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Abstract
We propose models in nonlinear elasticity for nonsimple materials that include surface
energy terms. Additionally, we also discuss living surface loads on the boundary. We
establish corresponding linearized models and show their relationship to the original
ones by means of �-convergence.

Keywords Hyperelasticity · Linear elasticity · Interface measure · Variational
methods · Gamma convergence

Mathematics Subject Classification 74G25 · 49J45

1 Introduction

Surfaces of elastic bodies exhibit properties that are different from those associated
with the bulk. This behavior is caused either by the fact that the boundary of the mate-
rial is exposed to fatigue, chemical processes, coating, etc., thus obviously resulting
in very different properties in comparatively thin boundary layers, or due to the fact
that the atomic bonds are broken at the surface of the body. These effects can be
phenomenologically modeled in terms of boundaries equipped with their own stored
energy density and they have been well studied in the literature. Rational contin-
uum mechanics approach to elastic surfaces has started with the work of Gurtin and
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Murdoch (1975); Gurtin (1986) and of Steigmann and Ogden (1997). General ener-
gies for modeling body–environment interactions and surface loading are discussed
in Podio-Guidugli (1988); Podio-Guidugli and Caffarelli (1990). More recently, Šil-
havý introduced a concept of interfacial quasiconvexity and polyconvexity (Šilhavý
2010a, b, 2011) extending (Fonseca 1989) to establish the existence of minimizers
for problems with multi-well bulk energy density for simple materials, i.e., depending
only on the first deformation gradient. Javili and Steinmann (2009, 2010) designed
finite-element methods to model surface elasticity. Thermomechanical approach to
interfacial and surface energetics of materials is reviewed in Javili et al. (2013); Stein-
mann and Häsner (2005). Surface–substrate interactions for shells are described in
Šilhavý (2013) and a phase-field modeling approach to the problem can be found,
e.g., in Levitas and Warren (2016).

Rigorous derivation of linear models from nonlinear elasticity by �-convergence
(Dal Maso 1993) has started by a pioneering work (Dal Maso et al. 2002) and then
various finer results appeared (Agostiniani et al. 2012; Maddalena et al. 2019a, b;
Mainini and Percivale 2020, 2021, 2022; Mainini et al. 2022; Maor and Mora 2021)
that derive linear elasticity under various constraints as, e.g., incompressibility, or no
Dirichlet boundary conditions, i.e., pure traction problems. We also refer to Mora and
Riva (2023) where the authors performed the linearization procedure for a pressure
load, i.e., living load (a follower force) that depends on the deformation.

The study (Casado Dias et al. 2025) explores the macroscopic elastic properties
of elastomers with spherical cavities filled with pressurized liquid, considering the
effects of surface tension. It starts by linearizing a fully nonlinearmodel and progresses
with analyzing how the presence of multiple liquid-filled cavities enhances the elastic
behavior in the linearized model.

Our contribution focuses on the linearization of nonlinear elasticity models with
surface energy terms. In order to fix ideas, we perform the analysis on the model
functional G below that penalizes local changes of the surface area in the deformed
configuration in analogy with the incompressibility constraint in the bulk. The main
results are given in Theorem 2.1 and Theorem 2.2, stating the convergence ofminimiz-
ers of nonlinear models to the uniqueminimizer of the associated linearizedmodels, in
case of Dirichlet boundary conditions and in case of only Neumann boundary condi-
tions, respectively. In the remainder of this section,we introduce the necessary notation
and the functionals. The main results are then stated in Sect. 2 and Sects. 3 and 4 are
devoted to proofs.

Modeling of Elastic Surface Energy

Let � ⊂ R
d , d ≥ 2, be a bounded open connected Lipschitz set, representing the

reference configuration of a hyperelastic body. Let us introduce the energy functional
depending on the deformation field y : � → R

d

G(y):=
∫

�

(
W (∇ y(x))+H(∇2y(x))

)
dx−L(y(x)−x)+γ ‖ |cof ∇ y n|−1 ‖qLq (∂�) .
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The global energy includes the stored elastic energy of a nonsimple material, as it
depends on second gradient (Toupin 1962, 1964). Here,L is a dead loading functional,
accounting for the work of given external force fields. It is a linear functional acting
on the displacement field y(x)− x . Moreover, local changes in the surface measure of
the boundary of � are penalized, as |cof ∇ y n| represents the density of the surface
area element of the deformed configuration: the energy includes the Lq(∂�) distance,
q ≥ 1, to its reference value corresponding to y(x) = x , being γ > 0 a surface tension
coefficient. Note that this term is a penalization of the “inextensibility” constraint
|cof ∇ y n| = 1 a.e. on ∂� which is an analogue of the incompressibility constraint
det∇ y = 1 a.e. in �.

In the linearization process, we view y as a perturbation of the identity map so
that we write it as y(x) = x + εv(x) for a suitable rescaled displacement v and we
set L = L/ε, which reflects the scaling of external forces. Assuming that H and W
are frame indifferent, that H is convex positively p-homogeneous for some suitable
p > 1, and that W is minimized at the identity with W ( I) = DW ( I) = 0, i.e., that
identity is the natural state of the body �, we consider the rescaled nonlinear global
energy

Gε(v) := 1

ε2

∫
�

W ( I + ε∇v) dx + 1

ε p

∫
�

H(ε∇2v) − L(v)

+ γ

εq
‖ |cof ( I + ε∇v)n| − 1 ‖qLq (∂�).

(1.1)

We notice that as ε → 0

W ( I + ε∇v) = ε2

2
E(v)∇2W ( I)E(v) + o(ε2),

so that the second-order term in the Taylor expansion of W produces the standard
quadratic potential of linear elasticity (being ∇2W ( I) the fourth-order elastic tensor),
acting by frame indifference only on the symmetric part of the gradient

E(v) := ∇v + (∇v)T

2
.

On the other hand, by the formula cof F = (det F) F−T we have

cof ( I + ε∇v) = det( I + ε∇v) ( I + ε(∇v)T )−1

= (1 + ε div v + o(ε)) ( I − ε(∇v)T + o(ε)) = I + εA(v) + o(ε),
(1.2)

where we have introduced the divergence free tensor

A(v) = I div v − (∇v)T ,

corresponding to the linearization of the cofactor matrix. As a consequence,

|cof ( I + ε∇v)n| = √
1 + 2εA(v) n · n + o(ε) = 1 + εA(v)n · n + o(ε), (1.3)
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where we notice that A(v)n · n is the tangential divergence of v on ∂�.Therefore in
the limit as ε → 0, we obtain the geometrically linearized functional

G∗(v) := 1

2

∫
�

E(v) D2W ( I)E(v) dx+
∫

�

H(∇2v) dx−L(v)+γ

∫
∂�

|A(v)n ·n|q dS
(1.4)

as the pointwise limit of functionals Gh for every smooth enough v. We notice that the
stored elastic energy and the surface tension term of functional G are frame indifferent,
and indeed their counterparts in functionalG∗ dependon∇v only through its symmetric
part E(v), so that as expected they are invariant by addition of an infinitesimal rigid
displacement. We have indeed ∇2(c +Wx) = 0 and A(c +Wx)n · n = Wn · n = 0
for every c ∈ R

d and every W ∈ R
d×d
skew. We stress that the natural choice H(∇2v) =

|∇2v|2 and q = 2, yielding a quadratic stored elastic energy in (1.4) and a quadratic
surface energy term, is possible within our theory in the physical cases d = 2, 3, as
our main results will be given under the restriction p ≥ dq/(q + 1).

Alternative Examples of Surface Energies

Let us next introduce possible alternative models, for which we will prove the validity
of the same convergence results. We can consider a surface energy term that penalizes
differences in total surface areas between the reference and deformed configurations,
e.g.,

F(y) :=
∫

�

(W (∇ y)+H(∇2y)) dx−L(y(x)−x)

+γ

∣∣∣∣
∫

∂�

|cof ∇ y(σ )n(σ )| dS(σ )−|∂�|
∣∣∣∣
q

.

The change-of-variables formula for surface integrals indicates that the last term is
equal to γ ||∂�y | − |∂�||q , where ∂�y denotes the boundary of the deformed con-
figuration y(�). Here, γ > 0 is again a physical parameter. The associated rescaled
energies are given by

Fε(v) := 1

ε2

∫
�

W ( I + ε∇v) dx + 1

ε p

∫
�

H(ε∇2v) − L(v)

+ γ

εq

∣∣∣∣
∫

∂�

|cof ( I + ε∇v) n| dS − |∂�|
∣∣∣∣
q

.

