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Abstract This paper develops the traditional Failure Modes, Effects and Critical-
ity Analysis (FMECA) for quantitative risk assessment from a Bayesian Network
(BN)-based perspective. The main purpose consists in endowing FMECA with a
framework for analysing causal relationships for risk evaluation and deriving proba-
bilistic relations between significant risk factors, which are represented by linguistic
variables. The idea is to take advantage of BNs’ ability for inference incorporat-
ing uncertainty, and thus to enable analysts to obtain valuable information for risk
assessment to support such crucial decision-making processes as planning, operation,
maintenance, etc. in industry. The proposed framework includes the human factor as
a key element of analysis in FMECA-based risk assessment. We propose to consider
a new parameter with respect to those traditionally used for the Risk Priority Num-
ber (RPN) calculation, namely the human factor, something that existing approaches
scarcely consider in the current practice. The contributions to the risk function calcu-
lation of the identified factors are determined using aMulti-criteria Decision-Making
(MCDM) perspective. We present and develop a real-world application in the ali-
mentary industry on supply chain risk (SCR) management, a fundamental business
topic where risk and supply chain management processes merge.
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Notation table
Notation Definition
SCR Supply Chain Risk
RPN Risk Priority Number
S Severity
O Occurrence
D Detection
H Human Factor
R Global risk value, calculated as R = int[SwS ×

OwO × HwH ]
Ind(Ai ;NoDesc(Ai )|Pa(Ai )) Relations of conditional independence (Ind) of a

(generic) node Ai with respect to its non-descendants
(NoDesc) given the values of its parents (Pa)

P(A1, . . . , An) Joint probability distribution given the conditional
probability tables, defined as P(A1, . . . , An) =∏n

i=1 P(Ai |Pa(Ai ))

P(X|e) Vector probability of variables in vector X, given
the vector evidence e, determined as P(X|e) =
αP(X, e) = α

∑
y P(X, e, y), being α a normalizing

factor, and Y hidden variables

1 Introduction and Literature Review

The concept of risk permeates human daily life at virtually any level. When it comes
to business, any riskmanagement process has to be organised and implemented on the
basis of the specific sector of activity. In any case, the primary objective of this process
has to be the maximisation of safety and security conditions for human resources,
along with the optimisation of such criteria as time effectiveness, production and
services’ quality, and economic aspects. Considering the utmost importance of risk-
oriented management [62], good results can be achieved by accurately leading the
stages of hazard identification and risk assessment [20]. On the whole, despite its
crucial importance, risk management processes are still carried out on the basis of
too simplistic evaluations approaches, even in those business sectors where safety
and security are imperative requirements [26]. This is the reason why various authors
agree about the fact that novel decision-making frameworks have to be developed
and implemented for risk management [39, 46], above all when managing epistemic
uncertainty affecting data is necessary to achieve more precise evaluations [40].

Risks are traditionally assessed on the basis of qualitative and/or quantitative
evaluations attributed to previously identified parameters. These parameters (i.e.
risk factors) basically refer to the associated frequency of risk occurrence and to the
so-called magnitude of severity, the latter representing a measure of the potential
negative impact on people and systems if a given risk occurs. In this context, since
humans are intrinsically related to risks of diverse nature, integrating the human
factor as a parameter for risk evaluation can be strategic. It is indeed unarguable
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that human resources constitute the focal point of any business field [10]. Moreover,
people acquiring new awareness and capabilities about risk management processes
can have a tremendous influence in making business successful. As a result, efforts
in developing mathematical models for human factors analysis have been oriented
to cope with the natural discontinuity between humans and systems features [7].

Traditional risk assessment approaches performed by Failure Modes, Effects and
Criticality Analysis (FMECA) are developed on the basis of inductive reasoning
procedures aimed at defining, identifying and quantitatively evaluating potential fail-
ure modes involving complex systems [2], as well as individual components [18].
FMECA is considered a valuable tool to comprehensively collect and organise
experts’ knowledge with the purpose of quantifying those risks related to systems’
usage [15]. FMECA-based analyses play an important part in highlighting critical
components and increasing efficiency of core processes [22]. By means of an early
identification of root causes [58], FMECA outputs are indeed useful to proceed
towards the implementation of suitable prevention and/or mitigation measures [21],
then to contribute to global systems’ states improvement [16]. However, FMECA
is characterised by various shortcomings [3], for which previous assumptions and
clarifications should be made [19]. First of all, the considered risk factors are com-
monly assessed without taking into account the existence of dependencies among
them [41], something thatmay lead to imprecise results with the consequent adoption
of ineffective decisions. This is one of the aspects we aim to improve by proposing a
multi-criteria evaluation approach capable to deal with the existence of relations of
dependence among the parameters relevant to the analysis. Another reasonwhy tradi-
tional FMECA analyses have been widely criticized in the literature [14, 31, 32, 34,
35, 64] consists in not considering the different importance of the involved parame-
ters, i.e. different weights in evaluating risks. Also in this case, we are going to deal
with such a shortcoming by including the possibility of attributing different degrees
of importance to these parameters. In addition, such important aspects as human
factors in terms of human contributions to risk are not properly taken into account,
despite being fundamental for organisational effectiveness and safety [11]. This is
the main reason why the present research aims to embody such an aspect within the
risk function calculation. Apart from all the mentioned weaknesses, FMECA also
lacks of the possibility of providing accurate analyses of causal relationships for
risk assessment, and this can be resolved by endowing it with a Bayesian Network
(BN) framework [9], which will allow to derive probabilistic inference among the
most significant parameters under study. As affirmed in [1], BN applications are ben-
eficial for implementing effective reliability models and decision support systems
under uncertainty conditions. Furthermore, BNs have been recently and successfully
adopted for real-time risk assessment [1, 30], also in the presence of decision-making
groups [56], contributing to establish effective decision-making strategies for risk
management [53].

