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Radim Jiroušeka,b, Václav Kratochv́ıla,b

aCzech Academy of Sciences, Institute of Information Theory and Automation, Pod
Vodarenskou vezi 4, 182 00, Prague, Czech Republic

bFaculty of Management, Prague University of Economy and Business, Jarosovska
1117, 377 01, Jindrichuv Hradec, Czech Republic

Abstract

This paper addresses the long-standing challenge of identifying belief function
entropies that can effectively guide model learning within the Dempster-Shafer
theory of evidence. Building on the analogy with classical probabilistic ap-
proaches, we examine 25 entropy functions documented in the literature and
evaluate their potential to define mutual information in the belief function
framework. As conceptualized in probability theory, mutual information re-
quires strictly subadditive entropies, which are inversely related to the informa-
tiveness of belief functions. After extensive analysis, we have found that none of
the studied entropy functions fully satisfy these criteria. Nevertheless, certain
entropy functions exhibit properties that may make them useful for heuristic
model learning algorithms. This paper provides a detailed comparative study
of these functions, explores alternative approaches using divergence-based mea-
sures, and offers insights into the design of information-theoretic tools for belief
function models.
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1. Introduction

In classical probabilistic Bayesian networks, some efficient model learning
approaches use information-theoretic quantities to control the model learning
processes (Koller, 2009). Among others, it concerns mutual information and
conditional mutual information. The mentioned approaches exploit the fact
that mutual information measures the amount of information we get about one
variable’s value when learning the value of the other variable. In other words,
it says how much the uncertainty about one variable decreases when learning

Email addresses: radim@utia.cas.cz (Radim Jiroušek), velorex@utia.cas.cz (Václav
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the value of the other variable. For probability distribution 𝜋(𝑋,𝑌 ) (defined on
Ω𝑋 ×Ω𝑌 ), it is defined as a value

MI(𝑋;𝑌 |𝜋) = H(𝜋(𝑋)) − H (𝜋(𝑋 |𝑌 )) = H(𝜋(𝑋)) + H (𝜋(𝑌 )) − H (𝜋(𝑋,𝑌 )),

where H(𝜋(𝑋)) = −∑
𝑥∈Ω𝑋

𝜋(𝑥) log2 𝜋(𝑥) is Shannon entropy2. This mutual
information can also be expressed using Kullback-Leibler divergence (relative
entropy), which is often used to measure a difference between two distributions
𝜋 and 𝜅 defined on the same space Ω:

D𝑖𝑣KL (𝜋; 𝜅) =


+ ∞ if ∃𝑥 ∈ Ω : 𝜅(𝑥) = 0 < 𝜋(𝑥),∑
𝑥∈Ω:𝜅 (𝑥 )>0

𝜋(𝑥) log2
(
𝜋 (𝑥 )
𝜅 (𝑥 )

)
otherwise.

Mutual information can be equivalently expressed as a Kullback-Leibler diver-
gence between a joint probability distribution 𝜋(𝑋,𝑌 ) and the product of its
marginals 𝜋(𝑋) · 𝜋(𝑌 ):

MI(𝑋;𝑌 |𝜋) = D𝑖𝑣KL (𝜋(𝑋,𝑌 ); 𝜋(𝑋) · 𝜋(𝑌 )). (1)

It is known that the mutual information is always non-negative and equals 0 if
and only if variables 𝑋 and 𝑌 are under the joint distribution 𝜋 independent,
or, in other words, knowledge of the value of one variable brings no information
about the other. Thus, the mutual information can indicate when the considered
variables are independent.

In this paper, we explore the possibility of introducing a notion analogous
to mutual information, which would be a suitable tool for controlling the con-
struction of belief function models. By these models, we mean mainly belief
networks (the belief function counterparts of probabilistic Bayesian networks)
and compositional models (Jiroušek and Kratochv́ıl, 2021), which are known to
be equally powerful. As for the theoretical framework, we are biased toward
the interpretation of Dempster-Shafer theory, which implies, for example, that
when we speak of independence, we mean it in the sense implied by Dempster’s
rule of combination.

As we will also see, we do not exclude the possibility of other approaches to
introducing mutual information for belief functions. However, in this study, we
want to use well-established ideas from probability theory, and thus we search
for an entropy function 𝐻 that satisfies the following three properties:

(I) 𝐻 is an extension of Shannon entropy for belief functions. It means that
for Bayesian belief functions, the value of 𝐻 equals the value of Shannon
entropy for the corresponding probability measure.

(II) 𝐻 is a (negative) measure of the informativeness of a belief function. The
more informative the belief function, the smaller the value of 𝐻. For the

2We always consider finite Ω and take 0 log2 (0) = 0.
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Bayesian belief function it should be proportional to Shannon entropy of
the corresponding probability measure, and for other belief functions, it
should be monotonic in the sense that the entropy of more specific belief
functions should be less than that of less specific belief functions.

(III) For any basic probability assignment 𝑚𝑋𝑌 (defining a two-dimensional
belief function) and its marginals 𝑚𝑋, 𝑚𝑌 ,

𝐻 (𝑚𝑋𝑌 ) ≤ 𝐻 (𝑚𝑋) + 𝐻 (𝑚𝑌 ),

with the equality if and only if variables 𝑋 and 𝑌 are independent under
𝑚𝑋𝑌 .

In the previous version of this study, (Jiroušek and Kratochv́ıl, 2024), we
considered 18 entropy functions. Without claiming to be complete, the present
paper discusses an additional seven functions brought to our attention in various
responses to that conference paper. After submitting this paper for publication,
we were informed of the paper by Dezert and Tchamova (2022), in which the
authors consider a total of 45 different measures and indices. They study which
of them are suitable for measuring the uncertainty associated with belief func-
tions. In probability theory, Shannon entropy measures both the amount of
uncertainty associated with a probability function (the higher the entropy, the
higher the uncertainty) and the information content of a probability function
(the higher the entropy, the less information is carried by a probability func-
tion). For belief functions, the situation is much more complicated, and thus,
the problem solved in (Dezert and Tchamova, 2022) is, in a way, complementary
to the problem solved in this paper (the same goes for (Dezert, 2022)). Thus, it
is not surprising that the desiderata considered by Dezert and Tchamova (2022)
and the above properties overlap only in one condition: property (I).

The paper is organized as follows. After introducing the necessary notation
for belief function theory in Section 2, we study a battery of 25 entropy func-
tions from the point of view of the properties (I) and (II) in Sections 3 and
4. The notion of mutual information is introduced in Section 5. Section 6 is
devoted to the study of the subadditivity of the considered entropy functions
and its stronger form as expressed above in (III). In Section 7, we consider an
alternative way of introducing mutual information for belief functions based on
divergences. The last Section summarizes the results and gives directions for
further research.

2. Notation

We will get by with just a few fundamental concepts from the belief func-
tion theory (Shafer, 1976). Let Ω denote a finite set, often called a frame of
discernment . A basic probability assignment (BPA) is a function 𝑚 : 2Ω → [0, 1]
satisfying two conditions: (i)

∑
𝑎⊆Ω 𝑚(𝑎) = 1, and (ii) 𝑚(∅) = 0.

A subset 𝑎 ⊆ Ω is said to be a focal element of 𝑚 if 𝑚(𝑎) > 0. A BPA with
only one focal element is said to be deterministic, denoted 𝜄𝑎, where 𝜄𝑎 (𝑎) = 1.
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As 𝜄Ω represents total ignorance, it is termed vacuous. A BPA is called Bayesian
if all its focal elements are singletons (𝑚(𝑎) > 0 =⇒ |𝑎 | = 1).

Each BPA 𝑚 is associated with the following three functions defined on the
power set of the frame of discernment:

𝐵𝑒𝑙𝑚 (𝑎) =
∑︁
𝑏⊆𝑎

𝑚(𝑏); 𝑃𝑙𝑚 (𝑎) =
∑︁

𝑏⊆Ω:𝑏∩𝑎≠∅
𝑚(𝑏); 𝑄𝑚 (𝑎) =

∑︁
𝑏⊆Ω:𝑏⊇𝑎

𝑚(𝑏).

These mappings are known respectively as the belief function, plausibility func-
tion, and commonality function.

Each BPA 𝑚 is also connected with a set of probability distributions 𝜋. A
credal set, is a set of probability distributions 𝜋

P𝑚 =
{
𝜋 defined on Ω :

(
∀𝑎 ⊆ Ω : 𝜋(𝑎) ≥ 𝐵𝑒𝑙 (𝑎)

)}
, (2)

and its borderline is denoted by B𝑚.
A central concept in Dempster-Shafer theory is Dempster’s combination rule

(Shafer, 1976), which combines information from two distinct sources: BPAs 𝑚1

and 𝑚2. The combined BPA 𝑚1 ⊕ 𝑚2 is computed (for each subset 𝑐 ⊆ Ω) as
follows:

𝑚1 ⊕ 𝑚2 (𝑐) = (1 − 𝐾)−1
∑︁
𝑎⊆Ω

∑︁
𝑏⊆Ω:𝑎∩𝑏=𝑐

𝑚1 (𝑎) · 𝑚2 (𝑏),

where 𝐾 =
∑
𝑎⊆Ω

∑
𝑏⊆Ω:𝑎∩𝑏=∅ 𝑚1 (𝑎) · 𝑚2 (𝑏) is usually interpreted as the amount

of conflict between 𝑚1 and 𝑚2 (if 𝐾 = 1, then the combination is undefined).
When defining entropy functions for BPAs (see Table 1 for the list of those

considered in this paper), some authors also use the Shannon entropy of a
specific probability distribution. Thus, in what follows, we consider three prob-
ability functions related to BPA 𝑚, so-called pignistic transform, plausibility
transform, and maximum entropy transform defined for all 𝑥 ∈ Ω (respectively)

𝜋𝑚 (𝑥) =
∑︁

𝑎⊆Ω:𝑥∈𝑎

𝑚(𝑎)
|𝑎 | ,

𝜆𝑚 (𝑥) =
𝑃𝑙𝑚 (𝑥)∑
𝑦∈Ω 𝑃𝑙𝑚 (𝑦)

,

𝜇𝑚 = arg max
𝜋∈P𝑚

{H (𝜋)}.