(1.5)

Taking into account (1.2) and (1.3), we see that the as ε → 0

∣∣∣∣
∫

∂�

|cof ( I + ε∇v)n| dS − |∂�|
∣∣∣∣ = ε

∣∣∣∣
∫

∂�

A(v)n · n dS
∣∣∣∣ + o(ε),

so that the formal linearized functional obtained as ε → 0 is
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F∗(v) := 1

2

∫
�

E(v)∇2W ( I)E(v) dx +
∫

�

H(∇2v) dx − L(v)

+ γ

∣∣∣∣
∫

∂�

A(v)n · n dS
∣∣∣∣
q

. (1.6)

We notice that the divergence theorem implies, assuming enough smoothness of ∂�

and introducing a suitable extension of the normal n to the whole of �,

∫
∂�

A(v)n · n dS =
∫

∂�

A(v)Tn · n dS =
∫

�

div (A(v)Tn) dx =
∫

�

A(v) : ∇n dx,

having used the fact that A(v) is divergence free. Therefore, functional F∗ can also
be rewritten as

F∗(v) = 1

2

∫
�

E(v)∇2W ( I)E(v) dx+
∫

�

H(∇2v) dx−L(v)+γ

∣∣∣∣
∫

�

A(v) : ∇n dx

∣∣∣∣
q

.

We can also consider a model featuring surface loading

I(y) :=
∫

�

(W (∇ y) + H(∇2y)) dx − L(y(x) − x)

+γ

∫
∂�

|(cof ∇ y(σ ) − I)n(σ )|q dS(σ ).

The last term features the Lq(∂�;R3) distance between the normal vector ny =
cof ∇ y n in the deformed configuration and the undeformed one corresponding to
y(x) = x . This restricts energetically favorable deformations in a stronger way as
it penalizes local changes not only in the area of the boundary but also in the orien-
tation of the boundary, and indeed the last term pays energy also for rigid motions
of the reference configuration. Consequently, this surface term is minimized if the
deformation locally preserves the area of the boundary and if the deformed and unde-
formed normals at x ∈ ∂� and in y(x) ∈ ∂�y are parallel. It can be seen as a living
(i.e., deformation-dependent) load. Again we shall introduce the rescaled energies

Iε(v) : = 1

ε2

∫
�

W ( I + ε∇v) dx + 1

ε p

∫
�

H(ε∇2v) − L(v)

+ γ

εq

∫
∂�

|(cof ( I + ε∇v) − I)n|q dS.

Thanks to (1.2), we see that the formal limiting functional as ε → 0 is

I∗(v) = 1

2

∫
�

E(v)∇2W ( I)E(v) dx +
∫

�

H(∇2v) dx −L(v)+γ

∫
∂�

|A(v)n|q dS.
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The main results about convergence of minimizer of functionals Gε with Dirichlet
boundary conditions, that we shall state in the next section, carry over for functionals
Fε and Iε (we refer to Corollary 2.3 below). On the other hand, when considering the
Neumann problem, an interesting difference will arise in the treatment of functional
Iε.

2 Main Results

Let d ≥ 2. The strain energy density W : Rd×d → [0,+∞] appearing in (1.1) is a
frame indifferent function that is assumed to beminimized at rotations, and sufficiently
smooth around rotations. Summarizing, the basic assumptions satisfied by W are the
following

W : Rd×d → [0,+∞] is continuous ,

W ( R F) = W ( F) for every R ∈ SO(d) and every F ∈ R
d×d ,

W ( F) ≥ W ( I) = 0 for every F ∈ R
d×d ,

W ∈ C2(U) for some suitable open neighborhood U of SO(d) in Rd×d ,

(2.1)

where SO(d) denotes the special orthogonal group. A consequence of the smoothness
of W around rotations is therefore DW ( R) = 0 for every R ∈ SO(d). Continuity
of W means that whenever Fk → F in R

d×d then W (Fk) → W (F) as k → ∞.
Moreover, W is assumed to satisfy the following convexity property at the identity:

there exists C > 0 such that FT D2W ( I) F ≥ C |sym F|2 for every F ∈ R
d×d ,

(2.2)
where sym F denotes the symmetric part of F and | · | denotes the Euclidean norm
in R

d×d , i.e., |G|2 = tr (GTG). Here, D2W denotes the Hessian of W , and D2W (I)
is the fourth-order elasticity tensor, appearing in the quadratic potential acting on the
infinitesimal strain tensor in the linearized energy G∗ from (1.4). Another standard
coercivity condition that we shall use is the following:

there exists C̄ > 0 such that W (F) ≥ C̄ dist2(F, SO(d)) for every F ∈ R
d×d ,

(2.3)
where dist(F, SO(d)) := inf{|F − R| : R ∈ SO(d)}. We remark that if W satisfies
(2.1), then (2.3) is stronger than (2.2). Indeed, since for everyG ∈ R

d×d with positive
determinant there holds dist(G, SO(d)) = |

√
GTG − I|, we see that if (2.3) holds

then

1

2
FT D2W (I)F = lim

ε→0

1

ε2
W (I + εF) ≥ C̄ lim sup

ε→0

1

ε2
dist2(I + εF, SO(d))

= C̄ lim sup
ε→0

1

ε2
|
√

(I + εFT )(I + εF) − I|2 = C̄ |sym F|2
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for every F ∈ R
d×d . We also remark that the natural conditions det F ≤ 0 ⇒ W (F) =

+∞ andW (F) → +∞ if det F → 0+ are compatible with all the above assumptions,
but not necessary for the theory.

We will further assume that, for suitable p > 1, the function H appearing in the
second gradient term of (1.1) satisfies the following:

H : Rd×d×d → R is a convex positively p-homogeneous function,

there exist C0 > 0,C1 > 0 s.t. ∀B ∈ R
d×d×d C0|B|p ≤ H(B) ≤ C1(1 + |B|p),

H(RB) = H(B) for every B ∈ R
d×d×d and every R ∈ SO(d).

(2.4)
Here, the product betweenR and B is defined as (RB)imn = RikBkmn for all i,m, n ∈
{1, . . . , d}.

The load functionalL appearing inGε and inG∗ is assumed to be a linear continuous
functional onW 2,p(�;Rd), where p > 1 is the exponent that appears in (2.4), so that
there exists a constant CL > 0 such that

|L(v)| ≤ CL ‖v‖W 2,p(�;Rd ) ∀ v ∈ W 2,p(�;Rd). (2.5)

Let us start by considering the Dirichlet problem. Let � denote a closed subset of
∂� such that S(�) = Hd−1(�) > 0. For k ∈ N and p > 1, let Wk,p

� (�;Rd) denote
the Wk,p(�;Rd) completion of the space of restrictions to � of C∞

c (Rd \ �;Rd)

functions. Taking advantage of the homogeneous Dirichlet boundary condition on �,
for p > 1 we have the following Poincaré inequality: there is K > 0 such that

‖v‖W 2,p(�;Rd ) ≤ K‖∇2v‖L p(�;Rd×d×d ) ∀ v ∈ W 2,p
� (�;Rd). (2.6)

The following is the main result about convergence of minimizers of the Dirichlet
problem for functionals Gε. For p > d/2 we let Gε : W 2,p

� (�;Rd) → R ∪ {+∞}
be defined by (1.1) and G∗ : W 2,p

� (�;Rd) → R be defined by (1.4). Existence of

minimizers over W 2,p
� (�;Rd) for functional Gε (for fixed ε) and functional G∗ will

be preliminarily proved in Sect. 3.

Theorem 2.1 Let q ≥ 1 and p ≥ dq/(q + 1). If d = 2 and q = 1, assume in
addition that p > 1. Suppose that L is a bounded linear functional on W 2,p(�;Rd),
that W satisfies (2.1) and (2.2), and that (2.4) holds. Let (ε j ) j∈N ⊂ (0, 1) be a

vanishing sequence and let (v j ) j∈N ⊂ W 2,p
� (�;Rd) be a sequence of minimizers for

functionals Gε j over W
2,p
� (�;Rd). Then, the sequence (v j ) j∈N is weakly converging

in W 2,p(�;Rd) to the unique solution to the problem

min
{
G∗(v) : v ∈ W 2,p

� (�;Rd)
}

.

123



   63 Page 8 of 30 Journal of Nonlinear Science            (2025) 35:63 

When considering the pure traction problem, it is natural to assume that external
loads are equilibrated, i.e., with null resultant and momentum:

L(a + Wx) = 0 for every a ∈ R
d and every skew-symmetric matrixW ∈ R

d×d .

(2.7)
A consequence of (2.7) is that, by invoking Korn and Poincaré inequalities, if L is
a bounded linear functional over W 2,r (�;Rd) for some r > 1, thus satisfying (2.5)
with p = r , and if u ∈ W 2,r (�;Rd), we have for some suitable a ∈ R

d and some
suitable skew-symmetric W ∈ R

d×d

|L(u)| = |L(u − Wx − a)|
≤ CL

(
‖u − Wx − a‖Lr (�;Rd ) + ‖∇u − W‖Lr (�;Rd×d ) + ‖∇2u‖Lr (�;Rd×d×d )

)

≤ CL
(
(1 + c)K ‖E(u)‖Lr (�;Rd×d ) + ‖∇2u‖Lr (�;Rd×d×d )

)
,

(2.8)
where c is the constant in Poincaré inequality and K is the constant in second Korn
inequality (Nitsche 1981), both depending on r and � only.