As an extension of a previous contribution [12], this research develops the tra-
ditional FMECA [25] for quantitative risk analysis from a BN-based perspective,
which reveals to be useful to make more accurate predictions about parameters’
values. With respect to the previous conference paper, as we are going to explain
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next more in detail, the present research deeply explores and updates traditional
FMECA parameters and makes use of Multi-criteria Decision-Making (MCDM)
along with BNs as an additional integration to risk analysis processes. This may ease
the discrimination among the relative importance attributed to the different assess-
ment parameters. Moreover, we have considerably extended the practical case study,
which includes data from various real companies operating within the alimentary
industry, in order to get comprehensive results that may be significant for the whole
sector. More in detail, the main purpose of the present research consists in providing
a framework for analysing causal relationships for risk evaluation and deriving prob-
abilistic relations between significant risk factors. These parameters, evaluated by
means of linguistic variables, include the human factor as a key element of analysis.
Embodying the human contribution to the risk function within the process of risk
management provides an effective perspective, as human factors have been recog-
nised among the primary sources of potential accidents [63]. For this reason, we
integrate the fields of human factors management and risk management with the aim
to design successful strategies and promote best practices [27] capable to increase
business performance. As already said, a MCDM perspective is herein proposed to
take into account the different mutual importance of risk factors (i.e. criteria) and
their different contribution to the risk function calculation according to the influence
of significant sub-criteria. The usefulness of MCDM methods in the risk analysis
field is supported by the existing literature [57], in particular, to enhance FMECA-
based approaches effectiveness [33]. For instance, aMCDM-based approachmaking
use of several methods is proposed in [8] to increase the whole reliability of FMECA
results by eventually presenting a benchmark FMECA example for a process plant
gearbox. The authors present a review on recentMCDMapplications in FMECAcase
studies, highlighting the useful role of these methods in supporting failure modes
prioritisation. MCDMmodels have been indeed widely suggested for enhancing the
robustness of the final ranking of risks [17] by specifically integrating subjective and
objective weights of group members as well as relevant factors [59]. The field of
supply chain management has been explored with relation to the treated topic, see
[37], among others. The authors propose a MCDM integration aimed at assessing
risks and proposing strategic solutions to face the impact of COVID-19 on organ-
isational efficiency. Specifically, they underline the role of the Analytic Network
Process (ANP) as a technique capable to deal with dependence bounding the main
factors of analysis. In such a direction, upon formalising the parameters to be used
for the risk function calculation, the application of the ANP is herein suggested to
calculate their related weights by simultaneously taking into account relationships
of dependence bounding the main decision-making elements of analysis. Attributing
different weights to the risk parameters would indeed enable us to consider their
diverse contribution to the final risk score.

The proposed theoretical approach is applied to a real-world use case on supply
chain risk (SCR) management in the industrial alimentary sector. The choice of this
topic,which currently represents a lively research area, is furthermotivated by the fact
that FMECAhas been recently extended to supply chain risk evaluation [41].Over the
last years, researchers have been developing new models and/or integrating existing
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methods with the purpose of minimising the occurrence of operational risks while
simultaneously managing supply chain operational risks [44]. Effective management
is particularly crucial in the alimentary industry, given the fact that products may
have perishable characteristics and their quality could be inexorably compromised
by inefficiencies affecting supply chains [45]. As underlined in [5], designing and
timely implementing suitable prevention and/or mitigation actions is fundamental to
control the effects of supply chain disruptions. This is the reason why the literature
shows asfirmshavemade considerable efforts to identify and apply suitable resilience
strategies. As developing supply chain resilience becomes crucial to businesses,
reliable theoretical models should be developed to first evaluate the effects of supply
chain disruptions on performance outcomes [61].

The connection between practical world problems and theoretical research is
always a challenging domain. As discussed, for example, in [38], the translation
from amathematicalmodel to an application is sometimes a difficult transit asmodels
are not comprehensible to common users without mathematical background. In the
mentioned article the authors propose extracting rules frommathematicalmodels and
presenting only extracted rules to the final user. The related process of data collection
has been carried out in the literature by using expert knowledge and management
input, as in [49]. Another way to extract useful data is discussed, for example, in [28].
This topic is further detailed in [6],where the authors elaborate about the possibility of
making use of such tools as BNs and fuzzy systems. In the present case, the practical
use of SCR assessment models is linked to the proposed theory by including the
human factor as a significant parameter. In this way, the contribution of decision
support systems to real-world logistic scenarios will be possible. Our approach aims
to be of practical use for companies in their supply chain operations, even though it
can also be extended to other sectors of activity.

With this recognition, the use case herein presented involves four companies of the
alimentary manufacturing industry. Extensive sessions of brainstorming have been
led and many surveys have been carried out in collaboration with a decision-making
group of sixty stakeholders, who have been grouped according to their specific roles.
This study provides meaningful insights for successful SCR assessment in the anal-
ysed industrial sector. Best practices and procedures can be derived and adopted by
logistic managers to pursue process automation and operational efficiency.

The paper is organised as follows. The proposed approach in terms of method-
ologies and main novelties is presented in the next Sect. 2. The application on SCR
management focused on the field of alimentary industry is developed in Sect. 3, along
with the discussion of final results and their practical implications. Conclusions and
possible future developments of the present research are lastly outlined in Sect. 4.
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2 The Proposed Approach

The research objectives of the present paper are further formalised as follows:

• to review the risk parameters used in traditional FMECAandembodying the human
factor into the risk function calculation, what constitutes a new perspective in the
field of risk analysis;

• to calculate a global risk score by considering the different importance of risk
factors and obtaining the related vector of weights through a MCDM approach
capable to model interrelationships bounding the elements of analysis;

• to integrate the FMECA and BN frameworks to generally improve the process
of risk assessment and achieve more accurate results to be translated into the
implementation of more effective decisions;

• to carry out a deep SCR assessment in the field of the alimentary industry on the
basis of expert judgements to provide logistic managers operating in this sector
with useful insights for SCR management.