When discussing probability distributions, we will also use a symbol already
used in the Introduction: D𝑖𝑣KL is the Kullback-Leibler divergence of two
probability measures defined D𝑖𝑣KL (𝜅; 𝜋) =

∑
𝑥∈Ω 𝜅(𝑥) log2 log2 (𝜅(𝑥)/𝜋(𝑥)).

3. Measures of informativeness

Belief functions are often preferred to probability because they can naturally
model different types of uncertainty. In particular, they can easily express igno-
rance (ambiguity), which is beyond the capabilities of probabilistic tools. This
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Table 1: Definitions of entropy, chronologically ordered

𝐻𝑂 Hohle (1982) 𝐻𝑂 (𝑚) = −∑
𝑎⊆Ω 𝑚(𝑎) log (𝐵𝑒𝑙𝑚 (𝑎))

𝐻𝑌 Yager (1983) 𝐻𝑌 (𝑚) = −∑
𝑎⊆Ω 𝑚(𝑎) log (𝑃𝑙𝑚 (𝑎))

𝐻𝑇 Smets (1983) 𝐻𝑇 (𝑚) = −∑
𝑎⊆Ω log (𝑄𝑚 (𝑎))

𝐻𝐷 Dubois and Prade (1987) 𝐻𝐷 (𝑚) =
∑
𝑎⊆Ω 𝑚(𝑎) log( |𝑎 |)

𝐻𝑁 Nguyen (1987) 𝐻𝑁 (𝑚) = −∑
𝑎⊆Ω 𝑚(𝑎) log (𝑚(𝑎))

𝐻𝐿 Lamata and Moral (1988) 𝐻𝐿 (𝑚) = 𝐻𝑌 (𝑚) + 𝐻𝐷 (𝑚)

𝐻𝑅 Klir and Ramer (1990) 𝐻𝑅 (𝑚) = 𝐻𝐷 (𝑚) −
∑
𝑎⊆Ω 𝑚(𝑎) log

(
1 − ∑

𝑏⊆Ω 𝑚(𝑏) |𝑏\𝑎 ||𝑏 |

)
𝐻𝐾 Klir (1991) 𝐻𝐾 (𝑚) = −∑

𝑎⊆Ω 𝐵𝑒𝑙𝑚 (𝑎) log(𝑃𝑙𝑚 (𝑎))

𝐻𝑃 Klir and Parviz (1992) 𝐻𝑃 (𝑚) = 𝐻𝐷 (𝑚) −
∑
𝑎⊆Ω 𝑚(𝑎) log

(
1 − ∑

𝑏⊆Ω 𝑚(𝑏) |𝑎\𝑏 ||𝑎 |

)
𝐻𝐵 Pal et al. (1992, 1993) 𝐻𝐵 (𝑚) = 𝐻𝐷 (𝑚) + 𝐻𝑁 (𝑚)

𝐻𝐼 Maeda and Ichihashi (1993) 𝐻𝐼 (𝑚) = 𝐻𝐻 (𝑚) + 𝐻𝐷 (𝑚) = H(𝜇𝑚) + 𝐻𝐷 (𝑚)

𝐻𝐻 Harmanec and Klir (1994) 𝐻𝐻 (𝑚) = max𝜋∈P𝑚
H(𝜋) = H(𝜇𝑚)

𝐻𝐺𝑃 George and Pal (1996) 𝐻𝑃 (𝑚) =
∑
𝑎⊆Ω 𝑚(𝑎)∑𝑏⊆Ω 𝑚(𝑏)

(
1 − |𝑎∩𝑏 |

|𝑎∪𝑏 |

)
𝐻𝑀 Maluf (1997) 𝐻𝑀 (𝑚) = −∑

𝑎⊆Ω 𝑃𝑙𝑚 (𝑎) log(𝐵𝑒𝑙𝑚 (𝑎))

𝐻𝐴 Abellán and Moral (1999) 𝐻𝐴(𝑚) = 𝐻𝐼 (𝑚) +min𝜋∈B𝑚
D𝑖𝑣KL (𝜋; 𝜇𝑚)

𝐻𝐽 Jousselme et al. (2006) 𝐻𝐽 (𝑚) = H(𝜋𝑚)

𝐻𝐺 Deng (2016) 𝐻𝐺 (𝑚) = 𝐻𝑁 (𝑚) +
∑
𝑎⊆Ω 𝑚(𝑎) log(2 |𝑎 | − 1)

𝐻𝑍 Zhou et al. (2017) 𝐻𝑍 (𝑚) = 𝐻𝐺 (𝑚) + log(𝑒)
|Ω |

∑
𝑎⊆Ω 𝑚(𝑎) ∗ (1 − |𝑎 |)

𝐻𝜆 Jiroušek and Shenoy (2018) 𝐻𝜆 (𝑚) = H(𝜆𝑚) + 𝐻𝐷 (𝑚)

𝐻𝑃𝐷 Pan and Deng (2018) 𝐻𝑃𝐷 (𝑚) = −∑
𝑎⊆Ω

𝐵𝑒𝑙 (𝑎)+𝑃𝑙 (𝑎)
2 log

(
𝐵𝑒𝑙 (𝑎)+𝑃𝑙 (𝑎)
2(2|𝑎 |−1)

)
𝐻𝑆 Jiroušek and Shenoy (2020) 𝐻𝑆 (𝑄𝑚) =

∑
𝑎⊆Ω (−1) |𝑎 |𝑄𝑚 (𝑎) log(𝑄𝑚 (𝑎))

𝐻𝑄 Qin et al. (2020) 𝐻𝑄 = 𝐻𝑁 (𝑚) +
∑
𝑎⊆Ω

|𝑎 |
|Ω |𝑚(𝑎) log( |𝑎 |)

𝐻𝑌𝐷 Yan and Deng (2020) 𝐻𝑌𝐷 (𝑚) = −∑
𝑎⊆Ω 𝑚(𝑎) log 𝑚(𝑎)+𝐵𝑒𝑙 (𝑎)

2(2|𝑎 |−1) 𝑒
|𝑎 |−1
|Ω|

𝐻𝜋 Jiroušek et al. (2022) 𝐻𝜋 = H(𝜋𝑚) + 𝐻𝐷 (𝑚)

𝐻𝐹 Fan et al. (2022)

𝐻𝐹 (𝑚) = 1 −
√
3

|Ω |
∑
𝑥∈Ω 𝑑1 ( [𝐵𝑒𝑙𝑚 ({𝑥}), 𝑃𝑙𝑚 ({𝑥})] .[0, 1])

where
𝑑1 ( [𝑥1, 𝑦1] .[𝑥2, 𝑦2])

=

√︃( 𝑥1+𝑦1
2 − 𝑥2+𝑦2

2

)2 + 1
3

( 𝑦1−𝑥1
2 − 𝑦2−𝑥2

2

)2
fact, of course, influences (among other things) the design of various entropy
functions, some of which reflect only certain types of uncertainty. To be able
to discuss the possibility of introducing notions from information theory (such
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as mutual information), we should base our considerations on entropies that
measure the informativeness of belief functions. And, as we will see later, not
all measures designed to measure uncertainty, such as non-specificity or internal
conflict, also reflect informativeness.

First, however, note that most entropies listed in Table 1 satisfy the following
consistency with Shannon entropy.

Probability consistency. We say that a function 𝐻 that assigns a real value
to each BPA is consistent with Shannon entropy if, for all Bayesian BPAs
𝑚, the value 𝐻 (𝑚) is equal to Shannon entropy of the corresponding prob-
ability function, i.e., 𝐻 (𝑚) = −∑

𝑥∈Ω 𝑚({𝑥}) log2 𝑚({𝑥}).

The following are those that do not satisfy this property: 𝐻𝑇 , 𝐻𝐷, 𝐻𝐾 , 𝐻𝐺𝑃,
𝐻𝑀 , 𝐻𝑃𝐷, and 𝐻𝐹 . We note that, as the authors show, the George-Pal’s entropy
𝐻𝐺𝑃 for Bayesian BPAs is equivalent to Vajda’s quadratic entropy (Vajda, 1968;
Vajda and Zvárová, 2007) instead of the Shannon entropy (George and Pal,
1996). The Smets’ entropy 𝐻𝑇 is +∞ when 𝑚(Ω) = 0, and therefore, it is +∞ for
all Bayesian BPAs. In contrast, the Dubois-Prade’s entropy is 0 for all Bayesian
BPAs. The Klir’s entropy 𝐻𝐾 and the Maluf’s entropy 𝐻𝑀 coincide for Bayesian
BPAs, both equal to −∑

𝑎⊆Ω 𝐵𝑒𝑙𝑚 (𝑎) log2 𝐵𝑒𝑙𝑚 (𝑎). Similarly, 𝐻𝑃𝐷 is not prob-
ability consistent either, since 𝐻𝑃𝐷 = −∑

𝑎⊆Ω 𝐵𝑒𝑙𝑚 (𝑎) log2 (𝐵𝑒𝑙𝑚 (𝑎)/2 |𝑎 |−1) for
Bayesian BPAs. Finally, Fan et al.’s entropy 𝐻𝐹 obviously cannot coincide with
Shannon entropy because the formula does not contain a logarithmic function.
For a further comment on the behavior of 𝐻𝐹 for Bayesian BPAs, see Conclu-
sions.