A further condition that proves to be crucial for the theory is

L(Rx − x) ≤ 0 for every R ∈ SO(d) (2.9)

expressing the fact that external loads have an overall effect of traction (and not of
compression) on �. This condition appears in Maddalena et al. (2019a, b); Mainini
and Percivale (2020, 2021); Mainini et al. (2022). Following the same references, for
load functionals that satisfy (2.9) we introduce the set

S0
L := {R ∈ SO(d) : L(Rx − x) = 0},

which plays a crucial role in the linearization process. Indeed, if R0 ∈ SO(d) exists
such that L(R0x − x) > 0, if (ε j ) j∈N ⊂ (0, 1) is any vanishing sequence, letting
ṽ j := 1

ε j
(R0x − x), since cof R0 = R0, W (R0) = 0 and ∇2(R0x − x) = 0, we see

that

Gε j (ṽ j ) = − 1

ε j
L(R0x − x),

thus

lim
j→+∞ inf

C∞(�;Rd )

Gε j = −∞.

Therefore, (2.9) is a necessary condition for avoiding the nonlinear energies being
unbounded frombelow as the parameter ε goes to zero.Moreover, under the conditions
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(2.7) and (2.9), it turns out (see Theorem 2.2 below) that the actual limit functional is

G(u) : = 1

2

∫
�

E(u)∇2W (I)E(u) dx

+
∫

�

H(∇2v) dx − max
R∈S0

L
L(Rv) + γ

∫
∂�

|A(v)n · n|q dS.

We may notice that under a stronger condition on external loads, i.e., under the addi-
tional assumption S0

L ≡ {I} (meaning that external loads do not have any axis of
equilibrium), then G ≡ G∗. See Mainini and Percivale (2021); Mainini et al. (2022)
for a thorough discussion on this topic in linearized models with no surface tension
effect.

We have the following second main result. It will be proven in Sect. 4, after having
proven the existence of minimizers over W 2,p(�;Rd), in the pure traction problem,
for functional Gε (for fixed ε) and for functional G.

Theorem 2.2 Let q ≥ 1, p ≥ dq/(q+1). If d = 2 and q = 1, assume in addition that
p > 1. Let W satisfy (2.1) and (2.3) and let H satisfy (2.4). Let L be a bounded linear
functional over W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂ (0, 1) be
a vanishing sequence. If (v j ) j∈N ⊂ W 2,p(�,Rd) is a sequence of minimizers of Gε j

over W 2,p(�;Rd),
then there exists a sequence (R j ) j∈N ⊂ SO(d) such that, by defining

u j (x) := RT
j v j (x) + 1

ε j
(RT

j x − x),

in the limit as j → +∞, along a suitable (not relabeled) subsequence, there holds

∇u j → ∇u∗ weakly in W 1,p(�;Rd×d),

where u∗ ∈ W 2,p(�,Rd) is a minimizer of G over W 2,p(�,Rd), and

Gε j (v j ) → G(u∗), min
W 2,p(�,Rd )

Gε j → min
W 2,p(�,Rd )

G. (2.10)

In order to obtain compactness in Theorem 2.2, we shall make use of the Firesecke–
James–Müller rigidity inequality (Friesecke et al. 2002), stating that there exists a
constant C� > 0 (only depending on �) such that for every ϕ ∈ W 1,2(�;Rd) there
is R ∈ SO(d) such that

∫
�

|∇ϕ − R|2 ≤ C�

∫
�

dist2(∇ϕ, SO(d)). (2.11)

In fact, as we shall see from the proof the sequence (R j ) j∈N in Theorem 2.2 can be
chosen as a sequence of rotations for which (2.11) holds with ϕ = v j for every j ∈ N.

123
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We remark that our main converge results hold true for other model energies that
we have introduced in Sect. 1. Indeed, defining F by replacing the term L(v) with the
term maxR∈S0

L
L(Rv) in functional F∗ we have

Corollary 2.3 The same statement of Theorem 2.1 holds true if we replace functionals
Gε and functional G∗ therein with functionals Fε (resp. Iε) and functional F∗ (resp.
I∗). Moreover, the same statement of Theorem 2.2 holds true if we replace functionals
Gε and functional G therein with functionals Fε and functional F .

We conclude with the following result that shows a remarkable difference in the
limiting behavior of functionals Iε. The surface live load term prevents indeed rigid
rotations.

Theorem 2.4 Let p ≥ dq/(q + 1). If d = 2 and q = 1, assume in addition that
p > 1. Let W satisfy (2.1) and (2.3) and let H satisfy (2.4). Let L be a bounded linear
functional over W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂ (0, 1) be
a vanishing sequence. If (v j ) j∈N ⊂ W 2,p(�,Rd) is a sequence of minimizers of Iε j

over W 2,p(�;Rd),
then in the limit as j → +∞, along a suitable (not relabeled) subsequence, there

holds
∇v j → ∇v∗ weakly in W 1,p(�;Rd×d),

where v∗ ∈ W 2,p(�,Rd) is a minimizer of I∗ over W 2,p(�,Rd), and

Iε j (v j ) → I∗(v∗), min
W 2,p(�,Rd )

Iε j → min
W 2,p(�,Rd )

I∗. (2.12)

3 The Dirichlet Problem: Proof of Theorem 2.1

We first prove existence of minimizers for functional G∗.

Lemma 3.1 Let p ≥ 2d/(d + 2) and p ≥ dq/(d − 1 + q). If d = 2 and q = 1,
let p > 1. Let (2.1), (2.2) and (2.4) hold. Let L be a bounded linear functional over
W 2,p(�;Rd). There exists a unique solution to the problem

min{G∗(v) : v ∈ W 2,p
� (�;Rd)}.

Proof The conditions d > p ≥ (2d/(d + 2)) ∨ (dq/(d − 1 + q)) and p > 1
imply that dp/(d − p) ≥ 2 and (d − 1)p/(d − p) ≥ q; therefore, we have the
Sobolev embedding W 1,p(�;Rd) ↪→ L2(�;Rd) and the Sobolev trace embedding
W 1,p(�;Rd) ↪→ Lq(∂�). These embeddings also hold true if p ≥ d. We deduce that
E(v) ∈ L2(�;Rd×d) and that A(v) ∈ Lq(∂�;Rd×d) for every v ∈ W 2,p(�;Rd).
Thus, G∗(v) is finite for every v ∈ W 2,p(�;Rd).
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By (2.1), (2.4), (2.5) and (2.6), we get

G∗(v) ≥
∫

�

H(∇2v) − CL‖v‖W 2,p(�;Rd ) ≥ C0

∫
�

|∇2v|p − CL‖v‖W 2,p(�;Rd )

≥ C0

K p
‖v‖p

W 2,p(�;Rd )
− CL‖v‖W 2,p(�;Rd )

(3.1)
and the right hand side is uniformly bounded from below on W 2,p

� (�;Rd) because
p > 1.

Let (vn)n∈N ⊂ W 2,p
� (�;Rd) be a minimizing sequence. The above estimate, along

with (2.6) and G∗(0) = 0, shows that such a sequence is bounded in W 2,p(�;Rd),
hence admitting a (not relabeled) weakly converging subsequence, the limit point
being denoted by v. However, the term involving H in functional G∗ is weakly lower
semicontinuous over W 2,p(�;Rd), thanks to (2.4), as well as the interfacial term,
thanks to the Sobolev trace embedding W 1,p(�;Rd) ↪→ Lq(∂�;Rd). Since p > 1
we also have the compactness of the Sobolev trace embedding W 1,p(�;Rd) ↪→
L1(∂�;Rd), which implies that v ∈ W 2,p

� (�;Rd). On the other hand, L is weakly
continuous over W 2,p(�;Rd), and we have

lim inf
n→+∞

∫
Rd

E(vn) D
2W (I)E(vn) ≥

∫
�

E(v) D2W (I)E(v)

by the embedding W 1,p(�;Rd) ↪→ L2(�;Rd) and by the weak L2(�;Rd×d) lower
semicontinuity of the map G �→ ∫

�
GT D2W (I)G. Therefore, G∗ is lower semicon-

tinuous with respect to the weakW 2,p(�;Rd) convergence. The result follows by the
direct method of the calculus of variations. Uniqueness of the minimizer follows from
strict convexity of G∗. ��

The following is a key lemma, providing the rigorous linearization of the interfacial
term.

Lemma 3.2 Let p ≥ dq/(q + 1). Let v ∈ W 2,p(�;Rd). Let (ε j ) j∈N ⊂ (0, 1) be a
vanishing sequence and let (v j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such that ∇v j

weakly converge to ∇v in W 1,p(�;Rd×d) as j → +∞. Then

lim inf
j→+∞

1

ε
q
j

∫
∂�

∣∣|cof (I + ε j∇v j )n| − 1
∣∣q dS ≥

∫
∂�

|A(v)n · n|q dS. (3.2)

If ∇v j strongly converge to ∇v in W 1,p(�;Rd×d) as j → +∞ we also have

lim
j→+∞

1

ε
q
j

∫
∂�

∣∣|cof (I + ε j∇v j )n| − 1
∣∣q dS =

∫
∂�

|A(v)n · n|q dS. (3.3)

Proof We have the Sobolev trace embedding W 1,p(�;Rd) ↪→
L(d−1)p/(d−p)(∂�;Rd) if d > p. Else if p ≥ d, we have W 1,p(�;Rd) ↪→ Lr (∂�)

for every r ∈ [1,+∞). Since p ≥ dq/(q+1), we have (d−1)p/(d− p) ≥ (d−1)q.
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Since the entries of cof F are polynomials of degree d − 1 in the entries of F, we
deduce that cof ∇ψ ∈ Lq(∂�;Rd×d) for every ψ ∈ W 2,p(�;Rd). This shows that
all the integrands appearing in (3.2) are in L1(∂�).