This approach can effectively support analysts in implementing risk management
procedures on the basis of more reliable risk evaluations, the latter being led by over-
coming the main drawbacks of traditional FMECA assessments and by exploiting
benefits derived from BN-based approaches.

2.1 Embodying the Human Contribution into the RPN
Calculation

FMECA is a systematic procedure to identify and analyse all the failure modes
potentially involving systems or their main components, through the definition of
the related causes and effects. The method aims to prioritise the failure modes under
analysis by calculating the index called Risk Priority Number (RPN) for each of
them. The RPN is traditionally derived from the multiplication of three main factors,
namely severity (S), occurrence (O) and detection (D):

RPN = S × O × D. (1)

Severity expresses the intensity of the impact that the occurrence of a given fail-
ure mode could have on the global system performance. Occurrence is an estimate
of the frequency of occurrence of a failure mode within a given time lapse. Detec-
tion evaluates the probability of correct failure identification. The three risk factors
are generally ranged within discrete intervals. Table1 presents possible evaluation
scales, adapted from the FMECA guidelines [25], which can be assumed for the
parameters. As observed in Tables1a and b, higher linguistic evaluations of severity
and occurrence lead to higher RPN values. On the contrary, as shown in Table1c,
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Table 1 Evaluation scales for RPN parameters adapted from [25]

higher linguistic evaluations of detection reflect lower risk conditions. This is why the
corresponding numerical scale is inversely proportional to the linguistic assessments.

As already underlined, the existing literature points out various drawbacks for the
traditional RPN calculation. Such a calculation could be further improved accord-
ingly.

Novel aspects with respect to those traditionally used for the RPN calculation are
proposed in this paper. First, note that risks emerged from the identification process
are still going to be assessed on the basis of evaluations attributed by experts to
severity and occurrence probability, two of the three parameters considered by the
traditional FMECA approach. However, instead of considering the probability of
detection as a third risk parameter, we are going to introduce a new factor for risk
evaluation within the FMECA framework, namely the human factor. The detection
parameter is excluded from the analysis because, as underlined in [41], this parameter
is not relevant for SCR evaluation, that is our main field of application. Moreover,
various other studies exclude this aspect from FMECA and risk classification also
in other application fields. Some authors [36, 47, 48] perform effective calculations
of risk criticality by multiplying just severity and occurrence, without including the
contribution of detection, whose estimation, in some cases, may be considered as too
complex with respect to the expected benefits.



20 S. Carpitella et al.

Table 2 Evaluation scale proposed for the human factor

Evaluation Meaning Value

Very High (VH) Very high probability of human
error during the task execution

5

High (H) High probability of human
error during the task execution

4

Medium (M) Moderate probability of human
error during the task execution

3

Low (L) Low probability of human
error during the task execution

2

Very Low (VL) Almost null probability of
human error during the task
execution

1

Furthermore, especially for those business processes for which the role played
by humans is crucial (e.g. supply chain management), traditional procedures of risk
assessment should be restructured and updated in order to take into account a com-
prehensive set of human factors. In such a direction, our methodological approach
may be effectively supportive to address the concept of probability of human error,
by integrating an estimation of the human contribution and assessing opportunities
of improvement. The human factor is linked to the concept of human error proba-
bility and, by synthesising the degree of human experience, professional training,
skills, and work-related stress when leading a given task, it considers the presence
of human resources in charge of specific activities and their contribution to risk.
Thus, we propose the evaluation scale shown in Table2 to assess the human fac-
tor on the basis of proper surveys led within the context of reference. Specifically,
with relation to the potential occurrence of each identified risk, a decision-making
team is asked to express judgments aimed at quantifying the human factor within
the range comprised between the unity and a maximum value of 5. The evaluation
is influenced by such aspects as high emotive stress level, high level of responsi-
bility, time shortage, lack of familiarity with the task, possible conflicts of interest,
cultural difficulties, and so on [43]. The three considered risk parameters, namely
severity (S), occurrence (O) and human factor (H), will be evaluated by means of the
five-point scales respectively proposed in Tables1a, b and 2. The higher/lower the
evaluation of these parameters, the higher/lower the contribution to the risk function.
The main sub-criteria impacting on each risk parameter will be formalised in the
next subsection.

Once collected the numerical evaluations of the three parameters for each iden-
tified risk, we propose to compute the integer weighted geometric mean value (int)
associated to each risk as a final score (global risk value). Specifically, final risk
scores updating the traditional RPN will be calculated as follows:

R = int[SwS × OwO × HwH ], (2)
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wS , wO and wH being determined using ANP, as explained more in detail on the
following. Observe that ‘int’ means the largest integer less than a given number, also
called ’floor’ function.

2.2 The Analytic Network Process to Weight Risk Factors

The ANP is a well known MCDM technique, first developed by Saaty [51] on the
basis of the Analytical Hierarchy Process (AHP) [50]. The latter has been extensively
applied to solve a huge range of real applications by calculating criteria weights and,
in general, ranking decision-making elements in a structured way. However, the AHP
is useful in specific contexts where many preliminaries have to be assumed, and loses
power when scenarios get more complicated. One of the most significant limitations
of the AHP consists in assuming the condition of independence among the elements
under analysis, what represents a strong constraint in practical contexts. In other
terms, elements to be pairwise compared in AHP have to be assumed as independent
from each other, what does not correspond to the practical reality in the vast majority
of cases, andmay lead to not feasible or ineffective results. In general, when analysing
a set of decision-making elements, it is difficult to assume that they are completely
independent from each other. In our particular case, aiming to calculate the weights
of severity, occurrence and human factor, the assumption of independence among
these risk parameters do not appear to be realistic.