The following study is based on the intuition saying that BPA 𝑚1 is not less
informative than BPA 𝑚2 (assuming that both are defined on the same frame
of discernment Ω) if 𝐵𝑒𝑙𝑚2 ≤ 𝐵𝑒𝑙𝑚1 , which is equivalent to 𝑃𝑙𝑚1 ≤ 𝑃𝑙𝑚2 , and
also to P𝑚1 ⊆ P𝑚2 . Note that this situation is very general and covers some
other specific cases. In a sense, the simplest case is the following. We say that
𝑚1 is a simple specification of 𝑚2 if 𝑚1 is created from 𝑚2 by shifting some
of its mass from some focal element to its subset; more precisely, there exist
subsets 𝑎 ⊂ 𝑏 ⊆ Ω such that 𝑚1 (𝑎) = 𝑚2 (𝑎) + 𝜀, and 𝑚1 (𝑏) = 𝑚2 (𝑏) − 𝜀 (all
remaining focal elements of 𝑚1 are the copies of the focal elements of 𝑚2). Since
we are moving (part of) the mass from 𝑏 to its subset, we see directly from the
definition of the belief function that3 𝐵𝑒𝑙𝑚1 > 𝐵𝑒𝑙𝑚2 . Thus, in this paper, we
use the following notion.

Simple monotonicity. We say that a function 𝐻 which assigns a real value
to each BPA is simply monotonic if, for any simple specification 𝑚1 of 𝑚2,
it holds that 𝐻 (𝑚1) < 𝐻 (𝑚2).

The introduced notion of simple monotonicity is closely related to the idea of
monotonicity with respect to the set inclusion discussed by Maeda and Ichihashi

3Strict inequality 𝐵𝑒𝑙𝑚1 > 𝐵𝑒𝑙𝑚2 in this paper means that for all 𝑎 ⊆ Ω, 𝐵𝑒𝑙𝑚1 (𝑎) ≥
𝐵𝑒𝑙𝑚2 (𝑎), and for at least one 𝑎, 𝐵𝑒𝑙𝑚1 (𝑎) is strictly greater than 𝐵𝑒𝑙𝑚2 (𝑎).
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(1993), Ramer (1987), and others. Monotonicity with respect to the set inclusion
implies simple monotonicity. Thus, from the cited papers, we immediately see
that 𝐻𝐷 and 𝐻𝐼 are simply monotonic. As shown in (Abellán and Moral, 1999),
the same holds for 𝐻𝐴. Since we are not sure that all simply monotonic BPAs are
also monotonic with respect to the set inclusion, for clarity, we will consistently
use only the term simple monotonicity. It may also be helpful to note that
some other papers use the term monotonicity with a different meaning (see,
e.g., (Jiroušek and Shenoy, 2018)).

Note that the introduced simple monotonicity is also equivalent to the im-
plication

𝐵𝑒𝑙𝑚2 < 𝐵𝑒𝑙𝑚1 =⇒ 𝐻 (𝑚1) < 𝐻 (𝑚2),

since, as the following assertions show, if 𝐵𝑒𝑙𝑚2 < 𝐵𝑒𝑙𝑚1 , then 𝑚1 can be created
from 𝑚2 by a sequence of simple specifications.

Theorem. If 𝐵𝑒𝑙𝑚 < 𝐵𝑒𝑙�̄�, then there exists a finite sequence of BPAs
𝑚 = 𝑚1, 𝑚2, . . . , 𝑚𝑘 = �̄� such that each 𝑚𝑖+1 is a simple specification of 𝑚𝑖.

Proof. The assertion is a direct consequence of the following lemma, the proof of
which gives instructions on how to construct 𝑚𝑖+1 from 𝑚𝑖. Note that, compared
to 𝑚𝑖, 𝑚𝑖+1 always has more focal elements identical with focal elements of �̄�,
which guarantees that the constructed sequence of BPAs 𝑚1, 𝑚2, . . . , 𝑚𝑘 is finite.

□

Lemma 1. If 𝐵𝑒𝑙𝑚1 < 𝐵𝑒𝑙𝑚2 , then there exists a BPA 𝑚′, which is a simple
specification of 𝑚1, and

|{𝑎 ⊆ Ω : 𝑚1 (𝑎) = 𝑚2 (𝑎)}| < |{𝑎 ⊆ Ω : 𝑚′ (𝑎) = 𝑚2 (𝑎)}|.

Proof. Since 𝑚1 ≠ 𝑚2 and these two BPAs are normalized, there must exist a
focal element 𝑏 of 𝑚1 such that 𝑚1 (𝑏) > 𝑚2 (𝑏). The existence of 𝑎 ⊂ 𝑏 for which
𝑚1 (𝑎) < 𝑚2 (𝑎) follows from the following consideration: If 𝑚1 (𝑎) ≥ 𝑚2 (𝑎) for
all 𝑎 ⊆ 𝑏, then 𝐵𝑒𝑙𝑚1 (𝑏) > 𝐵𝑒𝑙𝑚2 (𝑏).

Choose 𝜀 = min{(𝑚2 (𝑎)−𝑚1 (𝑎)); (𝑚1 (𝑏)−𝑚2 (𝑏))}. Define 𝑚′ (𝑎) = 𝑚1 (𝑎)+𝜀,
𝑚′ (𝑏) = 𝑚1 (𝑏) − 𝜀, and 𝑚′ (𝑐) = 𝑚1 (𝑐) for all 𝑐 ⊆ Ω different from 𝑎 and 𝑏. So
𝑚′ is a simple specification of 𝑚1. Furthermore, if 𝜀 = 𝑚2 (𝑎) − 𝑚1 (𝑎), then
𝑚′ (𝑎) = 𝑚2 (𝑎), and if 𝜀 = 𝑚1 (𝑏) − 𝑚2 (𝑏)), then 𝑚′ (𝑏) = 𝑚2 (𝑏). Since all other
values of 𝑚′ are the same as the corresponding values of 𝑚1, this means that

|{𝑎 ⊆ Ω : 𝑚1 (𝑎) = 𝑚2 (𝑎)}| + 1 = |{𝑎 ⊆ Ω : 𝑚′ (𝑎) = 𝑚2 (𝑎)}|. □

Results of experimental computations. Since we consider 25 entropy func-
tions in this paper, there are too many to study them all individually. Therefore,
for each property studied, we first performed computational experiments and
will discuss in detail only those entropies that appear interesting from the point
of view considered. However, the evaluation of the three entropies 𝐻𝐻 , 𝐻𝐼 , and
𝐻𝐴 requires the solution of optimization problems. The computation of the
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maximum entropy transform necessary to compute 𝐻𝐻 and 𝐻𝐼 requires solving
a convex optimization problem. For this, we explored numerical optimization
techniques, in particular the CVXR package in R. While this method allowed
computations in limited cases), it also occasionally failed to provide a solution,
with the solver aborting due to numerical instability.

Given these challenges, and considering that the theoretical properties of
these entropies are known from the literature, we decided to exclude these
three entropies from the experiments. This does not invalidate our results since
Harmanec-Klir’s entropy 𝐻𝐻 is apparently not simply monotonic; quite often,
the maximum-entropy transform of 𝑚 and that of its simple specification are
the same. This is consistent with our computational observations, where the
maximum entropy representative often coincided with the uniform distribution
in the corresponding credal set. (Of course, it would only be monotonic if the
inequality in the definition of simple monotonicity were not strict.) The sim-
ple monotonicity of Maeda-Ichihashi’s entropy 𝐻𝐼 and Abellán-Moral’s entropy
𝐻𝐴 follows from the results in (Maeda and Ichihashi, 1993)4 and (Abellán and
Moral, 1999).

In the computational experiments, we randomly generated 2,000 pairs of
BPAs 𝑚1, 𝑚2 such that 𝑚1 was a simple specification of 𝑚2. The size of the
frame of discernment Ω of each pair was randomly chosen between 4 and 16.
The process of generating 𝑚2 consisted of three steps:

1. We randomly determined the number of focal elements. In our main ex-
periments, this number was chosen within a limited range (typically a few
dozen) because we believe that practical BPAs should contain a reason-
able number of focal elements. Additionally, this choice was motivated by
computational efficiency.

2. The selected number of focal elements was randomly drawn from the power
set 2Ω without any restriction on their cardinality, except that the full set
Ω was always included as a focal element.

3. The probability mass was then randomly assigned to the selected focal
elements in such a way that their sum was equal to 1.

Our approach follows a similar methodology to (Jousselme and Maupin,
2012), with the key difference that we impose an explicit upper bound on the
number of focal elements. This ensures that the generated BPAs remain com-
putationally feasible while maintaining representational flexibility.

To generate 𝑚1, we ensured that it was a simple specification of 𝑚2. Ac-
cording to the definition, we randomly selected a focal element of 𝑚2 with a
cardinality of at least 2. Then, we determined what fraction (randomly chosen
between 10% and 100%) of its assigned probability mass would be transferred to
one of its randomly selected subsets. If the selected subset was already a focal

4The simple monotonicity of 𝐻𝐼 = 𝐻𝐷 + 𝐻𝐻 also follows directly from the properties of
𝐻𝐷 and 𝐻𝐻 .

8



0

25

50

75

100

𝐻
𝑂

𝐻
𝑇

𝐻
𝐷

𝐻
𝑁

𝐻
𝐿

𝐻
𝑅

𝐻
𝐾

𝐻
𝑃

𝐻
𝐵

𝐻
𝐺
𝑃

𝐻
𝑀

𝐻
𝐽

𝐻
𝑌

𝐻
𝐺

𝐻
𝑍

𝐻
𝜆

𝐻
𝑃
𝐷

𝐻
𝑆

𝐻
𝑄

𝐻
𝑌
𝐷

𝐻
𝜋

𝐻
𝐹

Entropy

S
u
cc
es
s
ra
te

(%
)

Figure 1: Success rate simple-specification experiments.

element, the specified portion of probability mass was added to it; otherwise,
the subset became a new focal element.

Then, for each pair 𝑚1, 𝑚2, we computed all 22 considered entropy values
and compared whether 𝐻 (𝑚1) < 𝐻 (𝑚2), indicating that 𝑚1 contains more in-
formation than 𝑚2. The result was positive if 𝐻 (𝑚1) < 𝐻 (𝑚2); otherwise, it
was negative.

