the SRS matrix bias (Bc)

The bias correction method of the SRS matrix (Tichý et al., 2022)
aims to address the second fundamental problem of inversion (Sec-
tion 3), i.e. the inaccuracy of the SRS matrix 𝐌. The method uses
additional information about the sensitivity of the SRS matrix around
the sensor location both in terms of space and time. Specifically,
we assume that the measured field 𝑦𝑖,𝑗 at location 𝑠ℎ, 𝑠𝑣 and time 𝑡
may be incorrectly predicted by the SRS matrix because of inaccurate
alignment of the location and time of the prediction. Therefore, we aim
to estimate the correction terms in terms of spatial and temporal shifts
of the SRS matrix using Taylor approximation:

�̃�𝑖𝑗 ≈ 𝑚𝑖𝑗 + ℎℎ,𝑖𝛥ℎ,𝑖 + ℎ𝑣,𝑖𝛥𝑣,𝑖 + ℎ𝑡,𝑖𝛥𝑡,𝑖, (11)

𝛥ℎ,𝑖 =
𝑚(𝑠ℎ,𝑖 + 𝛥𝑠ℎ, 𝑠𝑣,𝑖, 𝑡𝑖) − 𝑚(𝑠ℎ,𝑖 − 𝛥𝑠ℎ, 𝑠𝑣,𝑖, 𝑡𝑖)

2𝛥𝑠ℎ
,

Rewriting (11) into matrix forms, the linear inverse problem is
reformulated as

𝐲 =
(

𝐌 +𝐇ℎ𝜟ℎ +𝐇𝑣𝜟𝑣 +𝐇𝑡𝜟𝑡
)

𝐱 + 𝐞, (12)

where 𝐌 is the nominal SRS matrix, the 𝜟ℎ, 𝜟𝑣, and 𝜟𝑡, where horizon-
tal, vertical, and temporal concentration shifts, respectively, calculated
as gradients of the SRS in the given direction, see details in Tichý
et al. (2022). The actual corrections 𝐇ℎ = diag

(

𝐡ℎ
)

, 𝐇𝑣 = diag
(

𝐡𝑣
)

,
and 𝐇𝑡 = diag

(

𝐡𝑡
)

are unknown diagonal weights (bias corrections)
of each correction matrix. This reformulation leads to the bilinear
inverse problem where both, corrected SRS matrix and the source term,
respectively, need to be estimated.
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Table 2
Summary of all combinations of the tested algorithms.

Sparsity and smoothness (Ss) Bounded ratios with Ss (Br+Ss) Bias correction with Ss (Bc+Ss) Combined Bc+Br+Ss

input: 𝐲,𝐌 input: 𝐲,𝐌, 𝐚, 𝐛 input: 𝐲,𝐌,𝜟ℎ ,𝜟𝑣 ,𝜟𝑡 , input: 𝐲,𝐌,𝜟ℎ ,𝜟𝑣 ,𝜟𝑡 ,, 𝐚, 𝐛
iterate until convergence: iterate until convergence: iterate until convergence: iterate until convergence:

� estimate 𝐥, 𝐯 � estimate 𝐥, 𝐯 � estimate 𝐥, 𝐯 � estimate 𝐥, 𝐯
� estimate 𝐫 � estimate 𝐫

� estimate 𝐱 � estimate 𝐱 � estimate 𝐱 � estimate 𝐱
� estimate 𝐡ℎ ,𝐡𝑣 ,𝐡𝑡 � estimate 𝐡ℎ ,𝐡𝑣 ,𝐡𝑡

output: 𝐱 output: 𝐱 output: 𝐱, 𝐡ℎ ,𝐡𝑣 ,𝐡𝑡 output: 𝐱, 𝐡ℎ ,𝐡𝑣 ,𝐡𝑡
n
p

w

t
c

m

t
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h
u
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(
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The estimation problem would be over-parametrized by the in-
troduction of bilinear model (12) unless further assumptions on bias
orrections would not be imposed. Two key assumptions are considered
y Tichý et al. (2022). First, each bias correction, i.e. elements of 𝐡ℎ,
𝑣, and 𝐡𝑡, respectively, are bounded to a small fixed interval, typically
−1; +1], to ensure that only small corrections are allowed in time and
pace. This choice implies the possible shift of one step in time and
pace. Second, the model assumes that the bias corrections of neigh-
oring sensors are correlated with unknown correlation coefficients
stimated using the model, with a predefined set of correlated sensors
s the set .

For detailed derivation and estimation of posteriors of 𝐡ℎ, 𝐡𝑣, and
𝑡, we refer to Tichý et al. (2022).