More in detail, there are specific cases in which severity and occurrence may be
considered as mutually independent, what implies that their evaluations are neither
directly nor indirectly proportional. In these scenarios, a low (or high) occurrence
probability linked to a specific risk has no impact on the related severity. Similarly, the
fact that a risk has associated low (or high) severity can be assumed as independent
from its related occurrence probability. However, in many other cases, for example
for systems subjected to the wear phenomenon, this assumption cannot be made,
since it is clear that severity and occurrence influence each other (more frequent
risks are progressively more severe and vice versa). When it comes to the human
factor, we claim it cannot be assumed as independent from severity and occurrence in
any case, since a relationship of influence exists in both cases. Let us further clarify
this concept. When a risk has associated high severity or high occurrence proba-
bility, the human factor can be indeed high accordingly, then directly proportional,
because of the potential high level of stress that human resources may experience
and accumulate in leading the related task, what may have a consequential impact
on the potential occurrence of human errors. Moreover, there may be cases in which
high levels of severity and occurrence for a given risk are further impacted by the
lack of professional experience and suitable training from the personnel in charge,
something that may lead to significantly higher levels of risk on the whole. However,
even high degrees of experience may result in a lack of professional attitude and
increase the risk level due to potential excessive self-confidence from the deputed
personnel and related lack of multiple controls when leading tasks.



22 S. Carpitella et al.

On the basis of these observations and given the links existing among the chosen
risk factors, the use of the ANP is herein suggested to calculate their weights for the
process of risk evaluation. Differently from the AHP, the ANP is indeed capable to
capture the innate interdependent nature of the faced decision-making problem ele-
ments. The ANP application will be focused on analysing those sub-criteria relevant
for the main factors’ evaluations, formalised in Fig. 1, and their different contribution
from the decision-maker perspective.

As we can observe, severity, occurrence and human factor are the three main clus-
ters of the ANP problem. They are respectively made of three, one and three nodes.
Specifically, such elements as time, quality and cost are the main sub-criteria influ-
encing the severity evaluation, being particularly critical in determining successful
productivity performance and general results of processes. Negative impacts in terms
of time, quality and cost directly lead to higher risk evaluation. The probability of
occurrence uniquely refers to the second parameter since highly frequent occurrences
increase the global risk evaluation. One has to note that global risk scores can be
mitigated when occurrences are less frequent, even in correspondence of high values
of severity, and vice versa. With relation to the human factor, its main sub-criteria
have been synthesised as: work condition (including such aspects as safety and secu-
rity, hygiene of workplaces and work environment, cooperation and communication
amongworkers, accessibility of information about processes, and so on); professional

Fig. 1 Hierarchy structure representing the main elements for the ANP application
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skills (taking into account the personal/professional background of workers along
with their degree of training and qualifications achieved for leading specific tasks);
and work-related stress (which derives from particular work conditions—for exam-
ple cases in which responsibility about tasks is not shared among workers, excessive
workload, absence of gratification or sense of belonging to the company—and can
definitely negatively impact the global risk evaluation). A concise description of the
ANP implementation can be consulted, for example, in [13], where the technique has
been applied as a part of risk evaluation framework for a real complex manufacturing
system.

2.3 Integrating FMECA and BN Frameworks

As widely explained, our objective consists in integrating the human factor in
FMECA-based risk assessment by taking advantage of BNs’ ability for inference,
which incorporates uncertainty. This enables us to obtain valuable information for
risk assessment to help decision-making processes in planning, operating, mainte-
nance etc. in industry, and other fields. With relation again to the traditional RPN
calculation, apart from the already discussed weaknesses, one has to observe as
FMECA does not consider the potential simultaneous occurrence of multiple failure
scenarios. This aspect can be effectively taken into account by integrating tradi-
tional FMECA and a BN-based approach, an integration considered as beneficial
in the field of risk analysis [65] in terms of modelling complex systems, making
accurate predictions about parameters’ values, and computing with precision the
occurrence probability of failure events [65]. However, this aspect is not evaluated
by this research. We specify that we are herein modelling the interconnected struc-
ture of variables involvedwithin the risk assessment process to eventually understand
which failures have associated a significant number of interconnections. The failure
resonance issue may be object of future research.

A BN is a compact and modular distribution of random variables represented
through an acyclic graph in which variables are placed at the nodes, and the arcs are
loaded with probabilities [1, 29, 42]. A BN is a twofold object: it has a qualitative
aspect, i.e. the graph showing the mainly cause-effect relationships, and the quanti-
tative distribution of probabilities, as affirmed byWeber et al. [60]. This last research
has been cited in a work recently published by Steijn et al. [55] who underline as
methodological approaches based on BN modelling can be of interest in many fields
connected with the risk management process. With this regard, the authors mention
specific application areas of BN where the role of safety for human resources as
well as related risk assessment are particularly crucial, such as offshore platform
maintenance, maritime industry, air transportation, and so on. Proposals making use
of BN in this field have been also supported by fuzzy rule-based systems consider-
ing exper feedback for failure identification, as showed in [23]. We would like to
further stress that, with respect to the current state of the art, the main novelty of our
paper consists in proposing the integration between FMECA and BN supported by
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a MCDM perspective and by introducing for the first time the human factor within
the set of parameters for risk evaluation.