The achieved results, shown in Figure 1, demonstrate the effectiveness of
the studied entropy functions in identifying increased information content in 𝑚1

over 𝑚2. Notably, only three entropy measures, 𝐻𝐷, 𝐻𝜆, and 𝐻𝐹 , have a perfect
success rate of 100%. 𝐻𝑌𝐷 has 95.50%, and 𝐻𝜋 99.95% success rate. For 𝐻𝐷,
this is consistent with what was said above. When analyzing the behavior of 𝐻𝜆
and 𝐻𝐹 , we finally constructed examples (see below) that disprove their simple
monotonicity.

It may be interesting to note that 𝐻𝑀 and 𝐻𝑇 share a 0% success rate. This
might suggest that these entropies behave oppositely, i.e. that they increase
during simple specification. However, this behavior is caused by the fact that
both are often infinite. Specifically, 𝐻𝑇 is infinite in 3.2% of the cases we gener-
ated, while 𝐻𝑀 is infinite even in 93.4% of the cases. Therefore, these entropies
are not very useful for identifying the increase in informativeness.

To verify the robustness of our approach for BPAs with large numbers of
focal elements, on the order of tens of thousands, we performed additional val-
idation experiments. While the overall trends remained practically identical,
we observed some numerical problems: given that 𝐻𝐷 is theoretically proven to
satisfy the tested property, these computational experiments did not show a 100
% success rate, due to precision limitations when dealing with BPAs with an
extremely large number of focal elements and consequently very small probabil-
ity masses. Despite these computational discrepancies, our core results remain
consistent, thus supporting the reliability of our methodology in different set-
tings.

Example 1 (non-simple-monotonicity of 𝐻𝜆). Consider a five-element
frame of discernment Ω = {0, 1, 2, 3, 4}. Both BPA 𝑚2 and its simple specifica-
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tion 𝑚1 specified in Table 2 have eight focal elements. The simple specification
is realized by moving the mass 0.02 assigned by 𝑚2 to focal element {0, 1, 2, 4}
to subset {0, 1, 4}.

Table 2: BPA 𝑚1 is a simple specification of 𝑚2.

𝑚1 𝑚2

𝑎 ⊂ Ω 𝑚 𝑃𝑙𝑚 𝜆𝑚 𝐷𝑚 H𝑚 𝑚 𝑃𝑙𝑚 𝜆𝑚 𝐷𝑚 H𝑚

{0} 0.1 0.17 0.1393 0.3962 0.1 0.17 0.1371 0.3930

{1} 0.2 0.3 0.2459 0.4977 0.2 0.3 0.2419 0.4953

{2} 0.4 0.5 0.4098 0.5274 0.4 0.52 0.4194 0.5258

{3} 0.1 0.23 0.1885 0.4538 0.1 0.23 0.1855 0.4508

{4} 0 0.02 0.0164 0.0972 0 0.02 0.0161 0.0960

{0, 1} 0.05 0.05 0.05 0.05

{1, 3} 0.03 0.03 0.03 0.03

{2, 3} 0.1 0.1 0.1 0.1

{0, 1, 4} 0.02 0.0317 0 0

{0, 1, 2, 4} 0 0 0.02 0.04

Σ 1 1 0.2117 1.9723 1 1 0.2200 1, 9610

𝐻𝜆 2.1840 = 0.2117 + 1.9723 2.1810 = 0.2200 + 1, 9610

Table 2 illustrates the way 𝐻𝜆 is computed. Columns headed by 𝜆𝑚 con-
tain the values of the respective plausibility transforms. Columns headed by 𝐷𝑚
contain the values 𝑚(𝑎) · log2 |𝑎 | for the respective focal elements 𝑎, and thus
the column sums equal 𝐻𝐷 (𝑚). Analogously, columns headed by H𝑚 contains
−𝜆𝑚 (𝑥) · log2 𝜆𝑚 (𝑥) for all singletons {𝑥}, and therefore the column sums equal
H(𝜆𝑚). Thus, the last row containing the sum of two numbers from the preced-
ing row proves that 𝐻𝜆 (𝑚1) > 𝐻𝜆 (𝑚2). ♦

Example 2 (non-simple-monotonicity of 𝐻𝜋). Although random experiments
have ruled out the simple monotonicity of 𝐻𝜋 , it happened so rarely that it
might be interesting for the reader to see an example. For this, consider a
BPA 𝑚2 defined on a binary frame Ω = {0, 1} with focal elements 𝑚2 (0) = 0.95
and 𝑚2 (Ω) = 0.05, and its simple specification 𝑚1, which is Bayesian with
𝑚1 (0) = 0.95 and 𝑚1 (1) = 0.05. This simple example shows that 𝐻𝐷 (𝑚1) = 0,
and 𝐻𝐷 (𝑚2) = 0.05. Thus,
𝐻𝜋 (𝑚1) = H(𝜋𝑚1 ) = H(0.95; 0.05) = 0.2864;
𝐻𝜋 (𝑚2) = 𝐻𝐷 (𝑚2) +H (𝜋𝑚2 ) = 0.05+H (0.975; 0.025) = 0.5+0.1687 = 0.2187. ♦

Example 3 (non-simple-monotonicity of 𝐻𝐹). Consider again a binary Ω =

{0, 1}. Further consider 𝑚2 with two focal elements 𝑚2 ({0}) = 𝑚2 (Ω) = 0.5
and its simple specification 𝑚1, with three focal elements 𝑚1 ({0}) = 0.5 and
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Figure 2: Success rate for Dempster’s-rule experiments.

𝑚1 ({1}) = 𝑚1 (Ω) = 0.25. Applying the following formula

𝐻𝑋 (𝑚)

= 1−
√
3

|Ω|
∑︁
𝑥∈Ω

√︄(
𝐵𝑒𝑙𝑚 ({𝑥}) + 𝑃𝑙𝑚 ({𝑥})

2
− 1

2

)2
+ 1

3

(
𝑃𝑙𝑚 ({𝑥}) − 𝐵𝑒𝑙𝑚 ({𝑥})

2
− 1

2

)2
.

one gets 𝐻𝐹 (𝑚1) = 0.56699 and 𝐻𝐹 (𝑚2) = 0.5. ♦

4. Consistency with Dempster’s rule.

We believe that simple monotonicity, explored in the previous section, is
a desirable property for a measure of informativeness regardless of the inter-
pretation of belief functions; this section refers to a property specific to the
Dempster-Shafer theory. Namely, the content of this section reflects our idea
that 𝑚1⊕𝑚2, the result of combining two distinct sources of information, should
be more informative than each of them separately. Since this property is not
one of the commonly studied properties of entropy functions, we have not found
any theoretical results in the literature and present only results obtained from
the computational experiments described below.

Results of experimental computations. We again excluded 𝐻𝐻 , 𝐻𝐼 , and
𝐻𝐴 from the experiments for the reasons given above. We randomly generated
𝑚1 and 𝑚2 on small Ω; |Ω| ∈ [4, 16]. We also kept the randomly generated
number of focal elements between 12 and 20. We combined each pair using
Dempster’s rule to obtain 𝑚1⊕𝑚2. The primary goal was to determine how often
the entropy of the combination, 𝐻 (𝑚1⊕𝑚2), was less than or equal to the initial
entropy, 𝐻 (𝑚2), i.e., how often the individual entropies indicated an increase in
information as a result of considering two sources of information instead of just
one. In these experiments, we accepted success even when 𝐻 (𝑚2) = 𝐻 (𝑚1⊕𝑚2).
This is because, for some particular 𝑚1, it can happen that 𝑚2 = 𝑚1 ⊕𝑚2. This
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arrangement certainly affected the results obtained. In addition, we performed
an experiment where 𝑚1 was combined with itself, simulating a scenario where
two independent sources confirm the same information.

The results of these comparisons (see Figure 2) contrast with our previous
experiments with simple specifications. Seven entropies achieved a perfect suc-
cess rate of 100%: 𝐻𝐷, 𝐻𝐿, 𝐻𝑃, 𝐻𝜆, 𝐻𝑌𝐷, 𝐻𝜋 , and 𝐻𝐹 for different 𝑚1 and
𝑚2. In the case of combining 𝑚1 with itself, only the entropies 𝐻𝐷, 𝐻𝜆, 𝐻𝑌𝐷,
𝐻𝜋 , and 𝐻𝐹 have a 100% success rate. Note that the following 5 entropies have
a very high success rate, which is difficult to read from the graph: 𝐻𝑅 has a
99.65% success rate, 𝐻𝑃 has a 98.20% success rate, 𝐻𝐽 has a 99.70% success
rate, 𝐻𝐺 has a 99.95% success rate, and 𝐻𝑍 has a 98.20% success rate.

As mentioned above, we have not found any theoretical results that shed
light on the question of whether the considered inequality always holds for the
seven entropy functions mentioned. One should not overestimate the experi-
mental result. For example, the fact that entropies 𝐻𝐿 and 𝐻𝑃 manifested a
100% success rate was a pure chance. Since experimental calculations found
𝑚1 such that 𝐻𝐿 (𝑚1 ⊕ 𝑚1) > 𝐻𝐿 (𝑚1), this means that one can also find 𝑚2

such that 𝐻𝐿 (𝑚1 ⊕ 𝑚2) > 𝐻𝐿 (𝑚1). Since function 𝐻𝐿 is continuous, you can
take 𝑚2 to be an 𝜀-modification of 𝑚1. The same is true for 𝐻𝑃. Thus, among
the studied entropy functions, there are only five candidates that can satisfy
the tested property: 𝐻𝐷, 𝐻𝜆, 𝐻𝑌𝐷, 𝐻𝜋 , and 𝐻𝐹 . For these, we have neither
counterexamples that disprove the property, nor theoretical proofs that confirm
the validity of the studied property.