4.5. Multi-species inverse model with elastic plume bias correction

Thanks to the variational Bayes approximation, Eq. (7), methods
or regularization introduced in Section 4 can be arbitrary combined,
ielding methods with different assumptions, inputs, and different per-
ormance. Possible combinations are summarized in Table 2 with the

input needed for the run, variables to be estimated, and the output of
each algorithm.

Our goal is to combine bias correction with bounded ratios algo-
rithm in one comprehensive methodology, however, we will provide
also results for other combinations in an ablation study so that we study
he performance and contributions of the regularization.

5. Application to Chernobyl 137Cs dataset

First, we perform an ablation study to discuss the results of methods
n the 137Cs Chernobyl fires 2020 dataset, Section 2.2, modeled using
LEXPART atmospheric transport model, Section 2.3. The purpose of

the ablation study is to demonstrate that to use of all parts of the model
ogether provides better results than to use them separately. Second, we

study the results of the best method in detail and compare them with
ther literature estimates. Third, we use the best emission estimate as
n input to the JRODOS atmospheric modeling system to perform an
ssessment of the 137Cs release to the environment, similarly as done,
.g., by Talerko et al. (2021a).

5.1. Best model selection

We apply four model combinations presented in Table 2 to the
137Cs Chernobyl fires 2020 dataset. The results of all four methods
re given in Fig. 3, top panel, where the results of the sparsity and
moothness (Ss) model are given using green bars, the results of the

method with bounded ratios (Ss+Br) are given using magenta bars, the
results of bias correction with sparsity and smoothness model (Bc+Ss)
re given using light blue bars, and the results of bias correction with
ounded ratios method (Bc+Ss+Br) are given using blue bars. The
otal estimated emissions are given in legend for each method. The
esults are accompanied by the scatter plots between measurements and
econstructions using the given methods in the bottom panels of Fig. 3

together with calculated correlation coefficients (𝑟), normalized mean
absolute error (nMAE), and the root mean squared logarithmic error
RMSLE), defined as
6

5

𝑟 =
∑

𝑖
(

𝑦𝑖,model − 𝐲model
) (

𝑦𝑖 − 𝐲
)

√

∑

𝑖
(

𝑦𝑖,model − 𝐲model
)2
√

∑

𝑖
(

𝑦𝑖 − 𝐲
)2

(13)

nMAE =
∑𝑝

𝑖=1 |𝑦𝑖,model − 𝑦𝑖|
∑𝑝

𝑖=1 𝑦𝑖
(14)

RMSLE =

√

√

√

√

1
𝑝

𝑝
∑

𝑖=1

(

log 𝑦𝑖,model − log 𝑦𝑖
)2 (15)

where 𝑦𝑖,model is reconstructed measurement by the selected model and
𝐲 denotes mean of the measurements or reconstructions, respectively.
These values are provided in the title of each scatter plot n the bottom
panels of Fig. 3. For all cases, it can be observed that the good fit
was obtained for high values of measurements while there are some
ot well-fitted values of lower concentration measurements. This is
robably caused by two factors. First, we approximate the wildfires

as the point-source, however, the source is the case of Chernobyl
ildfires spreads over few degrees in longitude which causes a bias

in atmospheric modeling. Second, the measurements below 1 µBqm−3

are almost all from large distances, see Fig. 6. For this large distances,
he dispersion model is probably biased out of the reach of our bias
orrection method where surroundings of 4 degrees was considered.

Although the character of estimated emissions is similar, there are
particular differences which should be mentioned. The most notable
difference can be seen between 16 and 18 April, where Bc+Ss+Br

ethod provides lower values for 16 April than the other methods
and higher for 17 and 18 April. Note also the 23 April, where the
hree methods, Ss, Br+Ss, and Bc+Br+Ss, respectively, estimate activity
etween 41 and 53 GBq while the Bc+Ss method estimates only negli-
ible activity here. However, note that significant activity in 23 April
as been estimated also by e.g. Masson et al. (2021) to over 60 GBq
sing the same dataset; therefore, we consider this results as acceptable.
verall, the best 𝑟, nMAE, and RMSLE values has been achieved by the
ombination Bc+Br+Ss. Therefore, this result will be considered as our
est estimate and will be discussed in detail in the next section.

