
Academic Editors: Tiberiu Letia and

Nicolae Tudoroiu

Received: 21 October 2024

Revised: 17 December 2024

Accepted: 19 December 2024

Published: 29 December 2024

Citation: Csirmaz, E.P.; Csirmaz, L.

Attempting the Impossible:

Enumerating Extremal Submodular

Functions for n = 6. Mathematics 2025,

13, 97. https://doi.org/10.3390/

math13010097

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Attempting the Impossible: Enumerating Extremal Submodular
Functions for n = 6
Elod P. Csirmaz 1 and Laszlo Csirmaz 1,2,*

1 Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary
2 Institute of Information Theory and Automation, CZ-182 00 Prague, Czech Republic
* Correspondence: csirmaz@renyi.hu

Abstract: Enumerating the extremal submodular functions defined on subsets of a fixed base set
has only been done for base sets up to five elements. This paper reports the results of attempting
to generate all such functions on a six-element base set. Using improved tools from polyhedral
geometry, we have computed 360 billion of them, and provide the first reasonable estimate of their
total number, which is expected to be between 1000 and 10,000 times this number. The applied
Double Description and Adjacency Decomposition methods require an insertion order of the defining
inequalities. We introduce two novel orders, which speed up the computations significantly, and
provide additional insight into the highly symmetric structure of submodular functions. We also
present an improvement to the combinatorial test used as part of the Double Description method,
and use statistical analyses to estimate the degeneracy of the polyhedral cone used to describe these
functions. The statistical results also highlight the limitations of the applied methods.

Keywords: vertex enumeration; double description method; submodular functions

MSC: 52B05; 52B15; 68Q25; 90C57

1. Introduction
Submodular functions are analogues of convex functions that enjoy numerous applica-

tions. Their structural properties have been investigated extensively, and they have applica-
tions in such diverse areas as information inequalities, operational research, combinatorial
optimization and social sciences, and they have also found fundamental applications in
game theory and machine learning. Consult [1] and the references therein for additional ex-
amples. For a comprehensive overview of how submodular functions are used in machine
learning in particular and in optimization in general, see Bach’s excellent monograph [2].

This paper reports our results in attempting to generate all extremal submodular
functions defined on the subsets of a base set of size n = 6. Extremal functions form a
unique minimal generating set of all submodular functions, thus their knowledge pro-
vides invaluable information about their structure. For n = 5 the complete collection of
extremal submodular functions was first reported in [3]. Our aim was to develop and
implement techniques which can handle the significantly more difficult problem of listing
these functions for n = 6. Using the developed methods we succeeded in computing the
first 360 billion members of the n = 6 list, and also in giving a reasonable estimate for their
total number.

The paper is organized as follows. Sections 2 and 3 provide definitions and an
introduction to submodular functions over finite base sets, and their description as a high-
dimensional polyhedral cone. Section 4 provides an overview of methods from polyhedral
geometry used in our computations, including the Double Description method, and the

Mathematics 2025, 13, 97 https://doi.org/10.3390/math13010097

https://doi.org/10.3390/math13010097
https://doi.org/10.3390/math13010097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2449-7923
https://orcid.org/0000-0001-7530-8307
https://doi.org/10.3390/math13010097
https://www.mdpi.com/article/10.3390/math13010097?type=check_update&version=2

Mathematics 2025, 13, 97 2 of 30

algebraic and combinatorial tests for the adjacency of rays of the cone. Section 5 introduces
additional improvements to the combinatorial test.

Section 6 details our approaches to applying these tools to the n = 6 problem, including
a description of the degree of degeneracy of the polyhedral cone, and introducing two
novel orderings of the inequalities defining the cone. These orderings allowed the Double
Description method to proceed further with considerably lower resource requirements.
These new orders, which we named t-opt and recursive, provided additional insights into
the intricate and highly symmetric structure of these polyhedral cones.

Section 6 continues with our results and statistical analyses based on two approaches
to generate a high number of extremal submodular functions, while Section 7 contains an
estimate for their overall number and for the total number of their (symmetrical) orbits.
Finally, Section 8 summarizes our results and outlines some open questions and directions
for future work.

Prior to our work, no reasonable estimate was known for the number of extremal
submodular functions for a base set of size n = 6. Rough extrapolation from the known
values for n ≤ 5 would put their number anywhere between 1010 and 10100. Close to the
lower bound enumeration could be performed successfully with reasonable efforts, but
close to the upper bound, listing the functions would be beyond every reasonable limit.
Our work indicates that this number is between 1013 and 1020, a positive result.

The main challenge addressed in this paper stems from the fact that the associated
polyhedral problem is high-dimensional, and the complexity of such geometrical problems
grows exponentially with the dimensions. Up to 15 dimensions, they can be routinely
solved with a wide array of tools, while problems using around 30 dimensions can still
be handled, but by only a handful of software packages. By contrast, enumerating the
extremal submodular functions for n = 6 leads to a 57-dimensional geometric problem.

All charts and figures in the paper have been drawn directly from the raw data
generated by the algorithms as presented. Implementations of the main algorithms
discussed in this paper as well as the raw data for the figures can be found at
https://github.com/csirmaz/submodular-functions-6 (accessed on 18 December 2024).

Partial results of the computations representing 360 billion extremal submodular
functions in 260M orbits are available as a Zenodo Dataset at https://zenodo.org/records/
13954788 (accessed on 19 October 2024). Instructions included with the GitHub repository
include a quickstart guide for the scripts included, as well as for finding further rays based
on the Zenodo Dataset.

2. Submodular Functions
In general, submodular functions are real-valued functions defined on some lattice.

In the most important case—which is also the subject of this paper—the lattice is formed
by all subsets of a (finite) set X, called the base, with the intersection and union as lattice
operations. While definitions are spelled out for this special setting, those in general are
similar. Some other lattice-based functions are discussed as illustrations.

The functions we are interested in assign real numbers to subsets of a (typically finite)
base set X. Such a function f is called modular if

f (A) + f (B) = f (A ∩ B) + f (A ∪ B)

holds for all subsets A and B of X. Functions satisfying

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) (1)

https://github.com/csirmaz/submodular-functions-6
https://zenodo.org/records/13954788
https://zenodo.org/records/13954788

Mathematics 2025, 13, 97 3 of 30

for all A and B are called submodular, referring to the fact that the right hand side is below
what modularity would require. Similarly, functions satisfying

f (A) + f (B) ≤ f (A ∩ B) + f (A ∪ B)

are called supermodular. A function is modular if and only if it is both submodular and
supermodular.

A general example of a modular function is a (possibly signed) discrete measure on X.
In the more general setting X is infinite and the function is defined only on a sublattice of
all subsets of X, e.g., the Lebesgue measure on the measurable subsets of the unit interval.
Taking the outer measure instead, which is defined on all subsets of the base set, we also
get a suitable f , but it is only submodular, see, e.g., [4]. In another important example
the underlying lattice is the lattice of the vectors in the n-dimensional Euclidean space
endowed with the coordinatewise minimum and maximum as lattice operations. Here the
function f : Rn → R is submodular if

f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y). (2)

Writing z = x ∧ y, a = x− z, b = y− z, both a and b have non-negative coordinates, and
(2) rewrites to

f (z+a)− f (z) ≥ f (z+b + a)− f (z+b).

This formula is interpreted as the “diminishing returns property” [5]: investing (adding)
a at state z yields the return f (z+a)− f (z). Investing the same amount a after another
investment b has been done yields a smaller return. In this context supermodularity
corresponds to “accelerating returns” [6], where the same amount of investment applied
later yields larger returns.

The present paper deals exclusively with the case when X is finite and functions
are defined on all subsets of X. The usual notation is used: subsets of the base set X are
denoted by upper case letters such as A, B, K, L, etc.; elements of X by lower case letters,
e.g., i, j, k. The ∪ sign denoting the union of two subsets is frequently omitted as well as the
curly brackets around singletons. Thus, for example, Ai denotes the subset A ∪ {i}. The
collection of all subsets of X, including the empty set, is denoted by 2X .

The following simple claim summarizes the basic properties of MOD(X), the class of
modular functions on a finite set X, see [7].

Claim 1. (a) Choose z ∈ R and ai ∈ R for i ∈ X arbitrarily. Then m : 2X → R defined by
m(A) = z + ∑{ai : i ∈ A} for A ⊆ X is modular.
(b) Every m ∈ MOD(X) is of this form. Consequently,
(c) MOD(X) is an |X|+ 1-dimensional linear space.

Submodular functions remain submodular after adding (or subtracting) a modular
function. Also, a conic (that is, non-negative linear) combination of submodular functions
is again submodular. A collection G of submodular functions over X is a generator if every
submodular f is the sum of a modular function and a conic combination of elements
of G. A submodular function is extremal if it is an element of a minimal generator set.
Extremal submodular functions are determined uniquely up to a (positive) scaling factor
and a modular shift, see Theorem 1. Since for a fixed finite X there are only finitely many
such extremal submodular functions by Theorem 2, it is possible, at least in theory, to
list all extremal submodular functions. This list also provides all extremal supermodular
functions as well since f is submodular if and only if − f is supermodular. Such a list

Mathematics 2025, 13, 97 4 of 30

would carry invaluable information about the structure of submodular functions. Several
optimization techniques rely on finding an appropriate extremal submodular function [1];
with such a list, such problems would reduce to a simple search. Knowledge of all extremal
functions for the case |X| = 4 was an essential ingredient in investigating properties of
conditional independence structures in [8,9]. Extremal supermodular functions for |X| = 5
were reported in [3]; these functions were used in [10] to investigate and create new non-
Shannon type entropy inequalities for five random variables, and in [11] to characterize
conditional independence structures.

Bayesian networks [12] play an important role in machine learning. They have be-
come a popular representation for encoding uncertain expert knowledge in expert systems.
Bayesian networks form a class of probabilistic graphical models defined over a set of
random variables, each describing some quantity of interest, that are associated with the
nodes of a directed acyclic graph (DAG). Arcs in the graph express direct dependence rela-
tionships between the variables, while graphical separation in the graph implies conditional
independence in probability. Each Bayesian network has an equivalent description using a
linear condition (derived from the DAG) on the entropies of the subsets of the variables [13],
which is a (p-standardized) submodular function. All such submodular functions can be
obtained as a non-negative (conic) combination of those extremal submodular functions
which satisfy this derived linear condition. Knowledge of these extremal submodular func-
tions allows to quickly check whether any conditional independence statement (two sets
of nodes are independent given a third one) holds necessarily in the network: it holds if
and only if it holds for these extremal functions. For more on the conditional independence
structures of Bayesian networks, see [14].

In a more general setting, enumerating extremal rays is an essential tool in objective
space vector optimization problems [15], where several linear objectives are to be optimized
simultaneously given a collection of linear constraints. Typically, there is no single optimal
value; rather, the task of the optimization is to describe its Pareto front. It consists of those
goal vectors where none of the objectives can be improved on without destroying the
optimality of some other objective. In the linear, non-degenerate case the Pareto front is an
unbounded polyhedron. The solution of the vector optimization problem is an enumeration
of the vertices and facets of this polyhedron. Many of our techniques can also be applied in
this area, especially when both the objectives and the constraints exhibit many symmetries.

In our work attempting to generate all extremal submodular functions for |X| = 6,
the main tools are methods from high-dimensional polyhedral computations. For basic
concepts and notions of this area, consult [16]; a comprehensive overview from the compu-
tational point of view is M. Fukuda’s excellent monograph [17]. A comparative study of
different polyhedral methods and implementations of different algorithms can be found
in [18]. For notions and methods from linear algebra consult [19].