Additionally, we conducted a restricted experiment to examine the behavior
of the two excluded computationally demanding entropy functions: 𝐻𝐻 and 𝐻𝐼 .
Due to their computational complexity, we limited the number of BPAs tested
to 200 cases and restricted the discriminating framework Ω to a maximum of 12
elements.The results show that 𝐻𝐻 (𝑚⊕𝑚) ≤ 𝐻𝐻 (𝑚) holds 82% of the time, while
𝐻𝐻 (𝑚1 ⊕ 𝑚2) ≤ 𝐻𝐻 (𝑚2) holds 65% of the time. For 𝐻𝐼 , the tested properties
were satisfied 100% of the time in both experimental settings. These results
provide some empirical insight, but the question of whether the properties hold
for 𝐻𝐼 is still open.

5. Mutual information and conditional entropy

From now on, we will consider Ω = Ω𝑋 × Ω𝑌 . For 𝜔 ∈ Ω, its projections
(coordinates) will be denoted by 𝜔↓𝑋 and 𝜔↓𝑌 ; i.e., 𝜔 = (𝜔↓𝑋, 𝜔↓𝑌 ). Similarly,
for 𝑎 ⊆ Ω, 𝑎↓𝑋 = {𝜔↓𝑋 : 𝜔 ∈ 𝑎}, and 𝑎↓𝑌 = {𝜔↓𝑌 : 𝜔 ∈ 𝑎}.

We can consider that 𝑋 and 𝑌 are random variables, and Ω𝑋 and Ω𝑌 are
the (finite) sets of their values. For a BPA 𝑚 defined on Ω, we will consider its
marginal BPAs 𝑚↓𝑋 and 𝑚↓𝑌 defined on Ω𝑋 and Ω𝑌 , respectively,

𝑚↓𝑋 (𝑎) =
∑︁

𝑏⊆Ω:𝑏↓𝑋=𝑎
𝑚(𝑏), 𝑚↓𝑌 (𝑐) =

∑︁
𝑑⊆Ω:𝑑↓𝑌=𝑐

𝑚(𝑑),

for all 𝑎 ⊆ Ω𝑋 and all 𝑐 ⊆ Ω𝑌 . So, the marginalization computes a one-
dimensional BPA from a two-dimensional one. We will also consider an inverse
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process called vacuous extension. For one-dimensional BPA 𝑚𝑋 defined on Ω𝑋,

its vacuous extension 𝑚↑𝑋𝑌
𝑋

is defined for all 𝑎 ⊆ Ω

𝑚
↑𝑋𝑌
𝑋

(𝑎) =
{
𝑚𝑋 (𝑎↓𝑋) if 𝑎 = 𝑎↓𝑋 ×Ω𝑌 ,

0 otherwise.

Vacuous extension 𝑚↑𝑋𝑌
𝑌

of a one-dimensional BPA 𝑚𝑌 defined on Ω𝑌 is defined
analogously. These vacuous extensions are used to define Dempster’s combi-
nation for BPAs that are defined on different frames of discernment. In our
case, for arbitrary one-dimensional BPAs 𝑚𝑋 and 𝑚𝑌 (defined on Ω𝑋 and Ω𝑌 ,
respectively)

𝑚𝑋 ⊕ 𝑚𝑌 = 𝑚
↑𝑋𝑌
𝑋

⊕ 𝑚↑𝑋𝑌
𝑌

.

Consider an arbitrary function 𝐻 that assigns a real value to each BPA.

Additivity. We say 𝐻 is additive, if 𝐻 (𝑚𝑋 ⊕𝑚𝑌 ) = 𝐻 (𝑚𝑋) +𝐻 (𝑚𝑌 ) for any pair
of one-dimensional BPAs 𝑚𝑋, 𝑚𝑌 defined on Ω𝑋,Ω𝑌 , respectively.

Subadditivity. 𝐻 is said to be subadditive, if 𝐻 (𝑚) ≤ 𝐻 (𝑚↓𝑋) + 𝐻 (𝑚↓𝑌 ) for
all BPA 𝑚 defined on Ω. It guarantees that the mutual information (if
defined by Eq. (3) below) is non-negative.

Strict subadditivity. We say 𝐻 is strictly subadditive, if it is subadditive, and
𝐻 (𝑚) = 𝐻 (𝑚↓𝑋) +𝐻 (𝑚↓𝑌 ) if and only if 𝑚 = 𝑚↓𝑋 ⊕𝑚↓𝑌 . It guarantees that
the mutual information defined by Eq. (3) can detect the independence of
variables.

Consider a strictly subadditive function 𝐻. Notice that it is also additive
and subadditive. If it is also simply monotonic, it is indirectly proportional to
the informativeness of BPAs, which makes it a good candidate for introducing
information-theoretic notions. Applying Shannon’s idea, we can define mutual
information with the formula

𝑀𝐼𝐻 (𝑋;𝑌 |𝑚) = 𝐻 (𝑚↓𝑋) + 𝐻 (𝑚↓𝑌 ) − 𝐻 (𝑚), (3)

which is symmetric, always non-negative and equal to 0 if and only if 𝑋 and 𝑌
are independent under BPA 𝑚, i.e., if 𝑚 = 𝑚↓𝑋 ⊕ 𝑚↓𝑌 .

Analogous to the probabilistic conditional Shannon entropy, we can also
define the notion of conditional entropy for BPAs using the formula

𝐻 (𝑚 [𝑌 |𝑋]) = 𝐻 (𝑚↓𝑌 ) − 𝑀𝐼𝐻 (𝑋;𝑌 |𝑚) = 𝐻 (𝑚) − 𝐻 (𝑚↓𝑋).

Note that the introduced definition of conditional entropy is a precise analogy
to the Shannon definition introduced in probability theory5. It is a value that

5Recall that the probabilistic conditional entropy H(𝑃 (𝑌 |𝑋) ) cannot also be computed
from the conditional probability 𝑃 (𝑌 |𝑋); to compute it, one must know not only 𝑃 (𝑌 |𝑋), but
also the corresponding joint distribution 𝑃 (𝑋,𝑌 ).
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characterizes the joint BPA 𝑚, not the corresponding conditional. It is all the
more important to realize it for the belief functions because it happens quite
often6 that for joint BPA 𝑚, there is no (conditional) BPA 𝑚𝑌 |𝑋 such that
𝑚 = 𝑚↓𝑋 ⊕ 𝑚𝑌 |𝑋. However, regardless of whether the conditional 𝑚𝑌 |𝑋 exists or
not, we can always define the conditional entropy 𝐻 (𝑚 [𝑌 |𝑋]), for which it holds
that

𝐻 (𝑚) = 𝐻 (𝑚↓𝑋) + 𝐻 (𝑚 [𝑌 |𝑋]).

6. Subadditivity and strict subadditivity

Let us first briefly present what is known (mainly from the literature) about
the additivity of the entropy functions considered. This is helpful because ad-
ditivity is necessary for a function to be strictly subadditive. The summary is
given in Table 4. Note that the validity of this property is clear for all three
entropies of extreme computational complexity. For 𝐻𝐷 and 𝐻𝐻 the additivity
is shown in the respective original papers (as the reader can see just from the
corresponding definitions, both proofs are almost self-evident). In contrast, the
third entropy of extreme computational complexity 𝐻𝐴 is not additive. For the
corresponding counterexample, see Example 2 in (Abellán and Moral, 1999).
Recall also a special role of 𝐻𝐷 (𝑚) =

∑
a⊆Ω 𝑚(a) log( |a|), which appears in the

definition of several other entropies. Its additivity, subadditivity, and other
advantageous properties were extensively studied by Dubois and Prade (1987)
and by Ramer (1987). Given that it was designed to measure the non-specificity
of BPAs (the amount of ambiguity), it is surprising to us how important this
measure is even for measuring the informativeness of belief functions. It fulfills
all the required properties, except that it is inconsistent with Shannon entropy
for Bayesian BPAs. It is zero for all of them.

The main goal of this section is to study the subadditivity of the considered
entropy functions. Fortunately, the subadditivity of the three computationally
expensive entropy functions 𝐻𝐼 , 𝐻𝐻 , and 𝐻𝐴 is known from the literature; for
𝐻𝐻 and 𝐻𝐴 it is proved in the original papers (Harmanec and Klir, 1994) and
(Abellán and Moral, 1999), respectively; and for 𝐻𝐼 it follows trivially from
the subadditivity of 𝐻𝐷 and 𝐻𝐻 . However, the main drawback of 𝐻𝐼 is its
computational complexity due to the need to find the maximum entropy trans-
form. Therefore, 𝐻𝜆 and 𝐻𝜋 have been proposed by replacing the maximum
entropy transform with the plausibility and pignistic transform, respectively.
Unfortunately, this replacement breaks the subadditivity property. For 𝐻𝜆, the
corresponding counterexample can be found in the original paper (Example 8
in (Jiroušek and Shenoy, 2018)). For 𝐻𝜋 , the counterexample is in Example 4
below.

6See, e.g., Example 2 in (Jiroušek et al., 2023), where the joint BPA 𝑚𝑋,𝑌 with two focal
elements 𝑚𝑋,𝑌 ({ (𝑥, 𝑦) } ) = 0.9 and 𝑚𝑋,𝑌 ({ (𝑥, 𝑦) , (𝑥, 𝑦) , (𝑥, 𝑦) } ) = 0.1 is considered. To get

𝑚𝑋,𝑌 = 𝑚
↓𝑋
𝑋,𝑌

⊕ 𝑚𝑌 |𝑋 for this BPA, one has to extend their consideration to pseudo-PBA
because the conditional BPA 𝑚𝑌 |𝑋 in this case has a focal element assigned a negative value.
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Figure 3: Success rate - subadditivity.

Results of experimental computations. We randomly generated 2,000 two-
dimensional BPAs 𝑚 for two binary variables 𝑋 and 𝑌 and computed their
marginals 𝑚↓𝑋 and 𝑚↓𝑋. Then, for all 22 considered computationally tractable
entropies 𝐻, we determined how often 𝐻 (𝑚) < 𝐻 (𝑚↓𝑋) + 𝐻 (𝑚↓𝑌 ). The results
are summarized in Figure 3.