5.2. Estimated emissions

The complete results of the Bc+Br+Ss method are given in Fig. 4,
where the estimated mean is given using the blue line and the un-
certainty of the estimate is displayed as the gray area. Here, the
ncertainty is considered as 2 standard deviations of the posterior

estimate (95% confidence interval). The resulting estimate is in general
agreement with the knowledge on the Chernobyl wildfires case as well
as with the other estimates from the literature, see Fig. 5. Our time
period started on 2 April when no wildfires were observed in the area,
which corresponds well with our estimate being close to zero. Our
posterior then increases up to 75 GBq (with uncertainty between ap-
proximately 34 and 116 GBq) on 10 April and then significantly drops
close to 10 GBq on 14 and 15 April when the fires were restricted and
almost extinguished thanks to firefighters and precipitation. However,
on 16 April, the wildfires combined with a dust storm broke up again
leading to a significant increase of 137Cs emissions, up to 78 GBq
with uncertainty between approximately 47 and 108 GBq) on 18 April.
fter 19 April, wildfires have receded with our estimate being around
 GBq per day which is, again, consistent with other estimates in the
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Fig. 3. Top: estimated 137Cs emissions from Chernobyl wildfires in April 2020 using all four tested combinations with the coloring given in the legend. Bottom: scatter plots
between measurements and model reconstruction for all four tested combinations using the same coloring as in the top, associated with calculated 𝑟 values.
Fig. 4. The estimated 137Cs emissions from Chernobyl wildfires in April 2020 using
selected Bc+Br+Ss method (full blue line) accompanied by the uncertainty bounds (fill
gray regions) given as 2 standard deviations of the posterior estimate. In total, 458.3
+- 68.8 GBq of emitted 137Cs has been estimated.

literature, see Fig. 5. However, note that we have observed also an
activity peak on 23 April with an estimated value of 53 GBq, although
with a large uncertainty between 30 and 75 GBq. In the literature, most
estimates ended on 20 or 22 April, however, the estimated activity
after 20 April is in agreement with the calculations of De Meutter
et al. (2021) or Masson et al. (2021), who observed a similar peak
activity on 22 April (around 60 GBq). On the other hand, Kovalets et al.
(2022) had no such result which may be caused by the strength of the
first guess, since both, Masson et al. (2021) and Kovalets et al. (2022)
respectively, used the same dataset but with different prior assump-
tions. After 23 April, the posterior activity was negligible with minor
values on 26 and 27 April, however, with relatively large uncertainty.
Our total estimated emission is 458.3 GBq with uncertainty bounds
[389.5; 527.1] GBq, which is consistent with other estimates. Also note
that the uncertainty bounds are calculated from Gaussian distribution
as the squared sum of uncertainties for each source term element,
√

∑

𝑗 std𝐱,𝑗 , while summed element-wise maximal possible differences
for 2 standard deviations is much higher, approximately hundreds of
GBq. Notably, our estimate is obtained without any first guess available
to the method.

The differences between our and other estimates, Fig. 5, may be
caused by several reasons. Different techniques have been used, from
7

analysis of satellite data and assumptions on released activity based on
land-use to inverse modeling based on comparison of measurements
and model output. The used atmospheric transport model driven with
selected weather reanalysis is also source of differences, which can
be also caused by different selection of transport model parameters.
Another source of differences is assumed particle size fractions and
considered altitude levels by other studies, see Table 1. We assume fine
discretization of these parameters while the proportions of emissions
are fully estimated from data.

The scatter plot between measurements and the reconstructions
by the model is displayed in Fig. 6, with values below level 10−4

µBqm−3 cropped for better visibility. Here, each data point has coloring
according to its distance from the emission location, below 5, 10, 20,
and up to 20 degree radius using blue, green, orange, and magenta
colors, respectively. The correlation coefficient, defined in Eq. (13),
estimated for our best model is 𝑟 = 0.98766. Outliers in the scatter plot
are studied in Fig. 7. Here, the outliers are displayed using red markers
on the left panel, while total sensitivities for each day associated to
outliers are displayed on the right panel. In this sense, days associated
with the worst fit between measurements and reconstructions are 5,
14, 20, 21, and 22 April. However note that the estimated emissions
for these days, Fig. 4, still well agree with general knowledge on this
Chernobyl wildfires case. It can be seen that the best fit is reached for
the largest measured values, which are, naturally, also the closest ones
to the emission location. This is an expected behavior of the used model
with quadratic loss combined with the bias correction method (Tichý
et al., 2022) seeking for the best fit, with possible corrections from
measurement spatiotemporal surroundings. The bias corrections for
selected days 8 and 10 April are displayed in Fig. 8. Here, the lengths
of lines denoting each correction are in the same scale as each map,
while the green coloring denotes a positive shift in the time domain
and the red coloring denotes a negative shift in the time domain, with
the maximal shift set to one day. For both days, the behavior of the bias
correction method is illustrated where corrections of measurements
close to each other in the spatial domain are correlated. Prior values
of correlations are set to zero, hence, only those that do not fit to the
model are corrected.
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Fig. 5. Comparison between our estimate (thick blue line) and other estimates taken from literature (see coloring descriptions in legend). The gray region denotes the minimum
and maximum of those from literature for each day.
Fig. 6. The scatter plot between measurements and reconstruction by the model for
the selected method. The coloring denotes the distance of each measurement from the
source: between 0 and 5 degrees (blue), between 5 and 10 degrees (green), between
10 and 20 degrees (orange), and up to 20 degrees (magenta).