3. The Cone of Submodular Functions
Let n = |X| be the number of elements in the (finite) base set X. Any real function

defined on the subsets of X can be represented by a 2n-dimensional vector r indexed by the
subsets of X as

r = ⟨rA : A ⊆ X⟩,

where rA is the value of the function at A. Both the function and the vector notation will be
used interchangeably.

3.1. Submodular Inequalities

For disjoint subsets A, B, K of X with A and B not empty, let δ(A, B|K) be the 2n-
dimensional vector with four non-zero coordinates: +1 at indices AK and BK, and −1 at

Mathematics 2025, 13, 97 5 of 30

indices K and ABK. (The assumptions on A, B, K ensure that these indices are different).
The scalar product of r and δ(A, B|K) is

r · δ(A, B|K) = rAK + rBK − rK − rABK.

A function represented by r satisfies all inequalities in (1), that is, r is submodular, if and
only if the scalar product r · δ(A, B|K) is non-negative for every choice of A, B and K. We
will also use the bare triplet (A, B|K) to mean the inequality expressing

f (AK) + f (BK)− f (K)− f (ABK) ≥ 0

for some unspecified function f , while δ(A, B|K) is the vector corresponding to, or labeled
by, this inequality.

The complete set of the inequalities (A, B|K) is highly redundant. It can be illustrated
based on the equality

δ(A, B|K) + δ(A, C|KB) = δ(A, BC|K) (3)

known as the chain rule in Information Theory [20]. From this, if the inner products with the
vectors on the left hand side are non-negative, then so is with the one on the right hand side.
Therefore the inequality (A, BC|K) is a consequence of (A, B|K) and (A, C|KB). The unique
minimal set of inequalities which implies all others consists of the so-called elementary
inequalities (the terminology is from [14], see also [7]). The inequality (A, B|K) is elementary
if both A and B are singletons. The matrix formed from the row vectors corresponding to
the elementary inequalities is denoted by M♯:

M♯ =
{

δ(i, j|K) : i, j ∈ X, K ⊆ X \ ij
}

.

Clearly, M♯ has 2n columns and (n
2)2

n−2 rows.

Claim 2. (a) The function represented by the vector r is submodular if and only if M♯ · r ≥ 0.
(b) All elementary inequalities in M♯ are necessary.
(c) M♯ has a rank of 2n − n− 1.

Proof. (a) To show that M♯ · r ≥ 0 implies r · δ(A, B|K) ≥ 0 use induction on |A|+ |B|. If
|A|+ |B| = 2, then (A, B|K) is elementary, thus it is a row in M♯. Otherwise, either A or B
has at least two elements. Use the chain rule (3) and induction.

(b) To show that the row δ(i, j|K) in M♯ cannot be omitted, it suffices to exhibit a non-
submodular function g which satisfies all elementary inequalities except this one. Let
|K| = k (clearly 0 ≤ k ≤ n−2), and set g(iK) = g(jK) = k. For all other subsets A ⊆ X
define g(A) = min{|A|, k+1}. Then

g · δ(i, j|K) = k + k− k− (k+1) = −1,

and it is easy to check that for the other elementary triplets the inner product g · δ(i′, j′|K′)
is either zero or plus one.

(c) The kernel (zero set) of M♯ is the set of modular functions as M♯ ·m = 0 if and only if
m is modular. By point c) of Claim 1 modular functions form an n+1-dimensional linear
space. M♯ has 2n columns, thus the rank of M♯ is 2n − (n + 1), as was claimed.

Mathematics 2025, 13, 97 6 of 30

3.2. Standardization

Two submodular functions are “equivalent” if their difference is modular. This relation
clearly splits the submodular functions into equivalence classes. Standardization is a method
that assigns the same representative to each element of such a class. For supermodular
functions three natural, theoretically motivated standardization methods are mentioned in
Chapter 5.1 of [14]. For submodular functions, however, with a focus on matroid theory,
the following polymatroidal standardization is recommended. Consider the following linear
space of functions on 2X :

Sp(X) = { f : f (∅) = 0 and ∀i ∈ X f (X ∖ i) = f (X) }.

The p-standardized form of f is the only element which is both in the equivalence class
f +MOD(X) and the linear space Sp(X).

As defined in [10] or in [21], tight polymatroids on X are those submodular functions
which are additionally

pointed: f (∅) = 0;
monotone: A ⊆ B implies f (A) ≤ f (B); and
tight at the top: f (X) = f (X ∖ i) for all i ∈ X.

Clearly a p-standardized function g is both pointed and tight. Since monotonicity is a
consequence of submodularity and these two properties, g is also monotone, thus it is a
tight polymatroid. The difference of two different tight polymatroids is never modular,
which proves

Claim 3. The class of p-standardized submodular functions is the class of tight polymatroids.

A consequence of Claim 3 is that p-standardized submodular functions are automat-
ically non-negative. One of our algorithms sketched as Code 4 uses this fact as a quick
preliminary check.

Other standardizations can be defined analogously by choosing different (n+1)-
dimensional linear subspaces which intersect each f+MOD(X) class in a single element.
Two of the subspaces suggested in [22] are the lower space

Sℓ(X) = { f : f (A) = 0 when |A| ≤ 1},

and the upper space

Su(X) = { f : f (A) = 0 when |A| ≥ n− 1},

and there are many other possibilities. Using a different standardization has no, or little,
effect on the computational complexity of our algorithms (however, it might affect the
magnitude of the numbers to work with), thus the choice of Sp is rather arbitrary, and was
influenced mainly by the authors’ familiarity with polymatroids.

Theoretically, standardization is determined by a matrix N with 2n columns and

n + 1 rows such that the composite matrix (M♯

N) has full rank. N-standardized submodular
functions are those 2n-dimensional vectors for which both M♯r ≥ 0 and Nr = 0 hold.
Therefore, these vectors sit in the 2n − (n+1)-dimensional subspace orthogonal to N. Using
some alternate coordinate system of the 2n-dimensional space with coordinates either in N
or orthogonal to N, the overall dimension of the standardized functions is reduced from 2n

to 2n − (n+1).

Mathematics 2025, 13, 97 7 of 30

3.3. The Cone of p-Standardized Functions

In case of lower or upper standardization, the subspace Sℓ (or Su, respectively) is
spanned by the lowest (topmost) n + 1 coordinates, thus the reduction simply discards
these coordinates (and replaces them by zeros). In case of p-standardization, the reduced
function g is determined by the coordinates in the set

R = {A ⊆ X : A ̸= ∅ and |A| ̸= n−1}. (4)

Let g be a vector with coordinates in R, and expand it to a 2n-dimensional vector g̃ by
defining the values at the missing places as g̃(∅) = 0 and g̃(A) = g(X) for |A| = n− 1.
Clearly, g̃ is in the linear space Sp, thus g is a reduced p-standardized submodular function
if and only if M♯ g̃ ≥ 0. This product, however, can be computed directly from g. Let M be
the matrix obtained from M♯ by deleting the column corresponding to the empty set (as g̃
is zero at ∅), and replacing the n + 1 columns corresponding to subsets A with |A| ≥ n− 1
by their sum (as g̃ has the same value at these indices). In other words, M = M♯Sp, where
Sp is the matrix

Sp =

 0 0 ⇐ 1 row

I 0 ⇐ 2n − (n+2) rows

0 1 ⇐ n + 1 rows


Here I is the unit matrix and 1 is a column vector where each entry is 1. Since g̃ = Spg, we
have Mg = M♯Spg = M♯ g̃. Let us define

C = {g : Mg ≥ 0}, (5)

where g is a 2n − (n+1)-dimensional vector with indices from R. Clearly, C is the set of
reduced and p-standardized submodular functions, therefore every submodular function
on X is the sum of a modular function and the expansion of an element from C.

Claim 4. C is a full-dimensional pointed polyhedral cone.

Proof. C is the intersection of (n
2)2

n−2 many half-spaces (the number or rows in M), thus
it is polyhedral. All of these halfspaces contain the origin, thus C is the union of rays
(half-lines) starting from the origin. By Claim 3, C is a subset of the non-negative orthant
(all coordinates of a p-standardized submodular function are non-negative), thus C does
not contain a full line; and, in particular, C ∩−C = {0}. To prove that C is full-dimensional,
it is enough to show that it contains 2n − n− 1 many linearly independent vectors. Choose
J ⊆ X with at least two elements (observe that there are 2n − n− 1 many such subsets). For
each of them, consider the function

f J(A) =

{
1 if J ∩ A ̸= ∅,
0 otherwise.

(6)

It is easy to check that f J is both submodular and p-standardized (since |J| ≥ 2, f J(A) = 1
when |A| ≥ n − 1). Linear independence of the vectors f J can be checked directly (by
induction on the number of elements in X), or by observing that their Möbius transform
gives all unit vectors. For details consult Lemma 3 in [23].

An immediate consequence of this claim is that the matrix M in (5) has full rank.

Let us recall some further terminology of polyhedral geometry from [16,17]. A face
of the cone C is a subset F of C with the property that if a positive convex combination of
points in C falls into F, then the starting points are also in F. Both C and the empty set are

Mathematics 2025, 13, 97 8 of 30

faces—they are the trivial ones—, and the only single-element face is the vertex of the cone,
which in this case is the origin. Proper faces are just the intersection of C and a supporting
hyperplane. The dimension of a face F is its affine dimension; for pointed cones it is the
maximal number of linearly independent vectors in F. One-dimensional faces are edges or
extremal rays; and a facet is a face of codimension 1. Each proper face F is the intersection of
all facets containing F. Facets of C lie on and are identified by the hyperplanes defined by
the rows of the matrix M—this follows from point b) of Claim 2 which says that none of
these rows is redundant.

Theorem 1. Extremal submodular functions on X are unique up to a positive scaling and a shift
by a modular function.

Proof. For a submodular function f let its p-standardized and reduced image be f o. Ob-
serve that the map f 7→ f o is linear, and the image is the complete cone C. Linearity implies
that conic combination is preserved. Thus if f o is not on an extremal ray of C, then f is not
extremal. At the same time, supermodular functions whose image is on some extremal ray
of C form a generator: every other supermodular function is a positive conic combination
of them. As supermodular functions whose image is the same g ∈ C differ by a modular
shift only, the claim of the theorem follows.

Theorem 2. For a finite X there are finitely many extremal submodular functions.

Proof. According to Theorem 1 extremal submodular functions are, up to scaling and
modular shift, in a one-to-one correspondence with the extremal rays of the cone C. Every
extremal ray of C is the intersection of the facets it is a subset of. Since C has (n

2)2
n−2 many

facets, it has finitely many extremal rays, which proves the statement.

Theorem 2 imposes a trivial upper bound on the number of extremal submodular
functions. This is 280 ≈ 1024 for n = 5, while the actual value is around 105, see Table 1. For
n = 6 we also expect a huge gap between the bound 2240 ≈ 1072 given by this theorem and
the actual value.

3.4. Symmetries

Submodular functions have many symmetries. The most notable ones are induced
by permutations of the base set X. Let π be such a permutation of X, which we extend to
functions on 2X by

(π f)(A) = f (πA),

where πA is the image of A ⊆ X under π. Trivially, f is submodular (supermodular or
modular) iff π f is such. There is a less known symmetry of submodular functions called
reflection [14] defined as

f ∁(A) = f (X ∖ A),

arising from the permutation A 7→ X ∖ A of the subsets of X. Claim 5 essentially says that
these are the only symmetries induced by permutations of subsets of X which map the
complete set of inequalities in (1) onto itself.