As a result, we got that of the 22 entropies tested, all but 𝐻𝐷 are not
subadditive. Though it is not clearly visible from Figure 3, it concerns also 𝐻𝜋
(success rate 99.85 %) and 𝐻𝐹 (success rate 99.55 %). For 𝐻𝜆, the success rate
was 98.20 %.

The subadditivity of 𝐻𝐷, as well as of 𝐻𝐼 and 𝐻𝐻 , is proved in the original
papers cited above. In contrast, in (Abellán and Moral, 1999) and (Jiroušek and
Shenoy, 2018), the authors present examples showing the non-subadditivity of
𝐻𝐴 and 𝐻𝜆.

Example 4 (non-subadditivity of 𝐻𝜋). Consider again Ω𝑋 = {𝑥, 𝑥}, Ω𝑌 =

{𝑦, 𝑦}. Further consider joint BPA 𝑚 defined on Ω𝑋𝑌 with three focal elements:
𝑚({(𝑥, 𝑦)}) = 0.28, 𝑚({(𝑥, 𝑦), (𝑥, 𝑦)}) = 0.38, and 𝑚({(𝑥, 𝑦), (𝑥, 𝑦), (𝑥, 𝑦)}) = 0.34.
Its marginal BPAs 𝑚↓𝑋, and 𝑚↓𝑌 have two focal elements each: 𝑚↓𝑋 ({(𝑥)}) =

0.28, 𝑚↓𝑋 (Ω𝑋) = 0.72, and 𝑚↓𝑌 ({(𝑦)}) = 0.66, 𝑚↓𝑌 (Ω𝑌 ) = 0.34. The reader
can see from values in Table 3 (the third column contains Shannon entropy
of the pignistic transform of the respective BPAs) that even though 𝐻𝐷 (𝑚) <
𝐻𝐷 (𝑚↓𝑋) + 𝐻𝐷 (𝑚↓𝑌 ) (we know that 𝐻𝐷 is subadditive) we get

𝐻𝜋 (𝑚) = 2.6649 > 𝐻𝜋 (𝑚↓𝑋) + 𝐻𝜋 (𝑚↓𝑌 ) = 2.6604

showing that 𝐻𝜋 is not subadditive. ♦

Example 5 (non-subadditivity of 𝐻𝐹). Consider again Ω𝑋 = {𝑥, 𝑥}, Ω𝑌 =

{𝑦, 𝑦}. Further consider joint BPA 𝑚 defined on Ω𝑋𝑌 with two focal elements:
𝑚({(𝑥, 𝑦)}) = 0.86, 𝑚({(𝑥, 𝑦), (𝑥, 𝑦), (𝑥, 𝑦)}) = 0.14. Its marginal BPAs 𝑚↓𝑋, and
𝑚↓𝑌 have two focal elements each: 𝑚↓𝑋 ({(𝑥)}) = 0.86, 𝑚↓𝑋 (Ω𝑋) = 0.14, and
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Table 3: Values of three entropies for BPA from Example 4

𝐻𝐷 (·) H (𝜋·) 𝐻𝜋 (·)
𝑚 0.9189 1.7460 2.6649
𝑚↓𝑋 0.7200 0.9427 1.6627
𝑚↓𝑌 0.3400 0.6577 0.9977

𝑚↓𝑋 ⊕ 𝑚↓𝑋 1.0600 1.6004 2.6604

𝑚↓𝑌 ({(𝑦)}) = 0.86, 𝑚↓𝑌 (Ω𝑌 ) = 0.14. Note that while 𝐻𝐹 (𝑚) = 0.355, 𝐻𝐹 (𝑚↓𝑋) =
𝐻𝐹 (𝑚↓𝑌 ) = 0.14 showing that 𝐻𝐹 is not subadditive. ♦

Summarizing the results obtained so far, we can see that all three properties
(i.e., simple monotonicity, additivity, and subadditivity) hold only for 𝐻𝐷 and
𝐻𝐼 . If we accepted a weaker assumption of simple monotonicity, so that the
required inequality would not be strict, all three properties would also hold for
𝐻𝐻 .

The final question to be answered in this section is which studied entropies
are strictly subadditive. The answer will be relatively simple since the entropy
must be both additive and subadditive to be strictly subadditive. Among the
studied entropies, there are only three: 𝐻𝐷, 𝐻𝐼 , and 𝐻𝐻 . Obviously, 𝐻𝐷 is
not strictly subadditive since it is equal to 0 for all Bayesian BAs, regardless of
whether the variables are independent or not. Showing that the Harmanec-Klir’s
entropy 𝐻𝐻 is not strictly monotonic is not difficult, but answering this question
for 𝐻𝐼 is much more complicated. The following counterexample is the only one
we know that shows non-strict subadditivity of the Maeda-Ichihashi’s entropy.
It shows that neither of the two entropies 𝐻𝐻 and 𝐻𝐼 is strictly subadditive.

Example 6 (non-strict-subadditivity of 𝐻𝐼). In this counterexample we
show that in exceptional situations 𝐻𝐼 (𝑚) may equal 𝐻𝐼 (𝑚↓𝑋) + 𝐻𝐼 (𝑚↓𝑌 ) even
when 𝑚 ≠ 𝑚↓𝑋 ⊕ 𝑚↓𝑌 .

Consider Ω𝑋 = {𝑥, 𝑥}, Ω𝑌 = {𝑦, 𝑦}, and a joint BPA 𝑚 defined on Ω𝑋𝑌 with
two focal elements: 𝑚({(𝑥, 𝑦)}) = 1

4 , 𝑚(Ω𝑋𝑌 ) = 3
4 . Evidently, its marginal BPAs

𝑚↓𝑋, and 𝑚↓𝑌 have also two focal elements each: 𝑚↓𝑋 ({(𝑥)}) = 1
4 , 𝑚

↓𝑋 (Ω𝑋) = 3
4 ,

and 𝑚↓𝑌 ({(𝑦)}) = 1
4 , 𝑚

↓𝑌 (Ω𝑌 ) = 3
4 .

Computation of the Dubois-Prade’s entropy for these BPAs is simple:

𝐻𝐷 (𝑚↓𝑋) = 1

4
log2 (1) +

3

4
log2 (2) =

3

4
,

𝐻𝐷 (𝑚↓𝑌 ) = 1

4
log2 (1) +

3

4
log2 (2) =

3

4
,

𝐻𝐷 (𝑚) =
1

4
log2 (1) +

3

4
log2 (4) =

6

4
,

which yields

𝐻𝐷 (𝑚) = 𝐻𝐷 (𝑚↓𝑋) + 𝐻𝐷 (𝑚↓𝑌 ) = 6

4
. (4)
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Table 4: Characteristics of entropy
(Remark: The circled numbers refer to Examples disproving the respective property)
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𝐻𝑂 Hohle (1982) ✔ ✘ ✔ ✘ ✘ low

𝐻𝑌 Yager (2008) ✔ ✘ ✔ ✘ ✘ low

𝐻𝑇 Smets (1983) ✘ ✘ ✘ ✘ ✘ high

𝐻𝐷 Dubois and Prade (1987) ✘ ✔ ✔ ✔ ✘ low

𝐻𝑁 Nguyen (1987) ✔ ✘ ✔ ✘ ✘ low

𝐻𝐿 Lamata and Moral (1988) ✔ ✘ ✔ ✘ ✘ low

𝐻𝑅 Klir and Ramer (1990) ✔ ✘ ✔ ✘ ✘ high

𝐻𝐾 Klir (1991) ✘ ✘ ✘ ✘ ✘ high

𝐻𝑃 Klir and Parviz (1992) ✔ ✘ ✔ ✘ ✘ low

𝐻𝐵 Pal et al. (1992, 1993) ✔ ✘ ✔ ✘ ✘ low

𝐻𝐼 Maeda and Ichihashi (1993) ✔ ✔ ✔ ✔ ✘⑥
extreme

𝐻𝐻 Harmanec and Klir (1994) ✔ ✘ ✔ ✔ ✘⑥
extreme

𝐻𝐺𝑃 George and Pal (1996) ✘ ✘ ✘ ✘ ✘ low

𝐻𝑀 Maluf (1997) ✘ ✘ ✘ ✘ ✘ high

𝐻𝐴 Abellán and Moral (1999) ✔ ✔ ✘ ✔ ✘ extreme

𝐻𝐽 Jousselme et al. (2006) ✔ ✘ ✔ ✘ ✘ low

𝐻𝐺 Deng (2016) ✔ ✘ ✘ ✘ ✘ low

𝐻𝑍 Zhou et al. (2017) ✔ ✘ ✘ ✘ ✘ low

𝐻𝜆 Jiroušek and Shenoy (2018) ✔ ✘① ✔ ✘ ✘ low

𝐻𝑃𝐷 Pan and Deng (2018) ✘ ✘ ✘ ✘ ✘ high

𝐻𝑆 Jiroušek and Shenoy (2020) ✔ ✘ ✔ ✘ ✘ high

𝐻𝑄 Qin et al. (2020) ✔ ✘ ✘ ✘ ✘ low

𝐻𝑌𝐷 Yan and Deng (2020) ✘ ✘ ✘ ✘ ✘ low

𝐻𝜋 Jiroušek et al. (2022) ✔ ✘② ✔ ✘④ ✘ low

𝐻𝐹 Fan et al. (2022) ✘ ✘③ ✘ ✘⑤ ✘ high

Since all the corresponding credal sets P𝑚↓𝑋 , P𝑚↓𝑌 , and P𝑚 contain the uni-
form distributions, we get 𝐻𝐻 (𝑚) = 2, and 𝐻𝐻 (𝑚↓𝑋) = 𝐻𝐻 (𝑚↓𝑌 ) = 1, thus

𝐻𝐻 (𝑚) = 𝐻𝐻 (𝑚↓𝑋) + 𝐻𝐻 (𝑚↓𝑌 ) = 2. (5)
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Summing up Equations (4) and (5) we get, because 𝐻𝐼 (𝑚) = 𝐻𝐷 (𝑚) + 𝐻𝐻 (𝑚),

𝐻𝐼 (𝑚) = 𝐻𝐼 (𝑚↓𝑋) + 𝐻𝐼 (𝑚↓𝑌 ) = 7

2
. (6)

Equalities (4), (5), and (6) comply with subadditivity of these entropy func-
tions, but for the strict subadditivity, these equations should hold only when
𝑚 = 𝑚↓𝑋 ⊕ 𝑚↓𝑌 , which is not the case in the given example. Namely, BPA
(𝑚↓𝑋 ⊕ 𝑚↓𝑌 ) has four focal elements:

(𝑚↓𝑋 ⊕ 𝑚↓𝑌 ) ({(𝑥, 𝑦)}) = 1
16 ,

(𝑚↓𝑋 ⊕ 𝑚↓𝑌 ) ({(𝑥, 𝑦), (𝑥, 𝑦)}) = 3
16 ,

(𝑚↓𝑋 ⊕ 𝑚↓𝑌 ) ({(𝑥, 𝑦), (𝑥, 𝑦)}) = 3
16 ,

(𝑚↓𝑋 ⊕ 𝑚↓𝑌 ) (Ω𝑋𝑌 ) = 9
16 .