In a BN, evidence information propagates and updates our belief (a priori prob-
ability) on non-observed variables to get new a posteriori) knowledge. This is an
objective of inference, including diagnosis, prediction, inter-causal relationships,
etc. Conditional probabilities (and the structure itself) can be learnt from data. In
this sense, BNs constitute optimal decision-making tools, which also enable simu-
lation to observe outcomes derived from a range of actions. The capability of a BN
to model several (many) variables and their interconnected structure in a complex
network system refers to:

1. identifying relations of conditional independence (Ind) of a (generic) node Ai

with respect to its non-descendants (NoDesc) given the values of its parents (Pa);

Ind(Ai ;NoDesc(Ai )|Pa(Ai )); (3)

2. given the conditional probability tables, determining the joint probability distri-
bution

P(A1, . . . , An) =
n∏

i=1

P(Ai |Pa(Ai )); (4)

3. performing inference: calculating a posteriori probabilities, P, for variables of
interest, X, given observed values of some variables or evidence, e, still consid-
ering hidden variables, Y,

P(X|e) = αP(X, e) = α
∑

y

P(X, e, y), (5)

where α is a normalizing factor, and P(X|e) expresses the (vector) probability
of variables in vector X, given the (vector) evidence e. Observe that α = 1

P(e) ,
a value whose calculation can be avoided; in effect, the components of P(X|e)
have to add up to 1, and this can be achieved by calculating

∑
y P(X, e, y) and

normalizing to sum 1.

3 Real-World Application on the Alimentary Industrial
Sector

3.1 Problem Setting

In the previous conference paper [12], a SCR problem involving the warehouse
design and management for a real Italian manufacturing company, operating in the
sector of alimentary industry, was considered. We are now aimed at facing the same
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Table 3 SCRs description

ID SCR Meaning

SCR1 Safety Human safety and workplaces hygiene

SCR2 Damages Finite products/packaging damaged

SCR3 Communication Communication/flexibility problems with suppliers

SCR4 Transportation Transportation difficulties/network complexity

SCR5 Commerce Commercial problems/unpredictable price rise

SCR6 Performance Low logistic performance

SCR7 Disruptions Loading/Unloading process disruptions

SCR8 Delivery Inefficient delivery of finite products/packaging

SCR9 Environment Inadequate environment conditions

SCR10 Strategy Inefficient strategy/organisational problems

decision-making problem, this time extending the study from the single company
to the whole sector perspective. First, we widen the practical analysis and involve
various companies—all of them belonging to the same industrial sector of interest—
to join the survey. The present case study aims to support decision-makers operating
in the logistic sector of the alimentary industry in the difficult task of optimising
new procedures of warehouse operations as well as best practices to maximise their
incomes by simultaneously copingwith the safety updates established by theCOVID-
19 protocol [24]. Ten major SCRs (Table3) potentially impacting the warehouse
reorganisation problem have been identified and various brainstorming sessions have
been led to carry on the risk assessment.

To this end, a sample of four manufacturing companies has been considered to
carry out the evaluation. Table4 provides information about the specific core business
of companieswithin the alimentary sector and the compositionof the relateddecision-
making teams (visually synthesised in Fig. 2) involved to assess severity, occurrence
and human factor via the scales given in Tables1a, b and 2.

As it can be seen from data provided in Table4, the entire decision-making panel
is made of sixty stakeholders with heterogeneous professional backgrounds and
diverse degree of responsibilities within the companies. This will be helpful to gain
a comprehensive overview of SCR management by taking into account opinions of
experts involved at various levels of the hierarchical structures of the companies
object of study. Decision-makers have been further grouped into the following five
main categories based on similarities in their roles: manager, director, warehouse
worker, production worker, and other worker. Such a classification has been devised
to study how decision makers’ roles influence final evaluations. Specifically, the
role “manager” includes three general managers, four technical consultants and two
quality control supervisors. The role “director” includes four directors of the Safety
and Security System, one warehouse director, one production director, three workers
representatives for safety and security, two loading/unloading area supervisors, and
one maintenance crew leader. Lastly, thirty-nine workers have been interviewed
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Table 4 Companies’ details and decision-making (DM) teams
ID company Core business DM team

IND1 Marine salt manufacturing General Manager (1), Technical
Consultant (1), Quality Control Supervisor
(1), Director of the Safety and Security
System (1), Warehouse Director (1),
Production Director (1), Workers
Representative for Safety and Security (1),
Loading/Unloading Area Supervisor (1),
Maintenance Crew Leader (1), Warehouse
Worker (4), Production Worker (3), Other
Worker (4)

IND2 Virgin olive oil production General Manager (1), Technical
Consultant (1), Director of the Safety and
Security System (1), Workers
Representative for Safety and Security (1),
Warehouse Worker (5), Production Worker
(5)

IND3 Wine production General Manager (1), Technical
Consultant (1), Quality Control Supervisor
(1), Director of the Safety and Security
System (1), Workers Representative for
Safety and Security (1),
Loading/Unloading Area Supervisor (1),
Warehouse Worker (4), Production Worker
(3)

IND4 Wine production and bottling Technical Consultant (1), Director of the
Safety and Security System (1),
Warehouse Worker (6), Production Worker
(4), Other Worker (1)

Fig. 2 Composition of the
interviewed decision-making
panel

and then categorised according to their specific job requirements to reflect possible
different perspectives about SCR evaluation (adhering to specific practical tasks):
nineteen of them have been assigned to the “warehouse worker” category, fifteen
to the “production worker” category and the remaining five to the “other worker”
category, since they mainly develop their tasks in external areas.
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3.2 Evaluations Collection and ANP Application for Scoring
Risks

Once established the boundaries as well as the main elements of analysis and com-
posed the decision-making panel, each individualwas independently asked to provide
numerical evaluations reflecting their own personal perceptions about the three risk
factors for each SCR of Table3. To exemplify the procedure of input data collection,
Table5 shows the evaluations provided by one decision maker from each category
belonging to the first company (IND1). Specifically, Table5a reports the evaluations
that have been attributed to the three risk factors by a decision maker belonging to
the “manager” category of the considered company, along with the calculated global
risk score for each SCR; Table5b reports the evaluations attributed by an expert of
the “director” group; Table5c–e, respectively report the evaluations attributed by
one worker whose tasks are accomplished in the warehouse, one worker involved in

Table 5 Examples of evaluations from experts belonging to company IND1
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Fig. 3 SCRs evaluations from the IND1 DM team

Fig. 4 SCRs evaluations from the IND2 DM team

the production process and one worker with other expertise. The global risk scores
associated to SCRs have been calculated for each decision-maker by computing
the integer weighted geometric mean values of the attributed evaluations through
Formula (2). Factors’ weights, calculated by means of the ANP, are the following:
wS = 0.3447, wO = 0.2494 and wH = 0.4059.