Claim 5. Suppose a permutation of the subsets of X induces a permutation of the inequalities in
(1). Then it is equivalent to an optional reflection followed by a symmetry induced by a permutation
of X.

Proof. Let a permutation of the subsets of X be defined by the bijection φ, and rewrite
the inequalities in (1) by mapping each subset A to φ(A). For each subset, count how

Mathematics 2025, 13, 97 9 of 30

many times it occurs on the right-hand side of the inequalities. There will be two with the
maximal count (3n+1)/2− 2n; which means they must be ∅ and X, but also φ(∅) and
φ(X) in some order. If φ(∅) = X, apply a reflection, and assume φ(∅) = ∅ going forward.
On the right hand side of the inequalities every subset occurs next to the empty set, except
for singletons. This means φ is a bijection on singletons, which determines the permutation
of the base set that will give rise to φ. Each pair of singletons occurs exactly once on the left
hand side, with the corresponding right-hand side containing the empty set and the union
of the two singletons. This means that φ for two-element subsets is uniquely determined by
its values on singletons. The same logic for larger subsets yields that φ is also determined
on all remaining subsets of X.

A permutational symmetry π automatically maps to a symmetry of the cone C. It is
because π induces a permutation of the coordinate set R defined in (4), which, in turn,
induces a permutation of the rows of the matrix M so that for each row δ of M and each
vector g with coordinates inR we have

δ · g = π(δ) · π(g).

In particular, Mg ≥ 0 if and only if Mπ(g) ≥ 0, thus C = π(C).
The case of reflection is more subtle as f ∁ is not necessarily p-standardized. To get the

reflected pair σ f of the p-standardized submodular function f one has to shift f ∁ by the
modular function

m(A) = − f (X) + ∑{ f (i) : i ∈ A }

(see part a) of Claim 1) to get the p-standardized submodular function

(σ f)(A) = f (X ∖ A)− f (X) + ∑{ f (i) : i ∈ A }. (7)

In matroid and polymatroid parlance [24] σ f is called the dual of f . Reflection also induces
a permutation on the rows of M♯ (and then on rows of M) as the reflected image of the
elementary inequality (i, j|K) is the elementary inequality (i, j|X ∖ ijK). This permutation
of inequalities, denoted again by σ, also satisfies the exchange property

δ · g = σ(δ) · σ(g).

Consequently C = σ(C), thus σ is another symmetry of the cone C.

All of these symmetries induce a linear transformation on the coordinates, conse-
quently they preserve extremality. Symmetric images of a fixed extremal ray form an orbit.
As the symmetry transformations can be computed trivially, it suffices to compute one ray
from each orbit. Since reflection is idempotent, there are 2n! many symmetries. This means
a significant reduction as we expect the majority of the orbits to contain 2n! many different
rays. Our computations confirm that this is indeed the case, see Figure 7.

3.5. Extending the Base Set

Suppose the base set X is extended by a new element y to the larger set Y = Xy. We
extend a function f defined on the subsets of X to a function f ⋆ defined on all subsets of
Y by

f ⋆(yA) = f ⋆(A) = f (A) for A ⊆ X,

in particular, f ⋆(y) = f (∅). Observe that if f is a p-standardized submodular function, then
so is f ⋆. Consequently the map g 7→ g⋆ embeds the cone CX of reduced, p-standardized
submodular functions over X into the cone CY.

Mathematics 2025, 13, 97 10 of 30

Claim 6. Suppose r is an extremal ray in CX . Then r⋆ is an extremal ray in CY.

Proof. Suppose r⋆ is a positive conic combination of rays si in CY, that is, r⋆ = ∑i λisi

where all λi are positive. We must show that si is a multiple of r⋆. Since r⋆(y) = 0, we have
si(y) = 0. By Claim 3 the submodular function represented by si is monotone and pointed,
thus for every A ⊆ X

0 ≤ si(Ay)− si(A) ≤ si(y)− si(∅) = 0.

This means that there is an ri in CX such that si = r⋆i , and then r⋆ = ∑i λir⋆i . Since r 7→ r⋆ is
a linear map, it implies r = ∑i λiri. By assumption r is extremal, thus ri is a multiple of r,
and then si = r⋆i is a multiple of r⋆, as required.

The embedding g 7→ g⋆ of CX into CY also preserves the symmetries of CX . Denote the
duality symmetry on X and Y by σX and σY, respectively. Similarly, extend the permutation
πX on X to a permutation πY on Y by keeping its effects on X and stipulating πY(y) = y.

Claim 7. For any g ∈ CX , (σX g)⋆ = σYg⋆, and (πX g)⋆ = πYg⋆.

Proof. Clearly we have g⋆(Y) = g⋆(X) = g(X), and also for all subsets A ⊆ Y, g⋆(Y ∖
A) = g(X ∖ A) and

∑{g⋆(i) : i ∈ A} = ∑{g(i) : i ∈ A ∖ y}.

According to the above and (7), for A ⊆ X we get

(σYg⋆)(A) = (σYg⋆)(Ay) =

= g(X ∖ A) + ∑{g(i) : i ∈ A} = (σX g)(A),

as was claimed. The second statement can be checked analogously.

According to Claim 6, extremal submodular functions on an n+ 1-element base contain
the extremal submodular functions on a base with n elements—and then, by induction, all
extremal submodular functions on smaller bases. Claim 7 strengthens this result: if, instead,
we consider orbits, then every orbit on a smaller base occurs exactly once as an orbit on
a larger base. For example, taking those orbits for n = 6 which have a representative
vanishing on some singleton, we get exactly the 672 orbits of n = 5, see Table 1.

4. Methods for Generating Extremal Rays
This section gives an overview of some methods from polyhedral geometry [17,25]

which were used in our computations. Recall that the problem of finding all extremal
submodular functions was reduced to the task of finding all extremal rays of a pointed,
full-dimensional, polyhedral cone. For this exposition the dimension of the cone is denoted
by d, and the cone is the intersection of m ≥ d irredundant positive halfspaces specified as

C = {x ∈ Rd : Mx ≥ 0},

where the matrix M has d columns, m rows, and has rank d. Irredundant means that no
proper subset of the rows of M define the same cone. In other words, the hyperplanes
determined by the rows of M are the bounding facets (that is, d− 1-dimensional faces) of C.

The ray generated by a non-zero point (or vector) x ∈ Rd is r = {λx : λ ≥ 0}. By
abusing the notation a ray is identified with one (or any) of its generating points. Thus we
write r ∈ C to mean that all points of r are in C, and Mr ≥ 0 to mean that this relation holds
for some non-zero (and then all) points of r.

Mathematics 2025, 13, 97 11 of 30

The ray r is extremal in C if it is a one-dimensional face of C. Recalling the definition of
polyhedral faces [16], r is extremal iff it is not a strictly positive conic combination of other
rays of C.

The support of the ray r ∈ C, denoted by M[r], is the set of those bounding hyperplanes
of C the ray is on, namely M[r] = {a ∈ M : a · r = 0}. Worded differently, M[r] is the set of
active constraints for r, or the set of facets of C containing r. The following claim follows
easily from the definitions, see also [16,17].

Claim 8. The ray r ∈ C is extremal if and only if M[r] has rank d− 1, and then r is the unique
one-dimensional solution of the homogeneous system (M[r]) x = 0.

The number of facets r is on is called its weight and is denoted by w(r); this number
is called incidence number in [26]. Clearly, w(r) is the number of rows in M[r]. If M[r] has
rank d− 1, then it must have at least d− 1 rows. Consequently extremal rays have weight
w(r) ≥ d− 1.

4.1. The Double Description Method

A polyhedral cone is determined both by its bounding hyperplanes arranged into the
matrix M, and by the set of its extremal rays arranged into the matrix R. Several algorithms
and implementations exist for enumerating the rows of R given the matrix M, see [25,27].
Interestingly, the converse problem, namely enumerating the bounding hyperplanes given
the set of extremal rays, is a completely equivalent problem. This is because if the rows of
R are interpreted as hyperplanes, then the cone they generate has exactly M as the set of its
extremal rays, see, e.g., [16,17].

The ray enumeration algorithm that fits the highly degenerate case of submodular
functions best is the iterative Double Description Method, abbreviated as DD. It was described
first by Motzkin et al. [28]; for a recent overview see [29]. DD is a variant of the Fourier-
Motzkin elimination, or Chernikova’s algorithm.

As an illustration, we describe how DD enumerates the vertices of a d-dimensional
polytope given by its facets. The method starts by selecting d + 1 of the provided facets
which form a simplex. Each of its d + 1 vertices lies on exactly d facets. Computing their
coordinates requires solving d + 1 linear systems of equations with d unknowns.

An iterative step starts with an intermediate polytope bounded by d + i, i ≥ 1, of the
given facets such that all vertices of this polytope are known. This polytope is then cut
by one of the remaining facets as illustrated in Figure 1, yielding the polytope of the next
step. The vertices of the next polytope are computed as follows. First, the vertices of the
old polytope are separated into three groups: those which are on the positive side of the
cutting facet, those which are on that facet (the zero group), and those which are on its
negative side. Vertices in the positive and in the zero group will be vertices of the new
polytope as well. All additional vertices are on the cutting facet, and can be obtained as the
intersection of the cutting facet and an old edge which connects a positive and a negative
vertex. DD stops when there are no more facets to be processed, and then it provides the
required vertex list.

The iterative step requires recognizing whether two vertices of the intermediate poly-
tope form an edge. Analogs of the tests described in Claim 9 are used by almost all
DD packages.

The DD variant which is used to enumerate all extremal rays of the cone determined
by the matrix M is sketched as Code 1.

Mathematics 2025, 13, 97 12 of 30

−

−

−

+

+

+

+

0

Figure 1. An intermediate step of the double description method. The polytope from the previous
iteration is cut by a new facet. The new vertices are at the intersection of the new facet and an old
edge with a positive and a negative endpoint. The deleted part is shown with gray edges.

It starts with a subset M0 of d inequalities from M which defines a full-dimensional
cone with exactly d extremal rays. In an intermediate step we have a cone determined by
the inequalities (or facets) in Mi ⊆ M, and also we have the complete list Ri of its extremal
rays. This way each intermediate cone has a double description, giving the name of the
method. To obtain the next cone, a new inequality a is added to Mi, that is, part of the cone
is cut off by the hyperplane corresponding to a ≥ 0. This hyperplane partitions the old rays
in Ri into positive, negative, and zero ones depending on whether the ray is on the positive
side of the hyperplane, on the negative side, or it is on the hyperplane. Positive and zero
rays remain extremal in the next cone; negative rays are part of the removed segment, and
so are not part of the new cone. All additional extremal rays are on the cutting hyperplane.
These are the rays where the conic span of an adjacent pair of a positive and a negative ray
intersects this hyperplane; for details, see Section 8.1 in [17]. The algorithm terminates
when there are no more inequalities to add.