(Notice also that, since the Maeda-Ichihashi’s entropy is additive, 𝐻𝐼 (𝑚↓𝑋 ⊕
𝑚↓𝑌 ) = 7

2 .) So, we got that though all three entropies 𝐻𝐷 , 𝐻𝐻 , 𝐻𝐼 are additive
and subadditive, neither is strictly subadditive. ♦

The properties of the 25 studied entropy functions are summarized in Ta-
ble 4. Most of the positive properties were either trivial (like the probability
consistency of some entropies) or, as mentioned in the previous parts of this
text, proved in the cited literature. On the contrary, most of the negative re-
sults were shown by our experimental calculations. This corresponds to the
fact that when a new definition is introduced, the authors usually publish its
positive properties. The exception is for example the paper introducing the
Abellán-Maeda’s entropy 𝐻𝐴, whose authors, as mentioned above, showed its
subadditivity and gave an example of its non-additivity.

From the content of Table 4, the reader can learn, which counterexamples
are presented in this text – see the numbers associated with several non-validity
signs. The last column gives rough information about the computational com-
plexity of the respective functions. The level ”low” indicates that the computa-
tional complexity is linear with the number of focal elements. The level ”high”
denotes a linearity with the cardinality of 2Ω, and ”extreme” is assigned to en-
tropies whose computation requires the solution of an optimization procedure.

Thus, from Table 4 we see that none of the 25 studied entropy functions
fully satisfies the five required properties, and thus can serve as a cornerstone
for building an information theory of belief functions with mutual information
defined by the formula (3). Perhaps the introduction of an information the-
ory within the framework of belief functions will require abandoning Shannon’s
principles and exploring entirely different approaches, such as the pioneering
commonality-based method proposed by Shenoy (2024).

This, however, does not imply that the results presented in this paper lack
practical impacts. On the contrary, they can be employed in the design of
different data-driven model learning algorithms. Some of the studied functions
may be used to control heuristic algorithms. Denote e.g.,

𝑀𝐼𝜆 (𝑚) = 𝐻𝜆 (𝑚↓𝑋) + 𝐻𝜆 (𝑚↓𝑌 ) − 𝐻𝜆 (𝑚).
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Even though it does not fulfill the properties required by mutual information,
its high value usually indicates a strong relationship between the considered
variables. The same is true for the analogous functions 𝑀𝐼𝜋 , 𝑀𝐼𝐹 , and 𝑀𝐼𝐼 ,
but due to its high computational complexity, 𝑀𝐼𝐼 is not recommended for such
purposes.

𝑀𝐼𝜆 vs 𝑀𝐼𝜋 𝑀𝐼𝜆 vs 𝑀𝐼𝐹 𝑀𝐼𝜋 vs 𝑀𝐼𝐹

Figure 4: Comparison of MI Functions (𝑀𝐼𝜆, 𝑀𝐼𝜋 , 𝑀𝐼𝐹)

Looking at the definitions of 𝐻𝜆 and 𝐻𝜋 , it may not surprise the reader that
there is not much difference between the values of the corresponding mutual
information values 𝑀𝐼𝜆 and 𝑀𝐼𝜋 . This relationship is shown in the left plot
of Figure 4, where the coordinates of each point (𝑀𝐼𝜆 (𝑚), 𝑀𝐼𝜋 (𝑚)) correspond
to one of 200 randomly generated BPAs 𝑚 defined for a pair of binary vari-
ables. More interesting may be the relationship between 𝑀𝐼𝐹 and the other
two concepts 𝑀𝐼𝜆 and 𝑀𝐼𝜋 , shown in the following plots of the same figure.
The difference is not surprising given the respective definitions of 𝐻𝜆, 𝐻𝜋 , and
𝐻𝐹 , and can be explained by the fact that these entropies are proportional to
different types of uncertainty. Therefore, the choice of a preferable function may
depend on the learning algorithm used.

7. An alternative approach to define mutual information

The result of the previous section does not sound too optimistic: No entropy
(from the battery of 25 studied functions) is strictly subadditive. It means that
using Formula (3), we cannot define mutual information that would perfectly
detect independence.

In this paper, we will also present results from a pilot study of an alternative
approach. Given any non-degenerative divergence (i.e., a non-negative function
defined for pairs of belief functions that is equal to zero if and only if applied
to a pair of identical basic assignments), we can define mutual information by
analogy to Formula (1). For this study we consider only a few non-degenerative
divergences whose computational complexity is a function of the number of focal
elements and does not depend on the cardinality of Ω. For example, we do not
consider measures of the distance between the respective credal sets as proposed
by Abellán and Gómez (2006) and many others. We have borrowed only the
following two from the literature.
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Jousselme et al. (2001). From the class of distances studied in (Jousselme
and Maupin, 2012) we have selected that already designed in (Jousselme
et al., 2001). It is a distance between BPAs that satisfies all metric axioms
(non-negativity, non-degeneracy, symmetry, and the triangle inequality)
and is defined by the following algebraic formula

𝐷𝑖𝑣𝐽 (𝑚1;𝑚2) =
√︂

1

2
( ®𝑚1 − ®𝑚2)𝑇𝐷 ( ®𝑚1 − ®𝑚2),

where the argument of the square root can be rewritten, avoiding the
matrix apparatus as

( ®𝑚1 − ®𝑚2)𝑇𝐷 ( ®𝑚1 − ®𝑚2)

=
∑︁
𝑎⊆Ω

𝑚1 (𝑎)
∑︁
𝑏⊆Ω

𝑚1 (𝑏) |𝑎 ∩ 𝑏 |
|𝑎 ∪ 𝑏 | +

∑︁
𝑎⊆Ω

𝑚2 (𝑎)
∑︁
𝑏⊆Ω

𝑚2 (𝑏) |𝑎 ∩ 𝑏 |
|𝑎 ∪ 𝑏 |

− 2
∑︁
a⊆Ω

∑︁
𝑏⊆Ω

𝑚1 (𝑎)𝑚2 (𝑏) |𝑎 ∩ 𝑏 |
|𝑎 ∪ 𝑏 | .

Xiao (2019). To define the divergence between two basic assignments 𝑚1 and
𝑚2, Xiao (2019) makes use of the fact that a basic assignment on Ω is a
probability measure on 2Ω. Thus, she defines a belief function divergence
as the probabilistic Jensen-Shannon divergence of the corresponding prob-
ability measures, i.e.,

𝐷𝑖𝑣𝑋 (𝑚1;𝑚2) =
1

2

[
D𝑖𝑣KL

(
𝑚1;

𝑚1 + 𝑚2

2

)
+ D𝑖𝑣KL

(
𝑚2;

𝑚1 + 𝑚2

2

)]
,

or, equivalently

𝐷𝑖𝑣𝑋 (𝑚1;𝑚2)

=
1

2

(∑︁
𝑎⊆Ω

𝑚1 (𝑎) log2
2𝑚1 (𝑎)

𝑚1 (𝑎) + 𝑚2 (𝑎)
+

∑︁
𝑎⊆Ω

𝑚2 (𝑎) log2
2𝑚2 (𝑎)

𝑚1 (𝑎) + 𝑚2 (𝑎)

)
.

Jiroušek and Kratochv́ıl (2022) designed the other two divergences:

Plausible divergence.

𝐷𝑖𝑣𝜆 (𝑚1;𝑚2) = D𝑖𝑣KL (𝜆𝑚1 ;𝜆𝑚2 ) +
∑︁
a⊆Ω

|𝑚1 (𝑎) − 𝑚2 (𝑎) | · log( |𝑎 |).

Pignistic divergence.

𝐷𝑖𝑣𝜋 (𝑚1;𝑚2) = D𝑖𝑣KL (𝜋𝑚1 ; 𝜋𝑚2 ) +
∑︁
a⊆Ω

|𝑚1 (𝑎) − 𝑚2 (𝑎) | · log( |𝑎 |).
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Based on the computational experiments described in the cited paper, it was
stated that “one can deduce that the simple divergences 𝐷𝑖𝑣𝜆 and especially
𝐷𝑖𝑣𝜋 can be recommended to identify the best approximations of multidimen-
sional basic assignments.” The paper also proves that both of these divergences
are non-degenerative.

This section focuses on the behavior of the four considered divergences when
applied to BPAs 𝑚 defined on Ω = Ω𝑋×Ω𝑌 . For example, consider the divergence
of Jousselme et al. 𝐷𝑖𝑣𝐽 . Using the idea of Expression (1), it yields a function
resembling mutual information

𝐷𝑀𝐼𝐽 (𝑋;𝑌 |𝑚) = 𝐷𝑖𝑣𝐽 (𝑚;𝑚↓𝑋 ⊕ 𝑚↓𝑌 ).