Figures3, 4, 5, 6 graphically show the risk scores distribution for the interviewed
sample of companies.

We detail now the process of weights calculation by using the ANP. After col-
lecting numerical evaluations for the factors, factors weights to apply Formula (2)
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Fig. 5 SCRs evaluations from the IND3 DM team

Fig. 6 SCRs evaluations from the IND4 DM team

have been attributed by collecting judgments of pairwise comparisons for all the
decision-making elements provided in Fig. 1, that is, risk factors and main related
sub-criteria, along with specifications about interdependence relationships (graphi-
cally represented in Fig. 7).

Once established relationships of influence amongst elements and organised all
the provided pairwise comparisons’ judgments, theAHPhas been applied to calculate
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Fig. 7 Interdependence relationships among risk factors and subcriteria

the priorities reported in the unweighted matrix (Table6) of the ANP procedure. By
normalising the columns of the unweighted matrix to sum one, the weighted matrix
(Table7) is obtained.

The limit matrix is then calculated by raising the weighted matrix to successive
powers. Each of these powers captures all transitivities of the order of that power.
According toCesaro Summability, the limit of these powers, is equal to the limit of the
sum of all the powers of the matrix. This way all the so-called steady state priorities
are captured. The limiting matrix, whose convergence is assured by its stochasticity,
have equal columns. Any of these columns corresponds to the Perron eigenvector
of the weighted matrix, and the normalised elements of the columns express the
final weights calculated by means of the ANP, see [52]. Normalised values from the
limit matrix related to risk factors and sub-criteria are given in Table8 along with
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Table 6 Unweighted matrix

UM Goal S O H S1 S2 S3 O1 H1 H2 H3

Goal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S 0.443 0.000 0.500 0.750 0.333 0.250 0.333 0.200 0.250 0.250 0.250

O 0.169 0.333 0.000 0.250 0.000 0.500 0.000 0.600 0.250 0.250 0.250

H 0.388 0.667 0.500 0.000 0.667 0.250 0.667 0.200 0.500 0.500 0.500

S1 0.167 0.260 0.000 0.000 0.000 0.195 0.000 0.167 0.141 0.164 0.121

S2 0.167 0.327 0.000 0.000 0.000 0.000 0.000 0.167 0.141 0.164 0.121

S3 0.167 0.413 0.000 0.000 0.142 0.088 0.000 0.167 0.141 0.164 0.121

O1 0.074 0.000 1.000 0.000 0.000 0.225 0.000 0.000 0.248 0.136 0.213

H1 0.165 0.000 0.000 0.260 0.429 0.246 0.327 0.167 0.000 0.186 0.424

H2 0.132 0.000 0.000 0.413 0.000 0.000 0.413 0.000 0.000 0.000 0.000

H3 0.128 0.000 0.000 0.327 0.429 0.246 0.260 0.332 0.329 0.186 0.000

Table 7 Weighted matrix

WM Goal S O H S1 S2 S3 O1 H1 H2 H3

Goal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S 0.222 0.000 0.250 0.375 0.167 0.125 0.167 0.100 0.125 0.125 0.125

O 0.085 0.167 0.000 0.125 0.000 0.250 0.000 0.300 0.125 0.125 0.125

H 0.194 0.334 0.250 0.000 0.334 0.125 0.334 0.100 0.250 0.250 0.250

S1 0.084 0.130 0.000 0.000 0.000 0.098 0.000 0.084 0.071 0.082 0.061

S2 0.084 0.164 0.000 0.000 0.000 0.000 0.000 0.084 0.071 0.082 0.061

S3 0.084 0.207 0.000 0.000 0.071 0.044 0.000 0.084 0.071 0.082 0.061

O1 0.037 0.000 0.500 0.000 0.000 0.113 0.000 0.000 0.124 0.068 0.107

H1 0.083 0.000 0.000 0.130 0.215 0.123 0.164 0.084 0.000 0.093 0.212

H2 0.066 0.000 0.000 0.207 0.000 0.000 0.207 0.000 0.000 0.000 0.000

H3 0.064 0.000 0.000 0.164 0.215 0.123 0.130 0.166 0.165 0.093 0.000

the related percentage weights. We specify that weights of sub-criteria have been
normalised according to the related risk factor.

As can be appreciated, higher importance has been attributed to the human factor.
It means that evaluations of this parameter are going to primarily impact the final
risk assessment for the industrial sector under study. Furthermore, the human factor
itself appears to be more influenced by such aspects as work-related stress and safe
work conditions, rather than workers’ professional skills. After the human factor,
the severity parameter presents a prominent weight with respect to the occurrence
factor. In its turn, severity appears to be primarily influenced by economic aspects,
but also significantly impacted by potential problems involving quality and times.
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Table 8 Risk factors and sub-criteria’s weights

Risk factor Value Weight (%) Sub-criterion Value Weight (%)