Fig. 7. Left: The same scatter plot as in Fig. 6 is displayed, here with red coloring of
outliers of reconstructions. Right: total sensitivity for each day associated to outliers.
8

5.2.1. Estimated fraction and altitude distributions
The estimated distributions of activity from each particle fraction,

0.4 µm, 8 µm, and 16 µm, and each vertical level, 0–100, 100–500,
500–1000, 1000–1500, 1500–2000, 2000–2500, and 2500–3000 m,
are given in Fig. 9 using different coloring, see legend for details.
The estimated fraction distributions of released activity are 48%, 16%,
and 36%, of 0.4 µm, 8 µm, and 16 µm fraction size, respectively. The
distribution between fractions 0.4 µm and 16 µm differs from those con-
sidered by Evangeliou and Eckhardt (2020) where 0.25, 8, and 16 µm
are assumed as 20%, 20%, and 60%, respectively. This result suggests
that to consider released portion of 0.4 µm particles (or 0.25 µm as was
taken in the literature case) of 20% as by Evangeliou and Eckhardt
(2020) or 10% as in laboratory study by Hao et al. (2018) may be
underestimated and higher values hypothesis may be considered within
the inversion. Our calculations suggest that most of the activity, 53%,
has been released below 1 kilometer altitude and only 14% has been
released above 2 kilometers. However, note that these values and ratios
are all estimated from the dataset combined with atmospheric transport
model and bias imposed by model parametrization is possible. This
may be significant specifically for large distances which are associated
with lower concentration measurements, see Fig. 6, e.g. in Germany or
France. To quantify this bias or uncertainties associated with estimated
ratios are out of the scope of this paper and is potential subject for
further research.

5.2.2. Estimated parameters of dust storm
Completely different characteristics of the emissions are estimated

for the specific period of 16 and 17 April during the dust storm that
occurred in the studied region (Talerko et al., 2021b). Here, 75% of
the released activity has been estimated originating from the fraction
0.4 µm, leaving the rest 8% and 17% to 8 µm and 16 µm fraction size,
respectively. This result is close to the estimate of Wagenbrenner et al.
(2013) who reported that 1 µm particle emissions were 60% based
on the territory previously hit by wildfire, rather than the assumption
by Talerko et al. (2021b) who assumed this value as 40%. Interestingly,
we have estimated that 99% of the activity for this period has been
released below 1 kilometer altitude level, leaving the activity released
above 1 kilometer negligible.

5.3. JRODOS simulations

In order to simulate wildfires in the Chernobyl exclusion zone,
the JRODOS (Java-based Real-time Online DecisiOn Support) tool was
utilized (RODOS team, 2019). The JRODOS was originally developed to
forecast the atmospheric dispersion of radionuclide releases following
nuclear accidents (Raskob et al., 2016). However, JRODOS contains a
built-in module designed to simulate wildfires, using data on known



Atmospheric Pollution Research 16 (2025) 102419O. Tichý et al.
Fig. 8. The demonstration of the bias correction method applied to the Chernobyl wildfires dataset. Here, bias corrections for two selected days, April 8 and April 10, are given
in the top and bottom panels, respectively. Area A and area B are displayed on the left panels with zoomed selected regions for better visibility. Here, the scale of corrections is
given proportional to each map with positive (green) and negative (red) time shift estimated.
Fig. 9. The estimated 137Cs emissions with different particle fraction distribution of
0.4, 8, and 16 µm given in the top, middle, and bottom panel, respectively, using
full blue lines with emissions amounts displayed in the left axis. The vertical emissions
distribution for each particle fraction and each day is given using coloring areas, see the
legend in the middle panel, where the bottom (below 1 kilometer) layers are displayed
using blue filled regions, the middle (between 1 and 2 kilometers) layers are displayed
using yellow filled regions, and the top (between 2 and 3 kilometers) are displayed
using green filled regions, with percentage displayed in the right axis.

wildfire areas, fire intensities, and surface activities (Ievdin et al.,
2019). Nonetheless, we adopted an alternative approach, assuming
simple emissions of 137Cs only, rather than modeling burned areas.