Code 1: The Double Description Method

1 Compute the initial DD pair (M0, R0); i← 0
2 while there is a ∈ M ∖ Mi do
3 Mi+1 ← Mi ∪ {a}
4 Split Ri into positive/negative/zero rays
5 Ri+1 ← positive and zero rays
6 for each r1 positive/r2 negative ray do
7 if r1 and r2 are adjacent then
8 Compute the ray r = conic(r1, r2) ∩ a
9 Ri+1 ← Ri+1 ∪ {r}

10 end
11 end
12 i← i + 1
13 end

The induction step (lines 3 to 11 of the outlined DD algorithm) was implemented as a
stand-alone program working as a pipe. It reads the DD pair (Mi, Ri) together with the new
inequality a ∈ M, and produces the next DD pair (Mi+1, Ri+1) which is amenable for the
next iteration. The initial DD pair (line 1) is created by the controlling program using simple
linear algebraic tools [19]. The overhead caused by the pipe arrangement (shipping the
data in and out of memory at each iteration) is more than compensated for by simpler data
structure, smaller memory requirement, and the ability to allocate all necessary memory in
a single request (thus avoiding memory fragmentation). As a bonus, almost linear speed-up
can be achieved by distributing the computation made by the pipe program among several
cores or, preferably, over several machines. Figure 8 gives an illustration of the general

Mathematics 2025, 13, 97 13 of 30

performance by plotting the total number of rays against the speed of ray generation.
The figure depicts data for the equivalent problem of enumerating adjacent rays, see
Section 4.2.

The crucial part of the DD algorithm is testing the adjacency of extremal rays of the
current cone (line 7 in Code 1). This ensures that only extremal rays of the next iteration are
added to the output. The following two equivalent criteria for ray adjacency are from [29].

Claim 9 (Fukuda–Prodon [29]). For two extremal rays r1 and r2 the following conditions
are equivalent.

(a) r1 and r2 are adjacent;
(b) the rank of M[r1] ∩M[r2] is d− 2 (algebraic test);
(c) there is no extremal ray r apart form r1 and r2 such that M[r] ⊇ M[r1]∩M[r2] (combinatorial

test).

If we write w(r1, r2) to mean the number of rows in M[r1] ∩M[r2], then the algebraic
test requires computing the rank of a matrix with d columns and w(r1, r2) rows. The
naive implementation requires O(d2w(r1, r2)) arithmetic operations, independently of the
number of extremal rays. As this computation is sensitive to numerical errors, the rank is
frequently computed using arbitrary precision arithmetic, which can be very slow even
for small values of d. Conversely, the combinatorial test runs in time proportional to
the number of extremal rays, potentially a very large number. However, this test can be
implemented using fast bit operations on the ray–facet incidence matrix, and is not prone to
numerical errors. Both tests can be sped up using a simple consequence of the algebraic test:
r1 and r2 are definitely not adjacent if w(r1, r2) is smaller than d− 2. This simple condition
should be checked before delving into any of the two more demanding tests.

4.2. Enumerating Neighbors

Another avenue to finding extremal rays of a cone is to find extremal rays adjacent to a
known extremal ray [26,30–32], also known as Adjacency Decomposition. Since extremal rays
of a cone are connected with respect to the adjacency relation (Theorem 3.14 in [16]), starting
from any extremal ray of the cone and determining its neighbors, then the neighbors of
these rays, and so on, will eventually generate all extremal rays.

For the details let r be such a fixed extremal ray of the cone C = {x ∈ Rd : Mx ≥ 0}.
Enumerating the neighbors of r can be done by solving a generic ray enumeration problem
in dimension d− 1. To show that this is the case, let M′ = M[r] be the set of facets r is on,
and let z ∈ M ∖ M′ be any of the remaining facets of C. Clearly M′r = 0 and z · r > 0 as z
is a bounding facet of C, and therefore r is on the positive side of z. Consider the following
(d− 1)-dimensional cone C ′ embedded into the d-dimensional space Rd:

C ′ = {x ∈ Rd : M′x ≥ 0 and z · x = 0}.

Since r is extremal, M′ has rank d− 1. Since M′r = 0 and z · r ̸= 0, z is not in the linear
span of the rows of M′, therefore the composite matrix (M′

z) has rank d, and then C ′ is
(d− 1)-dimensional, as was claimed. The analog of Claim 8 remains valid: a ray s ∈ C ′ is
extremal if and only if M′[s] has rank d− 2. Similarly, both tests for adjacency of extremal
rays stated in Claim 9 remain true for C ′ if d− 2 is replaced by d− 3. Therefore the Double
Description Method with some minor modifications can be used to enumerate the extremal
rays of the cone C ′.

Claim 10. Extremal rays of C ′ and the neighboring rays of r are in a one-to-one correspondence.

Mathematics 2025, 13, 97 14 of 30

Proof. We begin by describing the mapping from rays adjacent to r to extremal rays in
C ′. Let r1 be an extremal ray of C adjacent to r. Let s = r1 − λr where λ is chosen so that
z · s = 0. (Since z · r ̸= 0, such a λ exists.) We show that s is an extremal ray of C ′. First,
s ∈ C ′ as z · s = 0 and

M′s = M′ · (r1 − λr) = M′r1 ≥ 0

as r1 is a ray in C. Second, M′[s] = M′[r1] = M[r1] ∩M[r]. Since r and r1 are adjacent, the
rank of this matrix is d− 2, which proves that s is extremal by Claim 9. It is easy to see that
no two neighbors of r are mapped to the same ray of C ′.

In the other direction, let s ∈ C ′ be extremal, and consider the the ray r′ = s + µr for
some real number µ. Clearly, M′[r′] = M′[s], and this matrix has rank d− 2. If a is a row in
M′, then a · r′ = a · s ≥ 0. If a is in M but not in M′, then a · r is positive, and

a · r′ = a · (s + µr) = a · s + µ(a · r) ≥ 0

if and only if µ ≥ −(a · s)/(a · r). Choosing µ as the minimum of these values, r′ will be
a ray in C. Moreover, M[r′] will contain the row a /∈ M′ where this minimum is taken:
M[r′] ⊇ M′[r′] ∪ {a}. Since M′[r′] has rank d− 2 (r′ is extremal in C ′), M[r′] has rank d− 1,
proving that r′ is extremal in C. Finally, M[r] ∩M[r′] = M′[r′] has rank d− 2, thus r and
r′ are adjacent by Claim 9. This construction also indicates how neighbors of r can be
generated from the extremal rays of C ′.

The same reduction can be applied iteratively to the reduced cone C ′. Suppose, in
general, that a k-dimensional cone C embedded in the d-dimensional space is defined as

C = {x ∈ Rd : Mx ≥ 0, and Ax = 0 }

where M has m rows, d columns, and rank k; A has d− k rows, d columns, and rank d− k;
and the composite matrix (M

A) has rank d. Let r be an extremal ray of C. Enumerating the
neighbors of r can be reduced to enumerating the extremal rays of the k− 1-dimensional
cone C ′ defined by the matrix pair M[r] and (A

a) where the row a ∈ M is not in M[r].
The reduction stops when the complexity of the cone C defined by the matrix pair

(M, A) becomes manageable thus its extremal rays can be enumerated directly. For this
purpose one can use the d-dimensional DD method directly with some minor modifications
as discussed above. Another possibility is to make C full dimensional first by projecting it
to the k-dimensional space

πC = {y ∈ Rk : (MP)y ≥ 0 }

where P is a generator of the nullspace of A (see [19] for details). Extremal rays of C can be
recovered by applying P to the extremal rays of πC. Actually, such a projection was used
for the p-standardized submodular functions in Section 3.3.

4.3. The Kernel Method

When applying the DD method directly to enumerate all extremal rays of the cone

C = {x ∈ Rd : Mx ≥ 0, and Ax = 0 },

computations simplify considerably when each row of M contains exactly one non-zero
entry. Using homogeneity and an optional coordinate sign change, that entry can be
assumed to be 1. When the DD method adds the new row a ∈ M, old rays are put into
positive, negative, and zero parts depending on the sign of the inner product a · r, see line 4
of Code 1. Similarly, inner products a · r1 and a · r2 are used in line 8 when computing that

Mathematics 2025, 13, 97 15 of 30

conic combination of rays r1 and r2 which lies on the hyperplane determined by the row
a. If the only non-zero coordinate in a is a[i] = 1, then computing these inner products
reduces to the trivial task of taking the i-th coordinate. Additionally, ray coordinates where
the corresponding row in M contains zeros only need not to be stored at all; and among the
processed coordinates (determined by those rows of M which were previously handled by
DD) it suffices to store only one bit indicating whether that coordinate of the ray is zero or
not. When DD finishes, these bits determine the matrix M[r], which allows (re)computing
the coordinates of the ray r, postponing a large part of high-precision computations to the
final stage.

This variant of the DD method is called kernel or null-space method [33]. While the kernel
method uses very specially defined cones, it is universal, as the standard ray enumeration
problem for the cone

C = {x ∈ Rd : Mx ≥ 0 }

can be transformed into the required special form in the following way. Suppose M has
m rows. Let Im be the m×m unit matrix and y ∈ Rm be new slack variables. The first d
coordinates of the extremal rays of the cone

{(x, y) ∈ Rd+m : y ≥ 0, Mx + Imy = 0 }

are just the extremal rays of C. The software package POLCO uses the kernel method for
ray enumeration. For a detailed description and theoretical background of the package,
see [33].

5. Improving the Combinatorial Test
In the DD method we need to check the adjacency of each pair of extremal rays taken

from the two sides of the new facet, that is, where one ray comes from the positive class,
and the other ray from the negative; see line 7 in Code 1. The majority of these pairs are
expected not to be adjacent, in which case the pair is skipped, thus this test needs to be
as fast as possible. This Section discusses the details and potential improvements of the
combinatorial test described in Claim 9.

Let M be the set of facets (inequalities), and R be the set of extremal rays of the cone
C. The ray–facet incidence matrix has one row for each facet and one column for each ray,
and for a ∈ M and r ∈ R the entry at position (a, r) is 1 if the scalar product a · r is zero
(the ray r lies on the facet a, they are incident), and 0 otherwise. For each a ∈ M let â be
the 0–1 string formed from the entries in row a of this incidence matrix, and, similarly, r̂ be
the 0–1 string formed from the entries in column r. Clearly, M[r] contains those rows of M
where r̂ is 1. Denoting the number of 1’s in r̂ by |r̂|, we have |r̂| ≥ d− 1 for every r ∈ R.
This is because by Claim 8 M[r] has rank d− 1, thus it has at least d− 1 rows. Similarly,
the number of rows in both M[r1] and M[r2], which was denoted by w(r1, r2) above, is
|r̂1 ∩ r̂2|, where the intersection of two strings is understood to be taking the minimal value
at each position.

Code 2 outlines the combinatorial test. Line 1 executes the quick precheck w(r1, r2) ≥
d − 2 coming from the algebraic test; it filters out many of the cases. Line 2 initializes
the bitstring b, and the loop in lines 3–6 computes those bits in b whose index r satisfies
M[r] ⊇ M[r1] ∩ M[r2] with the exception of r1 and r2 whose indices are cleared in the
initialization. Finally, r1 and r2 are adjacent if no other ray remains in b, that is, b becomes the
all zero string. This condition is checked in the loop, skipping the remaining computation
whenever possible.

Mathematics 2025, 13, 97 16 of 30

Code 2: Combinatorial adjacency test of rays r1 and r2.