By the Cayley–Hamilton formula, we have

cof (I + ε j∇v j ) = I + ε jA(v j ) +
d−1∑
k=2

εkj Bk(v j )

where Bk(v j ) is a matrix whose entries are polynomials of degree k in the entries of
∇v j , and the sum is understood to be zero if d = 2. Letting

B(v j ) :=
d−1∑
k=2

εk−2
j Bk(v j ),

we get therefore
cof (I + ε j∇v j ) = I + ε jA(v j ) + ε2j B(v j ). (3.4)

We notice that

|cof (I + ε j∇v j )n|2 = |n + ε jA(v j )n + ε2j B(v j )n|2
= 1 + 2ε jA(v j )n · n + ε2j D(v j )n · n,

(3.5)

where

D(v j ) := A(v j )
T
A(v j ) + 2B(v j ) + 2ε j B(v j )

T
A(v j ) + ε2j B(v j )

T
B(v j ). (3.6)

We observe that the following properties hold:

∇v j⇀∇v weakly in Lq(∂�;Rd×d) as j → +∞, (3.7)

A(v j )⇀A(v) weakly in Lq(∂�;Rd×d) as j → +∞, (3.8)

the sequence (B(v j )) j∈N is bounded in Lq(∂�;Rd×d). (3.9)

Indeed, (3.9) follows from the Sobolev trace embedding W 1,p(�) ↪→
L(d−1)p/(d−p)(∂�), since d > p ≥ dq/(q+1) implies (d−1)p/(d− p) ≥ (d−1)q,
and since B(v j ) is polynomial of degree d −1 in the entries of ∇v j (and ε j < 1). Else
if p ≥ d we have the embedding W 1,p(�) ↪→ Lr (∂�) for every r ∈ [1,+∞). For
the same reason, (3.7) and its direct consequence (3.8) hold true, since (d − 1)q ≥ q.

In particular, ∇v has a Lq(∂�) trace on ∂�.
We define

Q j := {x ∈ ∂� : |A(v j (x))| + ε j |B(v j (x))| < 2−4ε
−1/4
j } (3.10)

and we notice that

S(∂� \ Q j )
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≤
∫

∂�\Q j

16ε1/4j (|A(v j )| + ε j |B(v j )|) dS ≤ 16ε1/4j

∫
∂�

(|A(v j )| + ε j |B(v j )|) dS

so that (3.8) and (3.9) imply that S(∂� \ Q j ) → 0 as j → +∞. By using (3.10),
(3.6) and ε j < 1, it is not difficult to see that on Q j there hold

|2ε j A(v j )n · n+ε2j D(v j )n · n|≤ 2ε j |A(v j )|+ε2j |D(v j )|< 1

2
ε
3/4
j <

1

2
, (3.11)

ε j |D(v j )| ≤ √
ε j + 2ε j |B(v j )|. (3.12)

Thanks to (3.11), starting from (3.5) and using Taylor series, on Q j we find that

|cof (I + ε j∇v j )n| − 1

=
√
1 + 2ε jA(v j )n · n + ε2j D(v j )n · n − 1

= ε jA(v j )n · n + ε2j

2
D(v j )n · n +

+∞∑
k=2

αk(2ε jA(v j )n · n + ε2j D(v j )n · n)k,

(3.13)

where αk := (−1)k−1(2k)!
4k(k!)2(2k − 1)

(in particular we have
∑+∞

k=0 αk+2 2−k < +∞) and

+∞∑
k=2

αk (2ε jA(v j )n · n + ε2j D(v j )n · n)k

= ε2j (2A(v j )n · n + ε j D(v j )n · n)2
+∞∑
k=0

αk+2(2ε j A(v j )n · n + ε2j D(v j )n · n)k

≤ ε2j (2A(v j )n · n + ε j D(v j )n · n)2
+∞∑
k=0

αk+2 2
−k ≤ ε

3/2
j

+∞∑
k=0

αk+2 2
−k .

(3.14)
From (3.13), we have

1Q j

|cof (I + ε j∇v j )n| − 1

ε j
= 1Q j A(v j )n · n + 1Q j

ε j

2
D(v j )n · n

+ 1Q j

1

ε j

+∞∑
k=2

αk(2ε jA(v j )n · n + ε2j D(v j )n · n)k,

where we may notice that the two terms on the right hand side converge strongly to 0
in Lq(∂�), thanks to (3.9), (3.12) and (3.14).

Since S(∂� \ Q j ) → 0 and since (3.8) holds, we deduce by the equiintegrability
of (A(v j )) j∈N that 1Q jA(v j )n · n⇀A(v)n · n weakly in Lq(∂�) and thus

1Q j

|cof (I + ε j∇v j )n| − 1

ε j
⇀A(v)n · n weakly in Lq(∂�) as j → +∞ (3.15)
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so that

lim inf
j→+∞

1

ε
q
j

∫
Q j

||cof (I + ε j∇v j )n| − 1|q dS ≥
∫

∂�

|A(v)n · n|q dS.

In order to conclude, we are left to prove that

lim
j→+∞

1

ε
q
j

∫
∂�\Q j

||cof (I + ε j∇v j )n| − 1|q dS = 0. (3.16)

But (3.5) yields

1

ε j
||cof (I + ε j∇v j )n| − 1| = 1

ε j
||n + ε jA(v j )n + ε2j B(v j )n| − |n||

≤ 1

ε j
|ε j A(v j )n + ε2j B(v j )n| ≤ |A(v j )| + ε j |B(v j )|,

and since S(∂� \ Q j ) → 0, (3.16) follows from (3.8) and (3.9).
Eventually, if we also have strong W 1,p(�;Rd×d) convergence of ∇v j to ∇v, we

obtain strong convergence in (3.7) and (3.8), thus in (3.15), so that by taking (3.16)
into account we deduce (3.3). ��
Corollary 3.3 Let p ≥ dq/(q + 1).. Let v ∈ W 2,p(�;Rd). Let (ε j ) j∈N ⊂ (0, 1) be
a vanishing sequence and let (v j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such that ∇v j

weakly converge to ∇v in W 1,p(�;Rd×d) as j → +∞. Then

lim
j→+∞

1

ε
q
j

∣∣∣∣
∫

∂�

|cof (I + ε j∇v j )n|dS − |∂�|
∣∣∣∣
q

=
∣∣∣∣
∫

∂�

A(v)n · n dS
∣∣∣∣
q

(3.17)

and

lim inf
j→+∞

1

ε
q
j

∫
∂�

|(cof (I + ε j∇v j ) − I)n|q dS =
∫

∂�

|A(v)n|q dS. (3.18)

If ∇v j strongly converge to ∇v in W 1,p(�;Rd×d) as j → +∞, we also have

lim
j→+∞

1

ε
q
j

∫
∂�

|(cof (I + ε j∇v j ) − I)n|q dS =
∫

∂�

|A(v)n|q dS. (3.19)

Proof By following the proof of Lemma 3.2, with Q j still defined by (3.10), we see
that that (3.17) follows from (3.15) and (3.16). On the other hand, (3.4) implies that

1

ε j
(cof (I + ε j∇v j ) − I)n = A(v j )n + ε jB(v j )n
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so that (3.18) follows from (3.8) and (3.9). If ∇v j strongly converge to ∇v in
W 1,p(�;Rd×d) as j → +∞, then there is strong convergence in (3.8) so that (3.19)
follows. ��

We next prove existence of minimizers Gε, for fixed ε > 0.

Lemma 3.4 Let p ≥ dq/(q + 1). If d = 2 and q = 1, assume in addition that p > 1.
Suppose that L is a bounded linear functional on W 2,p(�;Rd), that W satisfies
(2.1) and (2.2), and that (2.4) hold. Then, the functional Gε attains a minimum on
W 2,p

� (�;Rd) for every ε > 0.

Proof We assume wlog that ε = 1. For every v ∈ W 2,p
� (�;Rd), by (2.4), (2.5) and

(2.6) there holds

G1(v) ≥ C0

∫
�

|∇2v|p − L(v) ≥ C0

∫
�

|∇2v|p − KCL‖∇2v‖L p(�;Rd×d×d ).

Similarly to the proof of Lemma 3.1, since p > 1 this estimate implies boundedness
from below of functional G1 on W 2,p

� (�;Rd), and since G1(0) = 0, it implies that

any minimizing sequence (vn)n∈N ⊂ W 2,p
� (�;Rd) is bounded in W 2,p(�;Rd), thus

weakly converging up to subsequences to some v ∈ W 2,p
� (�;Rd). This yields up to

subsequences pointwise a.e. convergence of ∇vn to ∇v, so that sinceW is continuous
and nonnegative, Fatou Lemma implies lower semicontinuity of the term involving
W in functional G1 along the sequence (vn)n∈N. On the other hand, L is obviously
continuous along such sequence, while

lim inf
n→+∞

∫
�

H(∇2vn) ≥
∫

�

H(∇2v)

is a consequence of the convexity of H from (2.4). Finally,
since p > 1, the Sobolev trace embedding W 1,p(�;Rd) ↪→ L1(∂�;Rd) is com-

pact, thus we have pointwise S − a.e. convergence of ∇vn to ∇v on ∂� (up to a
subsequences), and by Fatou Lemma we get lower semicontinuity of the interfacial
term of functional G1.