S 0.172 34.47 S1 0.052 30.44

S2 0.052 30.84

S3 0.066 38.72

O 0.125 24.94 O1 0.093 100.00

H 0.203 40.59 H1 0.088 36.90

H2 0.055 23.38

H3 0.094 39.72

3.3 BN-Based Modelling and Discussion of Results

We are now going to exploit the ability of BNs to model variables and their intercon-
nected structure. Relations of conditional independence will be better identified and
their conditional probability table will be determined as well as their joint probabil-
ity distribution in order to eventually develop a BN integrating the human factor in
FMECA-based risk assessment. Figure8 and Table9, respectively, show the final net-
work of relations and the related strengths, measured by mutual information. Results
have been obtained by iterating the PC algorithm (named after its authors, Peter and
Clark, from [54]) through the Handling Uncertainty in General Inference Network
(HUGIN) software forBN learning, commonly used tomodel relations of conditional
dependence within the set of observed data [1]. HUGIN develops a causal probabilis-
tic network that can be progressively updated by means of a posteriori probability
distribution [4]. As previously observed, one can note that both SCRs and decision-
makers’ roles are considered as variables in the network. Figure9 lastly shows the
incorporation of evidence into the BN. In the upper part we present marginal prob-
abilities of all model variables while in the lower part the conditional probabilities
given the evidence Role = Director are shown.

We can derive various considerations by observing the results reported in the final
network of relationships. First of all, variables appear to be related in a way to form
an interconnected graph where no element remains isolated. We also point out the
presence of strong mutual relations within the analysed set of variables including
SCRs and decision-makers’ roles, highlighted by the thickness of the arrows.

Immediate practical interpretations of results are described as follows. Safety and
transportation risks, apart from beingmutually linked, appear to be the variables with
a higher number of associated interconnections. Specifically, safety is further directly
related to such aspects as disruptions, environment, and performance. According to
the provided judgments, indeed, evaluations attributed to the mentioned risks influ-
ence each other. In its turn, transportation is further mainly related to commerce,
damage, delivery and environment. To note, while the connection between environ-
ment and safety is significant, environment and transportation are linked by means
of a thinner arrow, which highlights a condition of weaker connection with respect
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Fig. 8 Network of relationships

Table 9 Strength of relationshipsmeasured bymutual information (the higher the value the stronger
the relationship)

Edge Mutual information

Communication → Delivery 0.11

Disruptions → Safety 0.11

Commerce → Role 0.11

Safety → Performance 0.10

Strategy → Role 0.09

Commerce → Transportation 0.09

Environment → Safety 0.09

Transportation → Safety 0.09

Transportation → Delivery 0.07

Strategy → Performance 0.06

Damages → Transportation 0.05

Environment → Transportation 0.01

to the other relations. This result is justified by the fact that, despite environment is
important for transportation issues, these last ones are more sensitive to commercial
problems, potential product/packaging damages and inefficient deliveries.Moreover,
one has to note the remaining important connections detected between strategy and
performance and between delivery and communication throughout the supply chain.

Another important result refers to the dependence between the variables repre-
senting role and commercial/strategy risks. Differently from other types of risks, for
which evaluation ismore objective and independent on the role of the decision-maker
who is expressing opinions, commercial and strategy risks are role-sensitive; in other
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Fig. 9 Entering evidence Role = Director into the BN

terms, differently perceived by managers, directors and workers. This consideration
leads to the fact that decision-makers belonging to different categories will attribute
significantly different evaluations to the parameters related to commercial problems
and/or unpredictable price raises as well as to inefficient strategy and/or organisa-
tional problems. Managers typically associate them with higher values, directors
with medium values, and workers with lower values.

When it comes to managerial insights, by analysing the final results it is imme-
diate to understand as risk management actions should be primarily aimed at reduc-
ing/preventing supply chain risks connected with human safety and workplaces
hygiene as well as transportation difficulties deriving from network complexity.
Improvements in managing these two SCRs may have significant positive impact
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on the other related risks and, in general, on the whole supply chain performance.
It is also important to note as dealing with the mentioned aspects is fundamental to
cope with current business scenarios dangerously affected by COVID-19 pandemic
and be in line with requirements of existing regulations in the supply chain risk man-
agement field. Apart from safety and transportation, it is also particularly important
to deal with such aspects as commercial problems, disruptions of loading/unloading
processes and environment conditions. Indeed, as we can appreciate from Fig. 9,
these SCRs have in some cases associated a higher global risk score. Implement
proper actions aimed at reducing these scores would be then desirable to generally
improve final outputs and supply chain processes for the alimentary industrial sector.

4 Conclusions

The presented research originates from the utmost importance of leading accurate
analyses of risk assessment in business contexts. This undoubtedly represents a fun-
damental step to proceed towards an effective riskmanagement and improve business
performance.

The traditional FMECA analysis has been presented and recalled as a common
way for risk evaluation purposes on the basis of the calculation of the RPN index
for each failure mode identified for complex systems. Traditional FMECA is herein
developed by first reviewing and updating its risk parameterswith the aimof embody-
ing the human factor into the risk function calculation. A decision-making approach
making use of the ANP technique has been proposed to weight the selected param-
eters so that the final risk score can been calculated by taking into account their dif-
ferent importance. Once clarified the risk function calculation process, a BN-based
perspective has been integrated for analysing causal relationships for risk evaluation
and deriving probabilistic inference among the most significant elements of analysis.

The proposed approach has been applied to a real case study on the SCRM field.
Specifically, a deep SCR assessment in the field of the alimentary industry has been
led on the basis of judgements provided by a decision-making team made of sixty
experts. A sample of four companies operating in the alimentary sector has been taken
into account and final results, which show the presence of significant dependence
among the considered variables, can be helpful to provide logisticmanagers operating
in this sector with useful insights for SCR management.