1 if |r̂1 ∩ r̂2| < d− 2 then return no
2 b← all 1 bitstring of length |R|;

set b[r1]← 0 and b[r2]← 0
3 for each a ∈ r̂1 ∩ r̂2 do
4 b← b ∩ â
5 if b = 0 then return yes
6 end
7 return no

N. Zolotykh made the observation [34] that if the ray r violates the combinatorial test,
that is,

M[r] ⊇ M[r1] ∩M[r2],

then both M[r] ∩M[r1] and M[r] ∩M[r2] contain the intersection M[r1] ∩M[r2] as a subset.
In particular, if |r̂1 ∩ r̂2| ≥ d− 2 (this pair survived the quick test), then both |r̂ ∩ r̂1| ≥ d− 2
and |r̂ ∩ r̂2| ≥ d− 2. Thus it suffices to restrict the search in the loop at 3–6 of Code 2 to
such rays. So for a ray ri let ĝ(ri) (for graph test, a terminology used in [34]) be the bitstring
indexed by the rays such that at index r this string has 1 if r and ri differ and |r̂∩ r̂i| ≥ d− 2,
and has 0 otherwise. Instead of line 2 in Code 2, b can be initialized to b ← ĝ(r1) ∩ ĝ(r2).
Since b starts with fewer bits set, the loop at 3–6 is expected to finish earlier.

Computing the strings ĝ(r1) and ĝ(r2) for all positive and negative rays takes time,
and it is not clear that this overhead is compensated for by the improved performance.
The main drawback, however, is the significant memory needed to store these bit strings.
The best compromise to retain some of the advantages of the graph test without extensive
memory requirement seems to be computing ĝ(r1) “on the fly” for positive rays, also
suggested in [34]. Our contribution is to complement this by not using ĝ(r2) for negative
rays at all. Performing the adjacency tests in an appropriate order every ĝ(r1) needs to be
computed only once and the string may occupy the same memory location. This version,
dubbed as ½-graph test, is sketched as Code 3.

The loop in lines 2–4 prepares the bitstring ĝ(r1); this will be done only once for every
positive ray r1 under an appropriate scheduling. The quick check in line 6 reuses part of
this precomputation: the result of the condition |r̂1 ∩ r̂2| < d− 2 is simply looked up in the
bitstring ĝ(r1). Line 7 initializes b and the loop at lines 8–11 searches for a ray r such that
M[r] extends M[r1] ∩M[r2]. The search is done in (typically 64 bit) chunks rather than over
the whole string at once. When a chunk becomes empty, (that is, all zero), which we expect
to happen frequently, the inner loop is aborted, further improving the performance.

Code 3: ½-graph adjacency test of rays r1 and r2,

1 if ĝ(r1) is not defined then
2 for each r ∈ R do
3 ĝ(r1)[r]← (r ̸= r1 and |r̂ ∩ r̂1| ≥ d− 2)
4 end
5 end
6 if ĝ(r1)[r2] = 0 then return no
7 b← ĝ(r1); set b[r2]← 0
8 for each a ∈ r̂1 ∩ r̂2 do
9 b← b ∩ â

10 if b = 0 then return yes
11 end
12 return no

Mathematics 2025, 13, 97 17 of 30

6. Enumerating Extremal Submodular Functions for n = 6
We are now ready to apply the tools and algorithms described above to specific values

of n. To recap, Section 3.3 defined the cone of p-standardized submodular functions over a
base set with n ≥ 3 elements. Extremal submodular functions, up to a shift by a modular
function, were identified with the extremal rays of a polyhedral cone Cn. Enumerating
extremal submodular functions means enumerating these extremal rays. The cone Cn sits
in the d = 2n − (n+1)-dimensional space and is defined by m = (n

2)2
n−2 homogeneous

inequalities as
Cn = {g ∈ Rd : Mn g ≥ 0 },

see Section 3.3. Rows of Mn are determined by the p-standardized elementary inequalities
as discussed in Section 3.1. Each non-zero entry in Mn is either +1 or −1, and each row
contains two, three or four non-zero entries only, making Mn to be extremely sparse. As
shown in Section 3.4, Cn has 2n! symmetries. The n! part comes from permuting the base
set, and the factor 2 comes from reflection. Symmetric images of extremal rays are also
extremal, thus it suffices to have one representative from each orbit, that is, symmetry class.

Based on the above numbers and on later calculations, Table 1 lists the dimension,
number of inequalities, symmetries, total number of extremal rays, number of orbits, and
the weight range (see the comment after Claim 8) of cones for different values of n.

Table 1. Dimension, facet number, symmetries, extremal rays, orbits, and weight range.

n d m Symm Rays Orbits Weight

3 4 6 12 5 2 3–4
4 11 24 48 37 7 10–20
5 26 80 240 117,978 672 25–72
6 57 240 1440 >3.9·1011 >2.6·108 56–225

Section 3.5 defines a canonical embedding of Cn into Cn+1; this embedding preserves
both extremal rays (by Claim 6), and orbits (by Claim 7). In particular, extremal rays of
Cn can be recovered from the extremal rays of Cn+1 by simply looking for rays which
take zero at a coordinate labeled by a fixed singleton. Referring to Table 1, preserving the
orbits means that among the 672 orbits of C5 there are seven which are the images of the
seven orbits of C4. Similarly, among all orbits of C6 there are exactly 672 in which some (or
equivalently, every) ray takes zero at some singleton, and exactly seven orbits in which the
rays take zero at two or more singletons.

6.1. Weight (Incidence) Distribution

The weight distribution provides information about how degenerate the cone is. A
d-dimensional polyhedral cone is simple, or non-degenerate, if every extremal ray has the
minimal possible weight d− 1. Figure 2 depicts the weight distribution of the extremal
rays of C5. The distribution has a long tail of rays with large weights. The estimated weight
distribution for C6 on Figure 3 reveals a similar picture.

Mathematics 2025, 13, 97 18 of 30

25 30 40 50 60 72

5%

10%

15%

Figure 2. Weight distribution for n = 5.

56 80 120 160 200 225

3%

6%

9%

Figure 3. Estimated weight distribution for n = 6.

To trace the rays with large weights, consider the submodular function f J defined in
(6) for J ⊆ X, |J| ≥ 2. This function is the rank function of a connected matroid [24], and the
rank function of every connected matroid is extremal [35]. Consequently, f J is an extremal
ray of Cn. These rays (and their duals) have large weights. Denoting |J| by k ≥ 2, f J satisfies
all but (k

2)2
n−k of the elementary inequalities: the exceptional ones are the triplets (i, j|K)

where i, j ∈ J and K is disjoint from J. This means that f J has weight(
n
2

)
2n−2 −

(
k
2

)
2n−k.

For n = 3, 4, 5 the extremal rays with largest weight are the rays f J where |J| = 2 (and their
symmetric versions); the corresponding weights are 4, 20 and 72, respectively, barely below
the maximal possible weight values of 5, 23, and 79, which is one less than the number of
facets. For n ≥ 6, however, the largest weight is attained when |J| = n, that is, by fX . The
weight of fX is (n

2)(2
n−2 − 1), which exceeds the cone dimension by a factor of n2/8.

The weight distributions depicted on Figures 2 and 3 clearly show that the degeneracy
of the submodular cones is caused not by a few rays with large weights, but by the fact that
almost all possible weights occur across the complete weight range.

6.2. Insertion Order

As discussed in Section 4, conventional wisdom dictates to use the Double Description
method when the cone has a high degree of degeneracy, see also [18] and Section 3 in [36].
The DD method, however, is highly sensitive to the insertion order of the facets. Without
careful ordering, the number of extremal rays in an intermediate cone can be exponen-

Mathematics 2025, 13, 97 19 of 30

tially larger than the final number of rays [17,18,29], rendering the DD method unusable.
Insertion strategies are categorized by the way they are applied: static orderings are deter-
mined and applied in advance and the ordering is fixed during the computation, while
dynamic orderings allow for determining the order of the remaining inequalities dynamically,
depending on the state of the computation.

The static ordering strategy called lex-min sorts the rows of the matrix lexicographi-
cally, and applies them in increasing order. An example for a dynamic strategy is max-cut
(resp. min-cut), which chooses the unprocessed matrix row which cuts off the maximal
(resp. minimal) number of extremal rays from the actual intermediate cone. Experimental
assessment of different strategies indicated, see [27,29], that any one can work reasonably
well for some enumeration problem, but could fail badly for others. The overall recommen-
dation is to use lex-min or some of its refinements, as this strategy consistently outperforms
all others, frequently by orders of magnitude. See Chapter 8.1 in [17] or Chapter 3.2 in [33].

In the specific case of submodular cones, however, better insertion strategies may
exist, especially as the lex-min ordering is sensitive to the order of the coordinates, while
the DD method itself is not. Moreover, previous experience showed that existing ordering
strategies lead to an “overshoot” of the intermediate cones in terms of the number of
extremal rays, before this number is reduced to the final result. This is illustrated by the
size of the last few intermediate cones, depicted on Figure 4, where the DD method was
applied to C5 using the lex-min inserting strategy with several random permutations of the
coordinates. Our aim was to find an insertion strategy that avoids this phenomenon.

117,978

90,000

60,000

40,000

68 70 75 80
inequalities

nu
m

be
r

of
ra

ys

Figure 4. Size of intermediate cones for the lex-min inserting order using randomly shuffled coordinates.

The method to achieve this goal was a backward greedy algorithm, which calculated
the insertion order in reverse. We first determined which facet (which one out of the m rows
of the matrix M) should be added last so that the penultimate cone would have the smallest
possible number of extremal rays. Fortunately, this task requires solving at most m ray
enumeration problems, as the penultimate cone is independent of the insertion order of
its m− 1 facets. Next, further elements of the insertion order were determined similarly,
always making sure that the initial sequence of inequalities had full rank.

We determined the insertion order experimentally for C5, and aimed to generalize
the resulting order to n = 6. To illustrate the choice for the last inequality, note from
Table 1 that C5 has dimension d = 26 and is bounded by m = 80 facets. Also, the facets
of C5, or, equivalently, the rows of the defining matrix M5, correspond to the elementary
inequalities (i, j|K). Denote the elements of the 5-element base set X by digits from 0 to 4.
Taking permutational equivalence into account there are only four different elementary
inequalities, namely

(0, 1|∅), (0, 1|2), (0, 1|23), and (0, 1|234).

Mathematics 2025, 13, 97 20 of 30

As discussed in Section 3.4, reflection (or duality) maps (0, 1|∅) to (0, 1|234), and maps
(0, 1|2) to (0, 1|34), and the latter one is permutationally equivalent to (0, 1|23). Conse-
quently only two cases has to be considered for the last position: it is either (0, 1|∅) or
(0, 1|2). In the first case the remaining inequalities determine the penultimate cone with
112,712 extremal rays, in the second case that cone has 122,642 extremal rays. Therefore
(0, 1|∅) (or one of its equivalents) should be inserted last.

We abstracted the patterns discovered in the experimental results into the t-opt (for
“tail-optimal”) insertion order defined below. Note that the experimental results do not
determine the order of the first d inequalities.

For the definition of the t-opt insertion order, fix an ordering of the n-element base
set X. A subset K of X is identified with the string of length |K| enlisting elements of K in
increasing order; the elementary inequality (i, j|K) is always written so that i precedes j,
similarly to the examples above.

Definition 1 (T-opt insertion order). Two elementary inequalities are in the relation (i1, j1|K1) ≺
(i2, j2|K2) iff

• when the subsets K1 and K2 have different number of elements then |K1| precedes |K2| in the list
0, n− 2, 1, n− 3, 2, n− 4, . . .

• when K1 and K2 have the same number of elements then the string i1 j1K1 is lexicographically
smaller than the string i2 j2K2.

The t-opt insertion order is the reverse of the order ≺.