��
By means of the next two lemmas, we prove the �-convergence

Lemma 3.5 (�-limsup) Let p ≥ dq/(q + 1). Suppose that L is a bounded linear
functional on W 2,p(�;Rd), that W satisfies (2.1) and (2.2), and that (2.4) holds.
Let (ε j ) j∈N ⊂ (0, 1) be a vanishing sequence. Let v ∈ W 2,p

� (�;Rd). There exists a

sequence (v j ) j∈N ⊂ C∞(�;Rd) ∩ W 2,p
� (�;Rd) such that

v j → v strongly in W 2,p(�;Rd) as j → +∞
and

lim
j→+∞Gε j (v j ) = G∗(v).
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Proof By the density of C∞(�;Rd) ∩ W 2,p
� (�;Rd) in W 2,p

� (�;Rd), with respect
to the W 2,p(�,Rd) convergence, there exists a sequence (ṽ j ) j∈N ⊂ C∞(�;Rd) ∩
W 2,p

� (�;Rd) such that ṽ j → v strongly in W 2,p(�;Rd) as j → +∞. We suppose
wlog that the sequence (‖∇ṽ j‖C0(�;Rd×d )) j∈N is nondecreasing. We notice that it is

converging if p > d, thanks to the Sobolev embedding W 1,p(�;Rd) ↪→ C0(�;Rd)

holding in such a case. In any case, if it is converging we let v j = ṽ j for every j ∈ N.

Else if it is diverging,wedefine a newsequence (v j ) j∈N ⊂ C∞(�;Rd)∩W 2,p
� (�;Rd)

as follows:

{ṽ1, ṽ1, . . . , ṽ1, ṽ2, ṽ2, . . . , ṽ2, ṽ3, ṽ3, . . . , ṽ3, ṽ4, ṽ4 . . .},

where each of the ṽk’s is repeated tk times, where t1 is defined as the smallest positive
integer such that

εi‖∇ṽ2‖C0(�;Rd×d ) <
1

2
for every integer i ≥ 1 + t1,

whose existence is ensured by the fact that the sequence (ε j ) j∈N is vanishing, and
where tk is then recursively defined as the smallest positive integer such that

εi‖∇ṽk+1‖C0(�;Rd×d ) <
1

k
for every integer i ≥ 1 + t1 + . . . + tk .

It is clear that we have v j → v strongly in W 2,p(�;Rd) as j → +∞. Moreover, by
construction we also have

lim
j→+∞ ε j‖∇v j‖C0(�;Rd×d ) = 0. (3.20)

We notice that the assumptions on the strain energy density W imply that

∣∣∣∣W (I + F) − 1

2
FT D2W (I)F

∣∣∣∣ ≤ ω(|F|) |F|2

for every F ∈ Ũ ⊂⊂ U , where ω : [0,+∞) → [0,+∞) denotes the modulus of
uniform continuity of D2W on Ũ , which is a continuous nondecreasing function that
vanishes at 0. But (3.20) implies that, for every large enough j , we have ε j∇v j (x) ∈ Ũ
for every x ∈ �. Therefore, if j is large enough, we get

∣∣∣∣∣
1

ε2j
W (I + ε j∇v j (x)) − 1

2
E(v j (x)) D

2W (I)E(v j (x))

∣∣∣∣∣ ≤ ω(ε j |∇v j (x)|) |∇v j (x)|2

(3.21)
for every x ∈ �, having used the fact that by frame indifference D2W (I) acts as a
quadratic form only on the symmetric part of ∇v j .
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Wenotice that, since p ≥ dq/(q+1) ≥ d/2, if d > pwehave p∗ := dp/(d− p) ≥
2, therefore we have the embedding W 1,p(�;Rd) ↪→ L2(�), still holding if p ≥ d.
Therefore, E(v j ) → E(v) strongly in L2(�;Rd×d). Hence,

∫
�

∣∣∣∣∣
1

ε2j

W (I + ε j∇v j ) − 1

2
E(v) D2W (I)E(v)

∣∣∣∣∣

≤
∫
�

∣∣∣∣∣
1

ε2j

W (I + ε j∇v j ) − 1

2
E(v j ) D

2W (I)E(v j )

∣∣∣∣∣
+

∫
�

∣∣∣∣12E(v j ) D
2W (I)E(v j ) − 1

2
E(v) D2W (I)E(v)

∣∣∣∣

and the second term in the right hand side goes to 0 as j → +∞. On the other hand,
the first term in the right hand side gets estimated by means of (3.21) as

∫
�

∣∣∣∣∣
1

ε2j
W (I + ε j∇v j ) − 1

2
E(v j ) D

2W (I)E(v j )

∣∣∣∣∣ ≤ ω(ε j‖∇v j‖C0(�;Rd×d ))

∫
�

|∇v j |2

and so it vanishes as well as j → +∞, thanks to (3.20) and to the boundedness of
(∇v j ) j∈N in L2(�;Rd,×d), since ω(t) → 0 as t → 0. We conclude that

lim
j→+∞

1

ε2j

∫
�

W (I + ε j∇v j ) = 1

2

∫
�

E(v) D2W (I)E(v).

With respect to the strong W 2,p convergence, the interfacial term is continuous by
Lemma3.2,while the load termand the second gradient termare obviously continuous.
The proof is concluded. ��
Lemma 3.6 (�-liminf) Let p ≥ dq/(q + 1). Suppose that L is a bounded linear
functional on W 2,p(�;Rd), that W satisfies (2.1) and (2.2), and that (2.4) holds. Let
(ε j ) j∈N ⊂ (0, 1) be a vanishing sequence. Let v ∈ W 2,p

� (�;Rd). Let (v j ) j∈N ⊂
W 2,p

� (�;Rd) be a sequence that weakly converges to v in W 2,p(�;Rd). Then,

lim inf
j→+∞ Gε j (v j ) ≥ G∗(v).

Proof Similarly to the proof of Lemma 3.5, we have the embedding of W 1,p(�) in
L2(�). Therefore, ∇v j → ∇v weakly in L2(�;Rd×d). Let

Hj := {x ∈ � : √
ε j |∇v j (x)| < 1},

so that

|� \ Hj | ≤
∫

�\Hj

√
ε j |∇v j | ≤ √

ε j

∫
�

|∇v j |,
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thus |� \ Hj | → 0 as j → +∞. For every x ∈ Hj we have ε j |∇v j (x)| <
√

ε j and
thus (3.21) holds for every large enough j , yielding

lim inf
j→+∞

1

ε2j

∫
�

W (I + ε j∇v j ) ≥ lim inf
j→+∞

1

ε2j

∫
Hj

W (I + ε j∇v j )

≥ lim inf
j→+∞

(
1

2

∫
Hj

E(v j ) D
2W (I)E(v j ) −

∫
Hj

ω(ε j |∇v j |) |∇v j |2
)

≥ lim inf
j→+∞

(
1

2

∫
Hj

E(v j ) D
2W (I)E(v j ) −

∫
Hj

ω(
√

ε j )|∇v j |2
)

.

But ω(
√

ε j ) → 0 as j → +∞ and (∇v j ) j∈N is bounded in L2(�;Rd×d), therefore

lim inf
j→+∞

1

ε2j

∫
�

W (I + ε j∇v j )

≥ lim inf
j→+∞

1

2

∫
Hj

E(v j ) D
2W (I)E(v j ) ≥ 1

2

∫
�

E(v) D2W (I)E(v),

where the last inequality is due to the weak convergence of ∇v j to ∇v in
L2(�;Rd×d) and to the fact that |� \ Hj | → 0, yielding the weak L2(�;Rd×d)

convergence of1HjE(v j ) toE(v), and to the weak L2(�;Rd×d) lower semicontinuity
of the map G �→ ∫

�
GT D2W (I)G.