Since all four considered divergences are non-degenerative, all such functions
𝐷𝑀𝐼𝐽 , 𝐷𝑀𝐼𝑋, 𝐷𝑀𝐼𝜆, and 𝐷𝑀𝐼𝜋 are equal to 0 if and only if variables 𝑋 and
𝑌 are independent under BPA 𝑚. It is also evident that 𝐷𝑀𝐼𝐽 and 𝐷𝑀𝐼𝑋 are
always finite. The following assertion states the same for the remaining two
divergences.

Lemma 2. For any BPA 𝑚 defined on Ω = Ω𝑋 × Ω𝑌 , both 𝐷𝑀𝐼𝜆 (𝑋;𝑌 |𝑚) and
𝐷𝑀𝐼𝜋 (𝑋;𝑌 |𝑚) are finite.

Proof. To prove this assertion, it is enough to show that if 𝜋𝑚 (𝑎) = 0, then also
𝜋(𝑚↓𝑋⊕𝑚↓𝑌 ) (𝑎) = 0, and if 𝜆𝑚 (𝑎) = 0, then also 𝜆(𝑚↓𝑋⊕𝑚↓𝑌 ) (𝑎) = 0. Proving this

implication is simple for the pignistic transform 𝜋𝑚 because it is easy to show
that

𝜋(𝑚↓𝑋⊕𝑚↓𝑌 ) (𝑥, 𝑦) = 𝜋𝑚↓𝑋 (𝑥) · 𝜋𝑚↓𝑌 (𝑦).

Nevertheless, we will present another simple proof, which is for both the
considered probability transforms. It is based on the fact that for 𝑎 ⊆ Ω

(𝜆𝑚 (𝑎) > 0) ∨ (𝜋𝑚 (𝑎) > 0) =⇒ ∃ 𝑏 : 𝑎 ⊆ 𝑏 ⊆ Ω (𝑚(𝑏) > 0),

and therefore also 𝑚↓𝑋 (𝑏↓𝑋) > 0 and 𝑚↓𝑌 (𝑏↓𝑌 ) > 0. For this 𝑎, 𝑎↓𝑋 ⊆ 𝑏↓𝑋 and
𝑎↓𝑌 ⊆ 𝑏↓𝑌 , which means that all 𝜆𝑚↓𝑋 (𝑎↓𝑋), 𝜆𝑚↓𝑌 (𝑎↓𝑌 ), 𝜋𝑚↓𝑋 (𝑎↓𝑋), and 𝜋𝑚↓𝑌 (𝑎↓𝑌 )
are positive. So we proved that if 𝜆𝑚 (𝑎) > 0, then also 𝜆𝑚↓𝑋 (𝑎↓𝑋) ·𝜆𝑚↓𝑌 (𝑎↓𝑌 ) > 0.
This means that 𝜆𝑚↓𝑋⊕𝜆𝑚↓𝑌 dominates 𝜆𝑚, which guarantees that 𝐷𝑀𝐼𝜆 is finite.
The finiteness of 𝐷𝑀𝐼𝜋 follows in the same way. □

Each of the four mutual information functions 𝐷𝑀𝐼𝐽 , 𝐷𝑀𝐼𝑋, 𝐷𝑀𝐼𝜆, and
𝐷𝑀𝐼𝜋 equals 0 if and only if applied to a BPA with independent variables.
However, we cannot guarantee that higher values of these functions indicate
greater information gain about one variable when learning the other. In partic-
ular, there is no evidence to support the claim that the greater the difference
between 𝑚 and 𝑚↓𝑋 ⊕ 𝑚↓𝑌 , the more information about variable 𝑋 is gained by
learning the actual value of variable 𝑌 .

On the contrary, functions 𝑀𝐼𝐹 , 𝑀𝐼𝜆, and 𝑀𝐼𝜋 introduced at the end of
the previous section cannot perfectly identify the independence of variables,
but thanks to the fact that they are induced by “almost simple monotonic”
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𝐷𝑀𝐼𝐽 vs 𝑀𝐼𝐹 𝐷𝑀𝐼𝑋 vs 𝑀𝐼𝜆 𝐷𝑀𝐼𝑋 vs 𝑀𝐼𝐹

𝐷𝑀𝐼𝜆 vs 𝑀𝐼𝜆 𝐷𝑀𝐼𝜆 vs 𝑀𝐼𝐹 𝐷𝑀𝐼𝐽 vs 𝑀𝐼𝜆

Figure 5: Comparison of 𝐷𝑀𝐼 and 𝑀𝐼 Functions (𝐷𝑀𝐼 vs 𝑀𝐼)

entropies, their values are (roughly speaking) proportional to the information
gain. Therefore, we compared 𝐷𝑀𝐼 and 𝑀𝐼 measures to evaluate their con-
sistency. If a strong linear relationship between 𝑀𝐼 and 𝐷𝑀𝐼 were observed,
it would suggest that 𝐷𝑀𝐼 retains similar informativeness, making it a viable
alternative for quantifying dependence in the belief functions framework.

We generated 200 random BPAs on two binary random variables 𝑋 and 𝑌 ,
where the number of focal elements for each belief function was also randomly
chosen. For each belief function, we computed the corresponding 𝐷𝑀𝐼 (𝐷𝑀𝐼𝐽 ,
𝐷𝑀𝐼𝑋, 𝐷𝑀𝐼𝜆, 𝐷𝑀𝐼𝜋) and 𝑀𝐼 (𝑀𝐼𝜆, 𝑀𝐼𝜋 , 𝑀𝐼𝐹) values. The plots in Figure 5
illustrate the relationships between 𝐷𝑀𝐼 and 𝑀𝐼 functions. Note that we have
omitted 𝐷𝑀𝐼𝜋 and 𝑀𝐼𝜋 from Figure 5 because, as the reader can see from
Figures 6 and 4, the behavior of these functions is almost equivalent to the
behavior of 𝐷𝑀𝐼𝜆 and 𝑀𝐼𝜆. Most interesting is the relationship between 𝐷𝑀𝐼𝐽
and 𝑀𝐼𝜆, where a relatively strong correspondence was found. This may indicate
that 𝐷𝑀𝐼𝐽 partially inherits the interpretative strength of 𝑀𝐼𝜆 (and 𝑀𝐼𝜋) and
could perhaps provide meaningful insights into information content.

For an analogous representation of the relationships between individual 𝐷𝑀𝐼
functions, see Figure 6.

8. Conclusions

The concluding remarks can be divided into two parts. The theoretical
conclusions, directed at the efforts to introduce information theory for belief
functions, are rather pessimistic. No entropy from Table 1 is strictly subadditive.
This means that none of the considered entropy functions allows us to define
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𝐷𝑀𝐼𝐽 vs 𝐷𝑀𝐼𝑋 𝐷𝑀𝐼𝑋 vs 𝐷𝑀𝐼𝜆 𝐷𝑀𝐼𝑋 vs 𝐷𝑀𝐼𝜋

𝐷𝑀𝐼𝜆 vs 𝐷𝑀𝐼𝜋 𝐷𝑀𝐼𝐽 vs 𝐷𝑀𝐼𝜆 𝐷𝑀𝐼𝐽 vs 𝐷𝑀𝐼𝜋

Figure 6: Comparison of DMI Functions (𝐷𝑀𝐼𝐽 , 𝐷𝑀𝐼𝑋, 𝐷𝑀𝐼𝜆, 𝐷𝑀𝐼𝜋)

the concept of mutual information as described in Section 5. Therefore, there
are three possibilities: Either (i) give up some of its required properties, (ii)
find a new simply monotonic and strictly subadditive entropy, or (iii) leave the
idea presented in Section 5, which follows Shannon’s ideas from probabilistic
information theory, and instead explore alternative approaches such as Shenoy’s
commonality-based framework (Shenoy, 2024).

Shannon entropy

𝐻
𝐹

Figure 7: Comparison of 𝐻𝐹 with classical
Shannon entropy in case of 100 randomly gen-
erated Bayesian BPAs

From the studied entropies, the
best candidate appears to be the
Maeda-Ichihashi’s entropy 𝐻𝐼 . It sat-
isfies all the required properties ex-
cept strict subadditivity. Theoreti-
cally, the mutual information derived
from 𝐻𝐼 via Eq (3) possesses the re-
quired properties but may detect false
independence. However, the com-
plexity of Example 6 suggests that
such situations are highly unlikely in
practical applications.

A potential drawback of 𝐻𝐼 is
the need to determine the maximum
entropy representative of the corre-
sponding credal set. This computa-
tion requires solving an optimization problem, which can be handled using con-
vex optimization techniques, such as those implemented in the CVXR package
in R. While this approach makes the computation feasible, it is out of the
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question to implement it in machine learning algorithms, where the mutual in-
formation is computed repeatedly in a cycle, several thousand times if necessary.
Moreover, a fundamental problem remains: the maximum entropy representa-
tive is often identical across different credal sets.

The other part of the conclusions concerns the fact that mutual information
is usually used to control heuristic approaches in machine learning processes. For
this purpose, one can use a criterion that does not manifest all the theoretically
required properties, but its computation is fast and easy. Thus, 𝐻𝜆, 𝐻𝜋 , and
𝐻𝐹 can be considered. Although the Fan et al.’s entropy 𝐻𝐹 does not fulfill
any of the considered properties, our computational experiments showed that
its behavior is very close to the required one. The graph in Figure 7 shows
that although the formula defining 𝐻𝐹 does not use the logarithm function,
the values of 𝐻𝐹 are surprisingly close to a linear function of Shannon entropy.
So, it definitely deserves further investigation. Nevertheless, we recommend 𝐻𝜋
to control the model learning processes because its computation is the fastest,
and even though we know that 𝐻𝜋 is not simply monotonous or subadditive,
the computational experiments showed that situations where these negative
properties could mislead the model learning process are rather rare.
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