For the base set X = {0, 1, 2, 3} the order ≺ is illustrated by

(2, 3|∅) ≺ (1, 2|03) ≺ (0, 1|3) ≺ (1, 3|2);

moreover, (0, 1|∅) is the smallest, and (2, 3|1) is the largest one in this ordering.
The blue curve on Figure 5 depicts, on logarithmic scale, the size of the intermediate

cones when the t-opt insertion order is used to enumerate the extremal rays of C5. The curve
increases steadily (as opposed to the cases where the lex-min order was used), and seems
to be approximately linear, indicating a steady exponential growth. Using this insertion
order for C5 the total execution time of our implementation of the DD method running on
a single core of an Intel i5-4590 CPU was under 1 min, beating all other tested insertion
strategies. For comparison, the same task on the same single core using POLCO v.4.7.1 [33]
took 1.9 min, and using lrs (lrslib v.7.3, [37]) took 590 min.

When the t-opt insertion order was applied to C6, the number of extremal rays in the
intermediate cones grew steadily, as expected. After completing 44 iterations this number
reached 18,506,227. At this point the computation was stopped as the last iteration took
over 200 h to finish, and the next iteration was estimated to require five to ten times as much
running time, see Section 6.4. The size of intermediate cones up to this point is plotted as the
blue curve on Figure 6. Assuming it is similar to the n = 5 case, this initial segment gives
an estimate for the total number of extremal rays of C6 somewhere between 1020 and 1030.

Mathematics 2025, 13, 97 21 of 30

117,978

3000

150

26
26 40 60 80inequalities

nu
m

be
r

of
ra

ys

t-opt

recursive

lex-min

Figure 5. Size of intermediate cones for t-opt (blue), recursive (red), and lex-min (gray) insertion
orders for n = 5.

1012

108

104

57
57 120 180 240

inequalities

nu
m

be
r

of
ra

ys

t-opt

recursive

Figure 6. Size of intermediate cones for t-opt (blue) and recursive (red) insertion orders for n = 6.

Due to the excessive time the next iteration would have taken, the DD algorithm for C6

and using the t-opt insertion order had to be stopped quite early. Therefore we searched for
a different inserting regime which would allow processing more inequalities in reasonable
time. It was observed that when K1 ⊂ K2 ⊂ K3 ⊂ · · · inserting the inequalities

(i, j|K1), (i, j|K2), (i, j|K3), . . .

in this order resulted in a moderate increase in the number of the extremal rays. This
observation motivated our definition of the recursive order. For the definition we assume
again that the elements of X are ordered. The recursive procedure SUB(K) enumerates the
subsets of K ⊆ X, where K is specified as an increasing list of its elements. The enumeration
is defined as follows:

• List K itself first;
• For all i in K in decreasing order, call SUB(K ∖ i) and keep the first occurrence of each

emitted subset.

In particular, SUB(0, 1, 2, 3) lists {0, 1, 2, 3} first, then calls SUB(0, 1, 2), SUB(0, 1, 3),
SUB(0, 2, 3) and SUB(1, 2, 3). Also, SUB(0, 1) produces {0, 1}, {0}, ∅, {1} in this order,
and SUB(0, 1, 2) produces

{0, 1, 2}, {0, 1}, {0}, ∅, {1}, {0, 2}, {2}, {1, 2}.

Definition 2 (Recursive insertion order). Enumerate the elementary inequalities as follows.
First, take the two-element subsets ij of X with i < j in lexicographic order. For each such pair ij,
enumerate all subsets K of X ∖ ij by calling SUB(X ∖ ij) and append (i, j|K) to the list.

The recursive insertion order is the reverse of this enumeration.

Mathematics 2025, 13, 97 22 of 30

As an example, for X = {0, 1, 2, 3} the recursive enumeration of the inequalities starts
with (0, 1|23), (0, 1|2), (0, 1|∅), (0, 1|3), (0, 2|13), and ends with (2, 3|0), (2, 3|∅), (2, 3|1).
The insertion order is the reverse: it starts with (2, 3|1) and ends with (0, 1|23).

Figures 5 and 6 also show the performance of the recursive insertion order. Overall, it
is slightly worse than the t-opt order (using about 15% more time to generate all extremal
rays of C5), but it allows inserting significantly more inequalities before the size of the inter-
mediate cone suddenly increases. In case of C6, as shown by Figure 6, the last intermediate
cone before the size jump has 165 facets out of the 240, and has only 235,961 extremal rays.
In the next iteration the number of extremal rays jumps to 5,733,451,485.

Undoubtedly both insertion strategies are variants of lex-min. Nevertheless, our ex-
periments showed that the recursive order has some intricate connection with the structure
of the submodular cone. Denoting the smallest element of the n-element base set X by 0,
recall from Definition 2 that the elementary inequalities (0, j|K) form an end segment of the
recursive order. The intermediate cone C∗n defined by inserting all other inequalities has the
moderate number of rays

|C∗n | = 2|Cn−1|+ (n−1). (8)

For example, |C∗5 | = 78 as |C4| = 37 from Table 1, while the total number of rays of C5 is
117,978. Similarly, |C∗6 | = 235,961 = 2|C5|+ 5, which is negligible compared to the estimated
number of rays of C6. Equation (8) follows from the fact that the bounding inequalities

{ (i, j|K), (i, j|0K) : i, j ∈ X ∖ 0 and K ⊆ X ∖ 0ij }

of C∗n define two disjoint copies of Cn−1 on two disjoint subsets of the coordinates (that is,
subsets of X), namely those which do not contain the element 0, and those which do. The
additional (n−1) term in (8) comes from the fact that the first copy is not p-standardized,
see Section 3.3. The recursive nature of this insertion strategy implies that similar reductions
occur earlier, explaining the recursive pattern of the initial segments of the red curves in
Figures 5 and 6.

Next, consider the step in the DD method after—or applied to—C∗n . It exhibits an
intriguing structural property of the submodular cone, which explains the sudden jump in
the number of extremal rays in the next iteration.

Claim 11. Suppose the DD method cuts the cone C∗n by the inequality (0, i|K). Among the extremal
rays of C∗n there will be exactly one more positive than negative rays. Moreover, all positive/negative
ray pairs are adjacent.

Proof. As was done above, split the coordinates of Cn (that is, subsets of X) into two classes
depending on whether they contain the minimal element 0. Put coordinates containing 0
first, followed by the others. An extremal ray of C∗n has zeros exclusively at the coordinates
in the first part, or zeros exclusively in the second part. Furthermore, the non-all-zero part
is an extremal ray of Cn−1. Therefore, extremal rays of C∗n are the concatenations of a zero
and a non-zero vector in either ⟨r, 0⟩ or ⟨0, r⟩ order where r is an extremal ray of Cn−1. It is
easy to check that the algebraic condition in Claim 9 for adjacency holds for all “opposite”
ray pairs ⟨r1, 0⟩ and ⟨0, r2⟩, thus all these pairs are actually adjacent extremal rays of C∗n ,
see also [16]. Choosing the inequality (0, i|K) as the next one to be inserted by the DD
method, the extremal rays of C∗n are split into positive, zero, and negative ones depending
on which side of the hyperplane corresponding to δ(0, i|K) they are on. Observe that for
every extremal ray r of Cn−1 we have

0 ≤ δ(0, i|K) · ⟨r, 0⟩ = −δ(0, i|K) · ⟨0, r⟩.

Mathematics 2025, 13, 97 23 of 30

Consequently, either both ⟨r, 0⟩ and ⟨0, r⟩ are in the zero part, or the first one is in the
positive, and the second one is in the negative part—meaning that the positive and negative
parts have equal size. Moreover, each positive / negative ray pair is adjacent, and so they
produce a new ray in the next iteration. We also need to account for the additional n−1
extremal rays in the first copy of Cn−1 in C∗n , of which exactly one goes into the positive
part, and the other (n−2) go into the zero part, proving the first statement of the claim.
The same reasoning as above shows that this single additional ray in the positive part is
adjacent to all the negative ones, proving the second claim.

In summary, independently which of the (0, i|K) inequalities is added next to C∗n , the
number of positive rays will be one more than the number of negative rays, and each
positive/negative ray pair will define an extremal ray in the next iteration. Specifically for
n = 6, the next inequality with which the recursive order intersects C∗6 is (0, 5|34). Among
the 235,961 extremal rays of C∗6 the number of positive, zero, negative ones relative to this
inequality are 75,719; 84,524; and 75,718, respectively. Thus the number of extremal rays in
the next iteration is

75,719 + 84,524 + 75,719× 75,718 = 5,733,451,485,

as was claimed earlier. A ray of this cone has 57 coordinates. Using only two bytes to
store a coordinate value, the list of extremal rays of this iteration would occupy more than
650 gigabytes.

6.3. Generating the First Extremal Rays of C6

Extremal rays of C5, as discussed in Section 3.5, automatically provide extremal rays
of C6 via the extension r(A) = r(Ay) = r′(A) where r′ is extremal in C5.

Our first attempt to generate further extremal rays was to use Claim 8. Rows of the
generating matrix M6 were chosen randomly until the chosen rows formed a submatrix of
rank d− 1. The one-dimensional solution r of this homogeneous system was then checked
against M6r ≥ 0, that is, whether r ∈ C6. If yes, then r provided an extremal ray of C6. While
every extremal ray had a chance to be found, mostly rays with extremely large weights
(see Figure 3) were generated, due to the high number of submatrices generating the same
ray. Running even for a considerable time, this method generated only a few thousand
essentially different rays, that is, rays from different orbits, see Section 3.4. The efficiency
improved only marginally when we tried to restrict the search to the neighborhood of
a ray r that was found earlier. It was done by fixing a d−1-row submatrix of M6 which
determines this r. When choosing rows of M6 which were to generate the next ray, the first
d− 2 rows were chosen from this submatrix. By Claim 9 extremal rays generated this way
are those which are adjacent to r.

Another possibility to generate extremal rays of C6 is indicated by the following
observation. If r is an extremal ray of any intermediate subcone of the DD method so that r
is also an element of C6, then r is an extremal ray of C6. It is because every extremal ray of
an intermediate cone is either an extremal ray of the next iteration, or it is outside of the
next cone, and thus of C6.

We ran the DD algorithm for several steps, and checked which extremal rays of the
last iteration were actually elements of C6. Since by Claim 3 extremal rays of C6 have
non-negative coordinates, it was worth checking if r ≥ 0 before delving into the more time
consuming computation of r ∈ C6. Furthermore, the check r ∈ C6 can be incorporated into
the inner loop of the lastly executed DD step. Code 4 details the replacement of the loop at
lines 6–11 of Code 1. It postpones the expensive adjacency test for those pairs which would
otherwise produce an extremal ray of C6.

Mathematics 2025, 13, 97 24 of 30

Line 3 is the quick precheck of the combinatorial test detailed in Code 2. If r1 and r2

pass this test, then the potential new ray is computed and checked for being an element
of C6. The adjacency test is performed only if this is the case, resulting in a significant
speed-up. This modified DD iteration was used on top of the intermediate cones produced
by the t-opt insertion order using different choices for the next inequality.

Code 4: Modified inner loop in the last round of DD

1 – previous cone is to be split by the row a ∈ M6
2 for each r1 positive/r2 negative ray do
3 if |r̂1 ∩ r̂2| < d− 2 then continue
4 compute the ray r = conic(r1, r2) ∩ a
5 if not r ≥ 0 then continue
6 if not M6r ≥ 0 then continue
7 if r1 and r2 are adjacent then
8 report r as extremal in C6
9 end

10 end

Starting from C∗6 as the intermediate cone, by Claim 11 every positive/negative ray
pair of this cone is adjacent. Therefore the checks in lines 3 and 7 of Code 4 should not be
executed at all when using the modified iteration on top of C∗6 .

Overall, these processes provided about a half million essentially different extremal
rays of C6, that is, representatives of that many different orbits.