With respect to the weak W 2,p convergence, the interfacial term is lower semicon-
tinuous by Lemma 3.2, the load term is continuous, and the second gradient term is
lower semicontinuous, thanks to the assumptions (2.4). The proof is concluded. ��
Proof of Theorem 2.1 Since W ≥ 0, by Young inequality along with (2.5), (2.4)
and (2.6), calculations similar to (3.1) show that Gε j is bounded from below on

W 2,p
� (�;Rd), uniformly with respect to j ∈ N. Moreover, by applying the same

estimate to v j , since Gε j (0) = 0, we obtain

C0

∫
�

|∇2v j |p ≤ Gε j (0) + 1 = 1

for every large enough j , thus showing that the sequence (v j ) j∈N is uniformly bounded
in W 2,p(�;Rd). Having shown the �-convergence by means of Lemma 3.5 and
Lemma3.6, the proof concludes. Indeed, let v ∈ W 2,p

� (�;Rd) be aweakW 2,p(�;Rd)

limit point of the sequence (v j ) j∈N. Let v̂ ∈ W 2,p
� (�;Rd) and let (v̂ j ) j∈N ⊂ W 2,p

� (�)

be a sequence such that Gε j (v̂ j ) → G∗(v̂) as j → +∞, whose existence is ensured
by Lemma 3.5. By minimality of v j and Lemma 3.6, we get

G∗(v) ≤ lim inf
j→+∞ Gε j (v j ) ≤ lim sup

j→+∞
Gε j (v̂ j ) = G∗(v̂).
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The arbitrariness of v̂ ∈ W 2,p
� (�;Rd) ends the proof. ��

4 The Traction Problem: Proof of Theorem 2.2

We start by proving existence of minimizers for functional G overW 2,p(�;Rd). This
is done after a preliminary lemma

Lemma 4.1 Let p > 1. Let (u j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such that E(u j ) ∈
L2(�;Rd×d) for every j ∈ N. Suppose that

sup
j∈N

‖E(u j )‖L2(�;Rd×d ) + sup
j∈N

‖∇2u j‖L p(�;Rd×d×d ) < +∞. (4.1)

Then there exist u ∈ W 2,p(�;Rd) with E(u) ∈ L2(�;Rd×d), a sequence (a j ) j∈N ⊂
R
d and a sequence of skew-symmetric matrices (W j ) j∈N ⊂ R

d×d such that as j →
+∞, along a suitable not relabeled subsequence,

u j − W j x − a j⇀u weakly in W 2,p(�;Rd)

E(u j )⇀E(u) weakly in L2(�;Rd×d).
(4.2)

Proof Assume first that 1 < p ≤ 2. By Poincaré inequality and by second Korn
inequality, for every j ∈ N there exist a j ∈ R

d and a skew-symmetric matrix W j ∈
R
d×d such that

‖u j − W j x − a j‖L p(�;Rd ) ≤ q ‖∇u j − W j‖L p(�;Rd×d ) ≤ qK‖E(u j )‖L p(�;Rd×d ),

(4.3)
where q, K are positive constants, only depending on � and p. We conclude from
(4.1) that there exists u ∈ W 1,p(�;Rd) such that, by passing to a not relabeled
subsequence, u j −W j x−a j⇀u weakly inW 1,p(�;Rd) as j → +∞. But then (4.1)
implies that E(u) ∈ L2(�;Rd×d) and that E(u j ) → E(u) weakly in L2(�;Rd×d).
The boundedness in L p(�;Rd×d×d) of the sequence (∇2u j ) j∈N, still given by (4.1),
allows to conclude.

Else if p ≥ 2, Poincaré inequality yields for every j ∈ N the existence of U j ∈
R
d×d such that

‖E(u j ) − U j‖L2(�;Rd×d ) ≤ |�|
p−2
2p ‖E(u j ) − U j‖L p(�;Rd×d )

≤ q|�|
p−2
2p ‖∇E(u j )‖L p(�;Rd×d )

≤ q|�|
p−2
2p ‖∇2u j‖L p(�;Rd×d ).

(4.4)

But (4.1) and (4.4) imply that the sequence (U j ) j∈N is uniformly bounded in
R
d×d . Therefore still by (4.4), we get that (E(u j )) j∈N is uniformly bounded also

in L p(�;Rd×d), so that we still have, by Korn and Poincaré inequalities, the validity
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of (4.3), where the right hand side is uniformly bounded with respect to j . We thus
conclude as done in the case 1 < p ≤ 2. ��
Lemma 4.2 Let p ≥ 2d/(d + 2) and p ≥ dq/(d − 1 + q). If d = 2 and q = 1, let
p > 1. Suppose that W satisfies (2.1) and (2.2) and that H satisfies (2.4). Let L be a
bounded linear functional over W 2,p∧2(�;Rd) that satisfies (2.7). Then, there exists
a solution to each of the problems

min{G(u) : u ∈ W 2,p(�;Rd)} and min{G(u) : u ∈ W 2,p(�;Rd)}.

Proof We consider the problem for functional G, the proof for the other one being
analogous. As seen in the proof of Lemma 3.1, we have the Sobolev embedding
W 1,p(�;Rd) ↪→ L2(�;Rd) and the Sobolev trace embedding W 1,p(�;Rd) ↪→
Lq(∂�;Rd), so that G(v) is well defined and finite for every v ∈ W 2,p(�;Rd). For
every v ∈ W 2,p(�;Rd) and every R ∈ S0

L, we define

H(v,R) := 1

2

∫
�

E(v) D2W (I)E(v)+
∫

�

H(∇2v)+γ

∫
∂�

|A(v)n·n|q dS−L(Rv).

Let (u j ,R j ) j∈N ⊂ W 2,p(�;Rd)×S0
L be aminimizing sequence for theminimization

problem

min{H(u,R) : (u,R) ∈ W 2,p(�;Rd) × S0
L}.

Since H(0, I) = 0 we may assume wlog that H(u j ,R j ) ≤ 1 for every j ∈ N. By
(2.2) and (2.4), by Hölder inequality and by (2.8) with r = 2 ∧ p, we get

C0

∫
�

|∇2u j |p + C
∫
�

|E(u j )|2 ≤ 1 + L(R j u j )

≤ 1 + Q
(
‖E(u j )‖L2(�;Rd×d ) + ‖∇2u j‖L p(�;Rd×d×d )

)
,

where Q is a suitable positive constant, only depending on p,� andL. An application
of Young inequality in the right hand side (similarly to the proof of Lemma 3.1)
shows that the sequence (u j ) j∈N satisfies (4.1). The same computation shows that
the sequence (G(u j )) j∈N is bounded from below. By Lemma 4.1, there exist u ∈
W 2,p(�;Rd), a sequence (a j ) j∈N ⊂ R

d and a sequence of skew-symmetric matrices
(W j ) j∈N ⊂ R

d×d such that (4.2) holds along a suitable not relabeled subsequence.
Since L is a bounded linear functional over W 2,p(�;Rd), and since (2.7) holds, we
deduce

lim
j→+∞L(u j ) = lim

j→+∞L(u j − W j x − a j ) = L(u).

The Sobolev trace embeddingW 1,p(�) ↪→ Lq(∂�) shows thatA(u j )n·n⇀A(u)n·n
weakly in Lq(∂�), therefore

123



Journal of Nonlinear Science            (2025) 35:63 Page 21 of 30    63 

lim inf
j→+∞

∫
∂�

|A(u j )n · n|q dS

= lim inf
j→+∞

∫
∂�

|A(u j − W j x − a j )n · n|q dS ≥
∫

∂�

|A(u)n · n|q dS.

Along the sequence (u j ) j∈N, the first two terms of H are lower semicontinuous,
thanks to (4.2). By possibly extracting a further not relabeled subsequence we have
R j → R ∈ S0

L as j → +∞ and then L(R j u j ) → L(Ru). We conclude that

G(u) ≤ H(u,R) ≤ lim inf
j→+∞ H(u j ,R j ) = inf

W 2,p(�;Rd )×S0
L
H = inf

W 2,p(�;Rd )
G,

thus showing that u is a minimizer for G over W 2,p(�;Rd). ��
Next we prove existence of minimizers over W 2,p(�;Rd) for functional Gε, for

fixed ε.

Lemma 4.3 Let p ≥ dq/(q + 1). If d = 2 and q = 1, assume in addition that p > 1.
Let L be a bounded linear functional on W 2,p∧2(�;Rd) that satisfies (2.7). Suppose
that W satisfies (2.1) and (2.3), and that H satisfies (2.4). Then, the functional Gε

attains a minimum on W 2,p(�;Rd), for every ε > 0.

Proof We fix wlog ε = 1. For every v ∈ W 2,p(�;Rd), the conditions on p imply that
v ∈ W 1,2(�;Rd) by Sobolev embedding, and thanks to (2.11) and (2.3) we get

G1(v) ≥
∫

�

W (I + ∇v) +
∫

�

H(∇2v) − L(v)

≥ C̄

C�

∫
�

|I + ∇v − R|2 +
∫

�

H(∇2v) − L(v),

for some suitable R ∈ SO(d), depending on v, therefore there exists c > 0 (only
depending on C̄ , C� and d), such that, also using (2.4),

c + G1(v) ≥
∫

�

|∇v|2 +
∫

�

H(∇2v) − L(v) ≥
∫

�

|∇v|2 + C0

∫
�

|∇2v|p − L(v).

Similarly to the proof of Lemma 4.2, the latter estimate can be combined with (2.8)
with r = 2 ∧ p and with Young inequality to obtain that G1 is bounded from below
over W 2,p(�;Rd) and that every minimizing sequence (vn)n∈N ⊂ W 2,p(�;Rd)

of functional G1 is such that (∇vn)n∈N is bounded in L2(�;Rd×d) and such that
(∇2vn)n∈N is bounded in L p(�;Rd×d×d). By arguing as in the proof of Lemma
4.2, we may use Poincaré inequality and deduce that there exists v ∈ W 2,p(�;Rd)

with ∇v ∈ L2(�;Rd×d) and a sequence (an)n∈N ⊂ R
d such that, as n → +∞

along a suitable subsequence, vn − an⇀v weakly in W 2,p(�;Rd). In particular, up
to extraction of a further subsequence, ∇vn → ∇v a.e. in �, thus by Fatou lemma
and the continuity of W we obtain the lower semicontinuity of the integral involving
W along the sequence (vn)n∈N, while the lower semicontinuity of the term involving
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H is ensured by (2.4). We have by (2.7) L(vn) = L(vn − an) → L(v) as n → +∞
since L is a bounded linear functional over W 2,p(�;Rd). Finally, the interfacial term
of functional G1 is lower semicontinuous along the sequence (vn)n∈N, by the same
argument in the proof of Lemma 3.4. We conclude that v is a minimizer of G1 over
W 2,p(�;Rd). ��

We need three lemmas in order to prove Theorem 2.2, proving, respectively,
compactness, lower bound and upper bound.