The source term was located in the Chernobyl power plant, with
variations in release heights, intensities, and particle sizes. The overall
activity of 137Cs in the simulated releases was 458 GBq. In the JRODOS
9

simulations, the model chain “Emergency” was employed in conjunc-
tion with the RIMPUFF model (Thykier-Nielsen et al., 1999), setting
the calculation radius to 800 km. The simulated release was modeled
from April 2, 2020, to April 30, 2020 (672 h). The total duration of the
simulations was from April 2, 2020, to May 1, 2020 (696 h), including
one additional day. For this period, we used historical meteorological
data from the NOAA Operational Model Archive and Distribution Sys-
tem (NOMADS), with a spatial resolution of 0.5 degrees (Rutledge et al.,
2003).

In the simulations, we utilized 21 source terms with varying release
intensities, depending on emission height and particle diameter. We
considered three mean diameters: 0.4 µm, 8 µm and 16 µm, which
were changed in the JRODOS particle set-up (Andronopoulos et al.,
2016). Thus, for each particle size, seven source terms were created
corresponding to seven height intervals. Subsequently, for each particle
size, 13 simulations were conducted, taking into account selected emis-
sion heights ranging from 10 m to 2550 m, according to the feasible
extent of simulations (Ievdin et al., 2017; Selivanova et al., 2023). We
generated 39 simulation tasks, which were submitted to JRODOS and
launched automatically. For automation of the simulations, we used
scripts in R programming language. Subsequently, all maps of time-
integrated air concentrations of 137Cs were exported from JRODOS
for further processing. For various heights within the same interval,
the corresponding maps were generated by averaging values in each
cell (up to 2500 m). For heights exceeding 2500 m (up to 3000 m),
the simulation results were largely negligible, particularly for small
particles with a mean diameter of 0.4 µm. Based on these simulation
outcomes, time-integrated air concentrations were computed only for
heights up to 2550 m. Consequently, the maps for all height levels and
particle sizes were summed.

The resulting map of time-integrated volumetric activities of 137Cs
is presented in Fig. 10, which can be directly compared with sim-
ulations by Talerko et al. (2021a). Compared to results by Talerko
et al. (2021a), there are resembling patterns of volumetric activities in
general, both for the total map and for the maps of separated fractions.
The differences in the maps (our simulations and Talerko et al. (2021a),
respectively) can be caused by different assumptions utilized in both
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Fig. 10. Map of time-integrated volumetric ground level activities of 137Cs calculated
using JRODOS driven with the estimated 137Cs emissions over the studied period (2
to 29 April 2020).

studies. While we simulate the point source emission with various
emission altitudes (10 to 2550 m) and 3 different particle fractions
(0.4 µm, 8 µm and 16 µm) using JRODOS driven with NOAA NOMADS
meteorological data, Talerko et al. (2021a) employed LEDI atmospheric
transport model driven with meteorological data from Ukrainian Hy-
drometeorological Center (UHMC) with runs from different burning
areas, top altitude level at 200 meters and fixed particle size to 1 µm.
The differences can be found also in the total released activity, 574
GBq and our estimate 458 GBq, and period considered, 17 days and our
period 28 days. Nevertheless, both studies demonstrate similar results
with slight variations, most likely due to different input parameters.
The differences are probably caused by different vertical profile of
emissions as well as by different size fraction composition of the source
term.

6. Conclusions

We proposed the methodology for the inversion of multi-species
emissions from 137Cs concentration measurements in the case of the
Chernobyl wildfires in April 2020, where the emission consists of
multiple particle fractions and multiple altitude levels. The assumption
of bounded ratios between considered species and the use of bias
correction of atmospheric transport model output allows us to suppress
the need for the use of the first guess within the inversion. Our estimate
in the case of the Chernobyl wildfires in 2020 agrees well with known
information on the case regarding timing and the total released activity
of 137Cs. We have estimated that 458 GBq of 137Cs has been released
in total, with the correlation coefficient between measurements and
model reconstructions being 𝑟 = 0.98766. As a natural output of the
method, we have estimated the particle size fraction and altitude levels
distributions for each day, suggesting that the most of the activity has
been released below 1 kilometer while during the dust storm on 16
and 17 April, almost all activity has been released below this altitude
level. The fraction distribution has been estimated to be 48%, 16%, and
36%, of 0.4 µm, 8 µm, and 16 µm, respectively, which is in contrast to
the assumption made often to 20%, 20%, and 60% in previous studies.
This suggests that testing a higher percentage of particles lower than
1 µm during wildfires may be needed. We used the estimated 137Cs
emission for further evaluation using the JRODOS system. The resulting
concentration map agrees in general with previous findings based on
the bottom-up approach.
10
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