6.4. Visiting the Neighborhood

Adjacency decomposition is a natural approach when the underlying problem has many
symmetries, see [30–32]. As described in Section 4.2, adjacency decomposition starts with
some initial extremal rays of C, generates their neighbors, then the neighbors of these
neighbors, etc., until no new ray can be generated. Adjacency decomposition requires
solving several enumeration problems in one less dimension, typically with a much smaller
number of constraints. It can enumerate all extremal rays even in cases when the original
DD method would exhaust all available resources [26]. The efficiency is partially due to
the fact that adjacency decomposition can take advantage of cone symmetries, while the
DD method cannot. It is so as it suffices to find the neighbors of a single representative
from each orbit (that is, symmetry class), as neighbors of rays from the same orbit are the
symmetrical images of neighbors of this representative. Adjacency decomposition can
also be applied recursively to the most difficult subproblems. Typically those difficult
subproblems have a large number of symmetries as well, improving the efficiency further.

A clear resource limit of the DD method is the total number of the extremal rays to
be enumerated. The same limit for the adjacency decomposition method is the number of
orbits. According to Figure 7, in case of the submodular cone C6, each orbit contains, with
minimal exceptions, 2n! = 1440 rays. Consequently adjacency decomposition could reduce
the complexity of enumerating extremal rays by three orders of magnitude.

Mathematics 2025, 13, 97 25 of 30

10−3

10−5

10−7re
la

ti
ve

fr
eq

ue
nc

y

720 360 240 180 120 90 60 40 30 ≤20
orbit size

Figure 7. Relative frequency of orbits of C6 with a size below 1440.

Enumerating neighbors should be started with low-weight rays as in these “easy”
cases the DD method can be used directly as outlined in Section 4.2. This approach was
successfully used to generate 260 M essentially different extremal rays of C6 (that is, rays
on different orbits), starting from the rays computed earlier. This required computing
neighbors of only about 450,000 rays. These rays had typically low weights: 69% had
weights between 56 and 59, 21% had weights 60–69, and the remaining 10% had weights
between 70 and 80. On average, each probed ray produced over 600 neighbors in different
orbits. More than 95% of these computations took less than 1 s.

Figure 8 depicts a sample of longer computations showing the total number of gener-
ated neighboring rays versus the speed of generation on the same CPU and using a single
core. The computation used either the t-opt order (blue dots) or the recursive order (red
dots), see Section 6.2, restricted to the rows of the corresponding submatrix. While the
recursive order seems to appear mainly in the slower region, in some cases it was signifi-
cantly faster than the t-opt order. The plotted data seem to follow, alas with large deviation,
a linear trend marked by the green line. Since both coordinates are on logarithmic scale, it
gives the exponential approximation

speed = C · size−0.6

for some constant C. Thus if the output size increases tenfold, then the speed goes down by
a factor of 10−0.6 ≈ 0.25, and the total running time is expected to go up by a factor of 40.

number of rays

ra
ys

pe
r

se
co

nd

104 105 106 5·106

102

103

104

Figure 8. Speed of generating adjacent rays. Blue: t-opt order; red: recursive order.

The weight distribution for rays and for orbits are almost identical as only a small
fraction of the orbits is not maximal (see Figure 7). Using the data of Figure 3, 90% of the
weights are expected to be below 75, and so belong to the “easy” cases. There are, however,
“difficult” cases as well. As discussed in Section 4, almost all weights occur between the
smallest and the largest possible values with example of rays with large weights being

Mathematics 2025, 13, 97 26 of 30

the extremal rays f J defined in (6). Table 2 lists how many neighboring orbits the rays f J

have. For n = 5 the exact numbers are shown in parentheses, for n = 6 the percentages are
estimates. The data implies that even listing the neighboring orbits of these extremal rays
requires space comparable to the total number of orbits. For n = 6 finding all neighbors
of f01, or at least checking whether all of them have been found, would require efforts
comparable to enumerating all orbits of the extremal rays of C6.

Table 2. Number of neighboring orbits of the heaviest extremal rays for n = 5 (top) and n = 6 (bottom).

|J| w(fJ) Orbits

2 72 100% (672)
3 68 99% (664)
4 68 95% (636)
5 70 44% (299)

|J| w(fJ) Orbits

2 224 89%
3 216 83%
4 216 89%
5 220 76%
6 225 37%

7. Estimating the Total Number of Rays and Orbits for n = 6
While we successfully generated a large number of extremal rays of C6, generating

a complete list with any of the above methods would require an unrealistic amount of
resources. We still aimed to provide an estimate for their overall number to understand
the expected complexity of the complete problem. However, to the best of our knowledge,
no efficient randomized algorithm exists for computing a reasonable approximation of
the total number of extremal rays of a polyhedral cone, and only two general approaches
have been proposed. The first method, developed by Avis & Devroye [38], is based on the
backtrack tree size estimator of Knuth, and was implemented around the reverse search
(RS) vertex enumeration algorithm [39]. This estimator, while theoretically unbiased, has
enormous variance and in many cases vastly underestimates the number of rays. The
implementation in the software package lrs [37] gave the estimates ≈12,000 for C5 and
≈102,000 for C6 consistently. (The parameter maxdepth was set to 2 and the iteration count
was set to 100.) The fact that C5 has almost ten times as many rays renders these estimates
too inaccurate to be useful.

The second estimation method from [40] is based on MCMC (Markov Chain Monte
Carlo) and uses conditional sampling to reduce the variance. The algorithm, however,
assumes that choosing (d−1) rows of the generating matrix M randomly samples its
maximal (d−1)-rank subsets uniformly. This is not the case for the highly degenerate
submodular cones. In order to be able to use this estimation method, an effective sampler
of the maximal, (d−1)-rank subsets of M would have to be devised first. This task seems
to be an equally difficult and challenging problem. With such a sampler our first attempt
to create extremal rays of C6 as described in Section 6.3 would have been significantly
more efficient.

To get an estimate on the total number of extremal rays of C6 we resort to a heuris-
tic argument without theoretical guarantee. From the existing pool of 260M essentially
different rays, 1000 were chosen randomly with the following restrictions: the ray was
not used in the pool creation, and the ray weight is at most 70. According to Figure 3
these restrictions exclude about 15% of rays. All neighbors of the chosen 1000 rays were
computed, producing 2,824,119 extremal rays. These rays determined 2,797,684 distinct

Mathematics 2025, 13, 97 27 of 30

orbits (99%), of which 154,170 (about 5.5%) have already had a representative in the pool.
Assuming that the pool is a completely random subset of all orbits, this yields the estimate
260M / 0.055 ≈ 4.7·109 for the total number of orbits. From here, based on the weight
distribution depicted on Figure 3, the number of extremal rays is estimated to be 6.5·1012.
Repeating this experiment gave similar results.

This estimate is clearly biased as the pool is far from random: it was created by adding
neighbors, in several stages, to a relatively small number of rays. While the above figures
are quite reasonable, we expect the actual count to be significantly larger, closer to the lower
estimate 1020 obtained in Section 6.2.

8. Conclusions
Generating extremal submodular functions on a finite base set is an intriguing and

challenging problem, as a list of these functions carries invaluable information about their
structure. Knowledge of all extremal function for the case |X| = 4 was instrumental in
investigating properties of conditional independence structures [8,9]. Extremal submodular
functions for |X| = 5 were used to investigate and create new non-Shannon type entropy
inequalities [10], and to characterize conditional independence structures [11]. Generating
this list for the base set |X| = 6 was shown in our paper to be equivalent to enumerating
the extremal rays of a d = 57-dimensional polyhedral cone determined by m = 240 facets,
see Table 1. The main difficulty stems from the high dimensionality, leading to both
structural and numerical problems. For ray enumeration we used a variant of the Double
Description method (Code 1). The iteration step was implemented as a pipe: as input it gets
the double description of an intermediate cone and the cutting facet, and it outputs the
double description of the cone for the next iteration. During an iteration ray adjacency is
checked by the ½-graph combinatorial test, see Code 3. This test uses some pre-computation
to speed up the traditional combinatorial test of Fukuda and Prodon (Claim 9), while
keeping the required additional memory manageable.

The insertion order is the order in which the rows of the matrix M determining the
facets of the cone are processed by DD. This order has a huge impact on performance, and
without careful ordering the size of the intermediate cones can be exponentially larger than
the final one. We defined two orders which performed excellently for smaller base sizes:
the t-opt order in Definition 1, and the recursive order in Definition 2. Both orders provided
a steadily increasing intermediate cone size for the control case |X| = 5. For the |X| = 6
case the t-opt order enabled performing 44 DD-iterations with the last cone having over
18M extremal rays. The last iteration took over 200 h to complete on the specified hardware.
In contrast, the recursive order let us proceed much further, performing 101 iterations.
Using this ordering, the next iteration, which was not computed, would produce a cone
with more than 5700 M extremal rays.

At this point it was clear that the DD method is not powerful enough to generate all
extremal submodular functions, so we looked for alternative solutions. First, we proved
that extremal functions on a smaller base set are also extremal on a larger base set, see
Claim 6. This automatically provides many extremal functions for |X| = 6. Second, if r is
such an extremal ray of an intermediate cone in the DD method so that r is inside the final
cone (that is, it satisfies all defining inequalities), then r is also extremal in the final cone,
see the discussion in Section 6.3. Using a modified DD iteration (Code 4), these extremal
submodular functions can be extracted more efficiently than generating the next iteration
and then checking for inclusion in the final cone.

The third option, which turned out to be the most successful, is the Adjacency Decompo-
sition discussed in Section 6.4. Given an extremal ray of the final cone, we can enumerate
all of its neighbors. This method also leverages the symmetry of the problem as it suffices

Mathematics 2025, 13, 97 28 of 30

to find the neighbors of a single ray from the orbit of its symmetrical versions. Since a
typical orbit has the maximal 1440 elements (see Figure 7), the gain is significant. The DD
enumeration with certain modifications was used for this purpose, see Section 4.2.

Generating neighbors repeatedly allowed us to generate 260 M extremal functions,
all on different orbits. This provided a significant sample sample size which was used
for estimating different properties, such as weight distribution (Figure 3), frequency of
different orbit sizes (Figure 7), or how many orbits are represented by the neighbors of
the heaviest extremal rays (Table 2). Using our dataset, we attempted to estimate the total
number of extremal rays and orbits, for details, see Section 7.

The recursive insertion order revealed an intriguing structural property of the sub-
modular cone, see Section 6.2. To recap this property, the cone C∗n , which is determined by
the bounding inequalities

{ (i, j|K), (i, j|0K) : i, j ∈ X ∖ 0 and K ⊆ X ∖ 0ij }

is the direct product of two instances of Cn−1 on two disjoint subsets of the coordinates.
Consequently, extremal rays of C∗n can be generated directly from the extremal rays of Cn−1

without any computation. The cone determined by the remaining inequalities

{(0, j|K) : j ∈ X ∖ 0 and K ⊆ X ∖ j }

is quite simple. Apart from its linearity space, extremal rays are

rA : J 7→
{

0 if J ⊇ A,
1 otherwise,

for all A ⊆ X ∖ 0. It is an open question whether this observation can be used to speed up
the overall computation.

Section 3.4 discussed the symmetries of the submodular functions. In Claim 5 we
proved that this set has no additional symmetry which would be induced by a permutation
of the defining inequalities. Nevertheless, the submodular cone may have additional
symmetries. It is an open problem to find additional symmetries, or to prove that there are
no more.