Lemma 4.4 Let p ≥ dq/(q + 1). If d = 2 and q = 1, assume in addition that
p > 1. Let M > 0. Let W satisfy (2.1) and (2.3). LetL be a bounded linear functional
over W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂ (0, 1) be a vanishing
sequence. Let (v j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such thatGε j (v j ) ≤ M for every
j ∈ N. Then there existR ∈ S0

L, a sequence (R j ) j∈N ⊂ SO(d), and u ∈ W 2,p(�;Rd)

such that, letting

u j := RT
j v j + RT

j x − x

ε j
, (4.5)

in the limit as j → +∞ (possibly along a not relabeled subsequence) there hold

R j → R and ∇u j⇀∇u weakly in W 1,p(�;Rd×d).

Proof Aconsequence of (2.11) and of (2.3) is that there exists a a sequence (R j ) j∈N ⊂
SO(d) and a constant c > 0 (only depending on W and �) such that

c
∫

�

|∇u j |2 = c

ε2j

∫
�

|I − R j + ε j∇v j |2 ≤ 1

ε2j

∫
�

W (I + ε j∇v j ), (4.6)

and then we deduce, since Gε j (v j ) ≤ M and since (2.9) holds, that

c
∫

�

|∇u j |2 +
∫

�

H(∇2u j ) ≤ M + L(v j )

= M + 1

ε j
L(R j x − x) + L(R j u j ) ≤ M + L(R j u j ).

(4.7)
By including (2.8) with r = 2 ∧ p and Hölder inequality, we obtain

c
∫

�

|∇u j |2 +
∫

�

H(∇2u j ) ≤ M + Q‖∇u j‖L2(�;Rd×d ) + Q‖∇2u j‖L p(�;Rd×d×d ).

where Q > 0 is a suitable constant, only depending on �, p and on CL from (2.5),
and then by Young inequality we get

c
∫

�

|∇u j |2 +
∫

�

H(∇2u j )

≤ M + Q2

2δ2
+ δ2

2

∫
�

|∇u j |2 + p − 1

p

(
Q

δ

) p
p−1 + δ p

p

∫
�

|∇2u j |p
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for every δ > 0. Choosing small enough δ, we see that the sequence (∇u j ) j∈N
is bounded in L2(�;Rd×d) and that the sequence (∇2u j ) j∈N is bounded in
L p(�;Rd×d×d). By Poincaré inequality, there exists a sequence (a j ) j∈N ⊂ R

d

and a positive constant c (only depending on �) such that ‖u j − a j‖L2(�;Rd ) ≤
c‖∇u j‖L2(�;Rd×d ) for every j ∈ N. Therefore, by passing to a suitable not rela-
beled subsequence, we have the existence of u ∈ W 1,2(�;Rd) such that u j − a j⇀u
weakly in L2(�;Rd) and ∇u j → ∇u weakly in L2(�;Rd×d) as j → +∞; the
uniform bound on the sequence (∇2u j ) j∈N in L p(�;Rd×d×d) and Poincaré inequal-
ity again allow to conclude that u ∈ W 2,p(�;Rd) and that ∇u j⇀∇u weakly in
W 1,p(�;Rd×d).

On the other hand, by (4.7) and (2.9) we have

0 ≤ − 1

ε j
L(R j x − x) ≤ M + L(R j u j ).

But then (2.5) and the already established uniform bounds of the sequence (∇u j ) j∈N
in L2(�;Rd×d) and of the sequence (∇2u j ) j∈N in L p(�;Rd×d×d) yield

lim
j→+∞L(R j x − x) = 0.

This shows that any limit point of the sequence (R j ) j∈N belongs to S0
L. ��

Lemma 4.5 Let p ≥ dq/(q + 1). Let W satisfy (2.1) and (2.2). Let L be a bounded
linear functional over W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂
(0, 1) be a vanishing sequence. Let u ∈ W 2,p(�;Rd). Let (v j ) j∈N ⊂ W 2,p(�;Rd)

and (R j ) j∈N ⊂ SO(d) be sequences such that

∇u j⇀∇u weakly in W 1,p(�;Rd×d) as j → +∞,

where u j := RT
j v j + 1

ε j
(RT

j x − x), and R j → R ∈ S0
L as j → +∞. Then,

G(u) ≤ lim inf
j→+∞ Gε j (v j ).

Proof Let Tj := {x ∈ � : √
ε j |∇u j (x)| < 1}, so that

|� \ Tj | ≤
∫

�\Tj

√
ε j |∇u j | ≤ √

ε j

∫
�

|∇u j |,

thus |� \ Tj | → 0 as j → +∞. By repeating the argument in the proof of Lemma
3.6, for every x ∈ Tj we have ε j |∇u j (x)| <

√
ε j and thus (3.21) holds for every large
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enough j , yielding

lim inf
j→+∞

1

ε2j

∫
�

W (I + ε j∇v j )

= lim inf
j→+∞

1

ε2j

∫
�

W (I + ε j∇u j ) ≥ lim inf
j→+∞

1

ε2j

∫
Tj

W (I + ε j∇u j )

≥ lim inf
j→+∞

(
1

2

∫
Tj

E(u j ) D
2W (I)E(u j ) −

∫
Tj

ω(ε j |∇u j |) |∇u j |2
)

≥ lim inf
j→+∞

(
1

2

∫
�

(1TjE(u j )) D
2W (I) (1TjE(u j )) −

∫
Tj

ω(
√

ε j )|∇u j |2
)

,

where the first equality is due to the frame indifference of W . But ω(
√

ε j ) → 0
as j → +∞ and (∇u j ) j∈N is bounded in L2(�;Rd×d) because of the embedding
of W 1,p(�) in L2(�) yielding ∇u j → ∇u in L2(�;Rd×d). Moreover, for every
η ∈ L2(�;Rd×d) we have

∣∣∣∣
∫

�

η : 1�\TjE(u j )

∣∣∣∣ ≤ ‖∇u j‖L2(�;Rd×d)

(∫
�\Tj

|η|2
) 1

2

where the right hand side goes to zero as j → +∞ since |� \ Tj | → 0, so
that 1�\TjE(u j )⇀0 weakly in L2(�;Rd×d), and by writing 1TjE(u j ) = E(u j ) −
1�\TjE(u j ) we see that 1TjE(u j )⇀E(u) weakly in L2(�;Rd×d). We conclude that

lim inf
j→+∞

1

ε2j

∫
�

W (I + ε j∇v j ) ≥ 1

2

∫
�

E(u) D2W (I)E(u), (4.8)

thanks to the weak L2(�;Rd×d) semicontinuity of the map F �→ ∫
�
FT D2W (I)F.

By the Sobolev embedding W 1,p(�;Rd×d) ↪→ L2(�;Rd×d), holding since p >

d/2, we get ∇u j⇀∇u weakly in L2(�;Rd×d). By Poincaré inequality, we deduce
the existence of a sequence (a j ) j∈N ⊂ R

d and of ū ∈ L2(�;Rd) such that u j −a j⇀ū
weakly in L2(�;Rd×d) and such that ∇ū = ∇u on �. Since ∇2u j⇀∇2u weakly in
L p(�;Rd×d×d), we deduce that u j − a j⇀ū weakly in W 2,2∧p(�;Rd). Therefore,
since (2.7) holds and since L is a bounded linear functional over W 2,2∧p(�;Rd), we
get L(u j ) = L(u j − a j ) → L(ū) = L(u) as j → +∞, and since R j → R, we
obtain

lim
j→+∞L(R j u j ) = lim

j→+∞L(R j (u j − a j )) = L(Rū) = L(Ru).

By taking (2.9) into account, we have

−L(v j ) = − 1

ε j
L(R j x − x) − L(R j u j ) ≥ −L(R j u j )
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and therefore
lim inf
j→+∞ −L(v j ) ≥ −L(Ru) ≥ − max

R∈S0
L
L(Ru). (4.9)

Since x+ε jv j = R j (x+ε j u j ), and since cof (RF) = R cof F for everyR ∈ SO(d)

and every F ∈ R
d×d , we have

∫
∂�

||cof (I + ε j∇v j )n| − 1|q dS =
∫

∂�

||cof (I + ε j∇u j )n| − 1|q dS,

therefore Lemma 3.2 implies

lim inf
j→+∞

1

ε
q
j

∫
∂�

||cof (I + ε j∇v j )n| − 1|q dS ≥
∫

∂�

|A(u)n · n|q . (4.10)

The weak lower semicontinuity of the L p norm for the second gradient term, along
with (4.8), (4.9) and (4.10), entails the desired result. ��
Lemma 4.6 Let p ≥ dq/(q + 1). Let W satisfy (2.1) and (2.2). Let L be a bounded
linear functional over W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂
(0, 1) be a vanishing sequence. For every u ∈ W 2,p(�;Rd), there exist a sequence
(u j ) j∈N ⊂ W 2,p(�;Rd) and Ru ∈ S0

L such that

u j → u strongly in W 2,p(�;Rd) (4.11)

and such that

lim sup
j→+∞

Gε j (v j ) ≤ G(u),

where v j := Ruu j + 1

ε j
(Rux − x).