High-dimensional geometrical problems are prone to numerical instability, a well-
known phenomenon in computational geometry. Determining the rank of a sparse 57-
dimensional matrix with ±1 non-zero entries requires high-precision arithmetic. The
coordinates of the final (and also the intermediate) extremal rays are solutions of such
a homogeneous linear system of equations with 57 variables, thus these numbers can
be scaled to be integers. Their magnitude can theoretically be as high as 1010. Quite
surprisingly, none of the coefficients in our computation had an absolute value above 1800,
in spite of the fact that we explicitly tried to generate rays with large coefficients. Future
research could reveal a theoretical explanation for this surprising fact.

We have made the dataset of the generated extremal rays available to allow and
welcome future research to build on it and add more extremal rays, either by using our
algorithms, or by any other method developed independently. If the total number of
functions is our lowest estimate, then the complete dataset would contain around 1000 times
as many rays as it contains now, occupying around 50 terabytes.

Author Contributions: Conceptualization, E.P.C. and L.C.; Methodology, E.P.C. and L.C.; Software,
E.P.C. and L.C.; Writing—original draft, E.P.C. and L.C. All authors have read and agreed to the
published version of the manuscript.

Mathematics 2025, 13, 97 29 of 30

Funding: The research reported in this paper was partially supported by the ERC Advanced
Grant ERMiD.

Data Availability Statement: Implementations of the main algorithms discussed in this paper can
be found at https://github.com/csirmaz/submodular-functions-6, accessed on 18 December 2024.
Partial results of the computations representing 360 billion extremal submodular functions in 260 M
orbits are available as a Zenodo dataset at https://zenodo.org/records/13954788, accessed on 19
October 2024.

Acknowledgments: We would like to thank the careful work of the reviewers, which helped us to
improve the presentation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Balcan, M.F.; Harvey, N.J. Submodular functions: Learnability, structure, and optimization. SIAM J. Comput. 2018, 47, 703–754.

[CrossRef]
2. Bach, F. Learning with Submodular Functions: A Convex Optimization Perspective. In Foundations and Trends in Machine Learning;

Now Publishers: Hanover, MA, USA, 2013; Volume 6.
3. Studený, M.; Bouckaert, R.R.; Kocka, T. Extreme Supermodular Set Functions over Five Variables; Technical Report 1977; Institute of

Information Theory and Automation: Prague, Czech Republic, 2000.
4. Tao, T. An Introduction to Measure Theory; Graduate Studies in Mathematics, American Mathematical Society: Providence, RI,

USA, 2021.
5. Sadeghi, O. The Diminishing Returns (DR) Property and Its Applications in Machine Learning. Ph.D. Thesis, University of

Washington, Electrical and Computer Engineering, Seattle, WA, USA, 2023.
6. Kurzweil, R. The Law of Accelerating Returns. In Alan Turing: Life and Legacy of a Great Thinker; Teuscher, C., Ed.; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 381–416. [CrossRef]
7. Kashimura, T.; Sei, T.; Takemura, A.; Tanaka, K. Cones of Elementary Imsets and Supermodular Functions: A Review and Some

New Results. In Harmony of Gröbner Bases and the Modern Industrial Society; Hibi, T., Ed.; World Scientific Publishing Company:
Singapore, 2012; pp. 117–152. [CrossRef]

8. Matúš, F.; Studený, M. Conditional Independences among Four Random Variables 1. Comb. Probab. Comput. 1995, 4, 269–278.
[CrossRef]

9. Studený, M. Conditional Independence Structures Over Four Discrete Random Variables Revisited: Conditional Ingleton
Inequalities. IEEE Trans. Inf. Theory 2021, 67, 7030–7049. [CrossRef]

10. Csirmaz, L. One-adhesive polymatroids. Kybernetika 2020, 56, 886–902. [CrossRef]
11. Boege, T.; Bolt, J.; Studený, M. Self-adhesivity in lattices of abstract conditional independence models. Discret. Appl. Math. 2025,

361, 196–225. [CrossRef]
12. Heckerman, D. A Tutorial on Learning with Bayesian Networks. In Innovations in Bayesian Networks: Theory and Applications;

Holmes, D., Jain, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–82. [CrossRef]
13. Scutari, M. Entropy and the Kullback–Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient

Implementation. Algorithms 2024, 17, 24. [CrossRef]
14. Studený, M. Probabilistic Conditional Independence Structures; Springer: Berlin/Heidelberg, Germany, 2010.
15. Kaya, İ.C.; Ulus, F. An iterative vertex enumeration method for objective space based vector optimization algorithms. RAIRO-Oper.

Res. 2021, 55, S2471–S2485. [CrossRef]
16. Ziegler, G.M. Lectures on Polytopes; Number 152 in Graduate texts in mathematics; Springer: Berlin/Heidelberg, Germany, 1995.
17. Fukuda, K. Polyhedral Computation; Department of Mathematics, Institute of Theoretical Computer Science ETH Zurich: Zürich,

Switzerland, 2020. [CrossRef]
18. Avis, D.; Jordan, C. Comparative computational results for some vertex and facet enumeration codes. arXiv 2016, arXiv:1510.02545.
19. Strang, G. Introduction to Linear Algebra, 6th ed.; Cambridge University Press: Cambridge, UK, 2023.
20. Yeung, R. A First Course in Information Theory; Information Technology: Transmission, Processing and Storage; Springer:

Berlin/Heidelberg, Germany, 2012.
21. Matúš, F.; Csirmaz, L. Entropy Region and Convolution. IEEE Trans. Inf. Theory 2016, 62, 6007–6018. [CrossRef]
22. Studený, M. Basic facts concerning supermodular functions. arXiv 2016, arXiv:1612.06599.
23. Matúš, F. Two Constructions on Limits of Entropy Functions. IEEE Trans. Inf. Theor. 2007, 53, 320–330. [CrossRef]
24. Oxley, J.G. Matroid Theory (Oxford Graduate Texts in Mathematics); Oxford University Press, Inc.: Oxford, UK, 2006.

https://github.com/csirmaz/submodular-functions-6
https://zenodo.org/records/13954788
http://doi.org/10.1137/120888909
http://dx.doi.org/10.1007/978-3-662-05642-4_16
http://dx.doi.org/10.1142/9789814383462_0008
http://dx.doi.org/10.1017/S0963548300001644
http://dx.doi.org/10.1109/TIT.2021.3104250
http://dx.doi.org/10.14736/kyb-2020-5-0886
http://dx.doi.org/10.1016/j.dam.2024.10.006
http://dx.doi.org/10.1007/978-3-540-85066-3_3
http://dx.doi.org/10.3390/a17010024
http://dx.doi.org/10.1051/ro/2020139
http://dx.doi.org/10.3929/ethz-b-000426218
http://dx.doi.org/10.1109/TIT.2016.2601598
http://dx.doi.org/10.1109/TIT.2006.887090

Mathematics 2025, 13, 97 30 of 30

25. Joswig, M.; Theobald, T. Polyhedral and Algebraic Methods in Computational Geometry; Universitext; Springer: Berlin/Heidelberg,
Germany, 2013.

26. Sikirić, M.D.; Schuermann, A.; Vallentin, F. Classification of eight dimensional perfect forms. Electron. Res. Announc. Am. Math.
Soc. 2007, 13, 21–32. [CrossRef]

27. Avis, D.; Bremner, D. How good are convex hull algorithms? In Proceedings of the Eleventh Annual Symposium on Computa-
tional Geometry, SCG ’95, New York, NY, USA, 5–7 June 1995; pp. 20–28. [CrossRef]

28. Motzkin, T.S.; Raiffa, H.; Thompson, G.L.; Thrall, R.M. The Double Description Method. In Contributions to the Theory of Games;
Kuhn, H.W., Tucker, A.W., Eds.; Chapter 3; Princeton University Press: Princeton, NJ, USA, 1953; Volume II, pp. 51–74. [CrossRef]

29. Fukuda, K.; Prodon, A. Double description method revisited. In Proceedings of the Combinatorics and Computer Science, Hong
Kong, China, 17–19 June 1996; Deza, M., Euler, R., Manoussakis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 91–111.

30. Bremner, D.; Sikirić, M.D.; Schuermann, A. Polyhedral representation conversion up to symmetries. Polyhedral Computation; ETH
Zurich: Zürich, Switzerland, 2009; pp. 45–71. [CrossRef]

31. Martínez, J.M.M.; Urías, J. An algorithm for constructing the skeleton graph of degenerate systems of linear inequalities. PLoS
ONE 2017, 12, e0175819. [CrossRef]

32. Rehn, T. Polyhedral Description Conversion up to Symmetries. Ph.D. Thesis, Otto von Guericke University: Magdeburg,
Germany, 2010.

33. Terzer, M. Large Scale Methods to Enumerate Extreme Rays and Elementary Modes. Doctoral Thesis, ETH Zurich, Zürich,
Switzerland, 2009. [CrossRef]

34. Zolotykh, N.; Bastrakov, S. Two variations of graph test in double description method. Comput. Appl. Math. 2019, 38, 100.
[CrossRef]

35. Nguyen, H.Q. Semimodular Functions and Combinatorial Geometries. Trans. Am. Math. Soc. 1978, 238, 355–383. [CrossRef]
36. Assarf, B.; Gawrilow, E.; Herr, K.; Joswig, M.; Lorenz, B.; Paffenholz, A.; Rehn, T. Computing convex hulls and counting integer

points with polymake. Math. Program. Comput. 2017, 9, 1–38. [CrossRef]
37. Avis, D. A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm. In Polytopes—Combinatorics and

Computation; Kalai, G., Ziegler, G.M., Eds.; Birkhäuser: Basel, Switzerland, 2000; pp. 177–198. [CrossRef]
38. Avis, D.; Devroye, L. Estimating the number of vertices of a polyhedron. Inf. Process. Lett. 2000, 73, 137–143. [CrossRef]
39. Avis, D.; Fukuda, K. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret.

Comput. Geom. 1992, 8, 295–313. [CrossRef]
40. Salomone, R.; Vaisman, R.; Kroese, D.P. Estimating the number of vertices in convex polytopes. In Proceedings of the International

Conference on Operations Research and Statistics. Global Science and Technology Forum, Singapore, 18–19 January 2016;
pp. 96–105.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1090/S1079-6762-07-00171-0
http://dx.doi.org/10.1145/220279.220282
http://dx.doi.org/10.1515/9781400881970-004
http://dx.doi.org/10.1090/crmp/048/03
http://dx.doi.org/10.1371/journal.pone.0175819
http://dx.doi.org/10.3929/ethz-a-005945733
http://dx.doi.org/10.1007/s40314-019-0862-0
http://dx.doi.org/10.1090/S0002-9947-1978-0491269-9
http://dx.doi.org/10.1007/s12532-016-0104-z
http://dx.doi.org/10.1007/978-3-0348-8438-9_9
http://dx.doi.org/10.1016/S0020-0190(00)00011-9
http://dx.doi.org/10.1007/BF02293050

	Introduction
	Submodular Functions
	The Cone of Submodular Functions
	Submodular Inequalities
	Standardization
	The Cone of p-Standardized Functions
	Symmetries
	Extending the Base Set

	Methods for Generating Extremal Rays
	The Double Description Method
	Enumerating Neighbors
	The Kernel Method

	Improving the Combinatorial Test
	Enumerating Extremal Submodular Functions for n = 6
	Weight (Incidence) Distribution
	Insertion Order
	Generating the First Extremal Rays of C6
	Visiting the Neighborhood

	Estimating the Total Number of Rays and Orbits for n=6
	Conclusions
	References