Proof Let (u j ) j∈N ⊂ C∞(�;Rd) ∩ W 2,p(�;Rd) be a sequence that strongly
converges to u in W 2,p(�;Rd). If p < 2, we also have ∇u j → ∇u strongly
in L2(�;Rd×d) as j → +∞ by Sobolev embedding, since p ≥ dq/(q + 1).
By the same argument of the proof of Lemma 3.5, it is possible to assume that
ε j‖∇u j‖C0(�;Rd×d ) → 0 as j → +∞; therefore, by repeating the arguments therein
we get

lim
j→+∞

1

ε2j

∫
�

W (I + ε j∇u j ) = 1

2

∫
�

E(u) D2W (I)E(u).

We have
∫
�

|∇2u j |p → ∫
�

|∇2u|p as j → +∞, and moreover by Lemma 3.2 we
have

lim
j→+∞

1

ε
q
j

∫
∂�

||cof (I + ε j∇u j )n| − 1|q dS =
∫

∂�

|A(u)n · n|q dS.
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Let now Ru be a minimizer of the function

R �→ 1

2

∫
�

E(u) D2W (I)E(u) +
∫

�

H(∇2u) + γ

∫
∂�

|A(u)n · n|q dS − L(Ru)

over S0
L, and let v j := Ruu j + 1

ε j
(Rux − x), j ∈ N. We notice that by frame

indifference all the terms in Gε j , excluding the load term, are the same if evaluated at
u j or v j . In particular, we get

lim sup
j→+∞

|Gε j (v j ) − G(u)| = lim sup
j→+∞

| 1
ε j

L(Rux − x) + L(Ruu j ) − L(Ruu)|

= lim sup
j→+∞

|L(Ruu j ) − L(Ruu)|

≤ lim sup
j→+∞

CL
(
(1 + c)K ‖∇u j − ∇u‖L2∧p(�;Rd×d ) + ‖∇2u j − ∇2u‖L2∧p(�;Rd×d×d )

)

= 0,

having used Ru ∈ S0
L, (2.8) with r = 2 ∧ p, and (4.11). The proof is concluded. ��

Proof of Theorem 2.2 Let (v j ) j∈N ⊂ W 2,p(�,Rd) be a sequence of minimizers of
Gε j over W

2,p(�;Rd). Since Gε j (0) = 0, we may assume wlog that Gε j (v j ) ≤ 1 for
every j ∈ N. By Lemma 4.4 and Lemma 4.5, there exist u∗ ∈ W 2,p(�;Rd), R ∈ S0

L
and a sequence (R j ) j∈N ⊂ SO(d) such that, by possibly passing to a not relabeled
subsequence, there hold R j → R and ∇u j → ∇u∗ weakly in W 1,p(�;Rd×d) as
j → +∞, where u j := RT

j v j + 1
ε j

(RT
j x − x), and

G(u∗) ≤ lim inf
j→+∞ Gε j (v j ). (4.12)

Let now ũ ∈ W 2,p(�;Rd). By Lemma 4.6, there exist Rũ ∈ S0
L and a sequence

(ũ j ) j∈N ⊂ W 2,p(�;Rd) such that, letting ṽ j := Rũ ũ j + 1
ε j

(Rũ x − x), there holds

lim sup
j→+∞

Gε j (ṽ j ) ≤ G(ũ). (4.13)

By combining (4.12) and (4.13), since (v j ) j∈N is a sequence ofminimizers, we deduce

G(u∗) ≤ lim inf
j→+∞ Gε j (v j ) ≤ lim sup

j→+∞
Gε j (ṽ j ) ≤ G(ũ). (4.14)

Then, the arbitrariness of ũ shows that u∗ minimizes G over W 2,p(�;Rd), and
choosing ũ = u∗ in (4.14) we obtain (2.10). ��
Proof of Corollary 2.3 The proof is the same as that of Theorem 2.1 and Theorem 2.2.
The only difference is indeed in the interface terms. However, the limiting behavior
of the interface terms of functional Fε and Iε is given by Corollary (3.3), which
can be used in place of Lemma 3.2. This shows the validity of the result for the
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Dirichlet problem. Concerning the pure traction problem, the proof is again the same
for functional Gε, taking also advantage of the frame indifference of the interfacial
term therein the allows to perform the argument in the proof of Lemma 4.6. ��

In order to prove Theorem 2.4, we give a preliminary compactness result.

Lemma 4.7 Let p ≥ dq/(q + 1). If q = 1 and d = 2, let also p > 1. Let
M > 0. Let W satisfy (2.1) and (2.3). Let L be a bounded linear functional over
W 2,2∧p(�;Rd) that satisfies (2.7) and (2.9). Let (ε j ) j∈N ⊂ (0, 1) be a vanish-
ing sequence. Let (v j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such that Iε j (v j ) ≤
M for every j ∈ N. Then there exist v ∈ W 2,p(�;Rd) such that there hold
∇v j⇀∇v weakly in W 1,p(�;Rd×d) in the limit as j → +∞ (possibly along a
not relabeled subsequence).

Proof By (2.11) and (2.3), there exists a sequence (R j ) j∈N ⊂ SO(d) such that (4.6)
holds, where u j is defined by (4.5). Therefore,
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≤ Iε j (v j ) + L(v j ) ≤ M + 1

ε j
L(R j x − x) + L(R j u j ) ≤ M + L(R j u j )

having used (2.9). As seen in the proof of Lemma 4.4, this shows that there exists
u ∈ W 2,p(�;Rd) such that∇u j⇀∇u weakly inW 1,p(�;Rd×d) along a suitable not
relabeled subsequence, and that
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is uniformly bounded w.r.t. j . However, the sequence (ε−1
j R j (cof (I + ε j∇u j ) −

I)n) j∈N is uniformly bounded in Lq(∂�;Rd), thanks to Corollary 3.15. Therefore,
we deduce that

sup
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ε j

n
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q

dS < +∞. (4.15)

Let V j := ε−1
j (R j − I) and Z j := V j/|V j |. We claim that the sequence (V j ) j∈N ⊂

R
d×d is bounded. Indeed, suppose not. Then there exists a suitable subsequence along

which |V j | diverge and Z j → Z for some suitable Z ∈ R
d×d with |Z| = 1. Thus

|V j |−q
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∂�
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as j → +∞. But |V j | → +∞ and (4.15) then imply
∫
∂�

|Zn|q dS = 0, which is
a contradiction since |Z| = 1. The claim is proven and it implies the result, since
∇u j⇀∇u weakly in W 1,p(�;Rd×d) and since u j and v j are related by (4.5). ��
Proof of Theorem 2.4 We preliminarily notice that existence of minimizers over
W 2,p(�;Rd) of Iε j , for every fixed j , and of I∗ are obtained in the same way as
done in Lemma 4.3 and Lemma 4.2, respectively.

We first check Gamma liminf inequality, that is we let v ∈ W 2,p(�;Rd), we let
(v j ) j∈N ⊂ W 2,p(�;Rd) be a sequence such that∇v j⇀∇vweakly inW 1,p(�;Rd×d)

as j → +∞,
and we check that

I∗(v) ≤ lim inf
j→+∞ Iε j (v j ).

This is obtained in the very same way as in the proof of Lemma 4.5. Indeed, after
defining Tj := {x ∈ � : √

ε j |∇v j (x)| < 1} we follow the argument therein and
obtain (4.8) with v in place of u. Similarly by using Poincaré inequality and (2.7), we
get L(v j ) → L(v) as j → +∞. We also have lower semicontinuity of L p norm of
the second gradient, as well as lower semicontinuity of the interfacial term, thanks to
Corollary 3.15.

As second step, we check Gamma limsup inequality, that is, we check that for
every v ∈ W 2,p(�;Rd) there exists a sequence (v j ) j∈N ⊂ W 2,p(�;Rd) such that
v j → v strongly in W 2,p(�;Rd) and such that

lim sup
j→+∞

Iε j (v j ) ≤ I∗(v).

The argument is the same that was used for proving Lemma 4.6. Let (v j ) j∈N ⊂
C∞(�;Rd) ∩ W 2,p(�;Rd) be a sequence that strongly converges to v in
W 2,p(�;Rd), constructed as in proof of Lemma 3.5. Thus, we get continuity along
this sequence of all the terms in the energy but the load term, also using Corollary
3.15. Concerning the load term, we directly get L(v j ) → L(v) by means of (2.8).

Having proven compactness and Gamma convergence, the result follows. ��
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