Bayesian networks represent a modeling tool that can capture well relations
between variables of the model especially if they can be expressed in the form
of conditional independence. This is especially useful when a variable is influenced
by another variable only indirectly through other variables. The BN models can be
further enhanced by considering only a restricted local structure of conditional prob-
ability tables, for example, by imposing monotonic relations among the variables.
This can help to learn better models especially when learning data sets are small. For
future analyses, we may also consider the integration of economic criterion among
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the set of significant risk parameters as well as such other aspects as the failure
resonance.
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31. Kutlu AC, Ekmekçioğlu M (2012) Fuzzy failure modes and effects analysis by using fuzzy
TOPSIS-based fuzzy AHP. Expert Syst Appl 39(1):61–67

32. Liu H-C (2016) FMEA using uncertainty theories and MCDM methods. Springer, pp 13–27
33. Liu H-C, Chen X-Q, Duan C-Y, Wang Y-M (2019) Failure mode and effect analysis using

multi-criteria decision making methods: a systematic literature review. Comput Indus Eng
135:881–897

34. LiuH-C,LiuL,LiuN,MaoL-X (2012)Risk evaluation in failuremode and effects analysiswith
extended VIKOR method under fuzzy environment. Expert Syste Appl 39(17):12926–12934

35. Liu Y, Fan Z-P, Yuan Y, Li H (2014) A FTA-based method for risk decision-making in emer-
gency response. Comput Oper Res 42:49–57

36. Lopez JC, Kolios A (2022) Risk-based maintenance strategy selection for wind turbine com-
posite blades. Energy Rep 8:5541–5561

37. Magableh GM, Mistarihi MZ (2022) Applications of MCDM approach (ANP-TOPSIS) to
evaluate supply chain solutions in the context of COVID-19. Heliyon 8(3):e09062

38. Martens D, Baesens B, Van Gestel T, Vanthienen J (2007) Comprehensible credit scoring
models using rule extraction from support vector machines. Eur J Oper Res 183:1466–1476

39. Mokhtari K, Ren J, Roberts C,Wang J (2012)Decision support framework for riskmanagement
on sea ports and terminals using fuzzy set theory and evidential reasoning approach. Expert
Syst Appl 39(5):5087–5103

40. Morales-Torres A, Escuder-Bueno I, Serrano-Lombillo A, Rodríguez JTC (2019) Dealing with
epistemic uncertainty in risk-informed decision making for dam safety management. Reliab
Eng Syst Saf 191:106562

41. Mzougui I, Carpitella S, Certa A, El Felsoufi Z, Izquierdo J (2020) Assessing supply chain risks
in the automotive industry through a modified MCDM-based FMECA. Processes 8(5):579

42. NeapolitanRE (2004) LearningBayesian networks. Pearson PrenticeHall, Upper Saddle River,
NJ

43. Nespoli C, Ditali S (2010) Human error probability estimation for process risk assessment with
emphasis on control room operations. Chem Eng Trans 19:219–224



38 S. Carpitella et al.

44. Nimmy SF, Hussain OK, Chakrabortty RK, Hussain FK, Saberi M (2022) Explainability in
supply chain operational risk management: a systematic literature review. Knowle-Based Syst
235:107587

45. Nirmala DAR, Ramaswamy S, Logesh K, Gnanaraj SJP (2022) Empirical study on risk miti-
gation for dairy supply chain management of Aavin co-operative Milk Producers’ Union Ltd.
Mater Today: Proc 49:3657–3660

46. Orojloo M, Shahdany SMH, Roozbahani A (2018) Developing an integrated risk management
framework for agricultural water conveyance and distribution systems within fuzzy decision
making approaches. Sci Total Environ 627:1363–1376

47. Pasquini A, Pozzi S, Save L (2011) A critical view of severity classification in risk assessment
methods. Reliab Eng Syst Saf 96(1):53–63

48. Pillai SS, Rajput M, Patel H, Jaidi J, Jha S, Kumar S (2020) A study on irradiated welding
joints in ITER materials and its effects on FMECA analysis of components. Fusion Eng Des
158:111905

49. Podofillini L, Dang V (2013) A Bayesian approach to treat expert-elicited probabilities in
human reliability analysis model construction. Reliab Eng Syst Saf 117:52–64

50. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation.
Mcgraw-hill Inc., New York, NY

51. Saaty TL (1999) Fundamentals of the analytic network process. In: Proceedings of the 5th
international symposium on the analytic hierarchy process, pp 12–14

52. Saaty TL (2008) Relative measurement and its generalization in decision making. why pair-
wise comparisons are central in mathematics for the measurement of intangible factors.
The analytic hierarchy/network process. Revista de la Real Academia de Ciencias Serie A:
Matemáticas,102(2):251–318

53. ShafieeM,LabibA,Maiti J, StarrA (2019)Maintenance strategy selection formulti-component
systems using a combined analytic network process and cost-risk criticality model. Proc Inst
Mech Eng, Part O: J Risk Reliab 233(2):89–104

54. Spirtes P, Glymour CN, Scheines R, Heckerman D (2000) Causation, prediction, and search.
MIT Press

55. SteijnW, Van Kampen J, Van der Beek D, Groeneweg J, Van Gelder P (2020) An integration of
human factors into quantitative risk analysis usingBayesian belief networks towards developing
a ‘QRA+’. Saf Sci 122:104514

56. Tabesh M, Roozbahani A, Roghani B, Salehi S, Faghihi NR, Heydarzadeh R (2020) Prior-
itization of nonrevenue water reduction scenarios using a risk-based group decision-making
approach. Stoch Environ Res Risk Assess 34(11):1713–1724

57. Viegas RA, de Assis da Silva Mota F, Costa APCS, dos Santos FFP (2020) A multi-criteria-
based hazard and operability analysis for process safety. Process Saf Environ Protect 144:310–
321

58. Wang Y-M, Chin K-S, Poon GKK, Yang J-B (2009) Risk evaluation in failure mode and effects
analysis using fuzzy weighted geometric mean. Expert Syst Appl 36(2):1195–1207

59. Wang Z-C, Ran Y, Chen Y, Yang X, Zhang G (2022) Group risk assessment in failure mode and
effects analysis using a hybrid probabilistic hesitant fuzzy linguistic MCDM method. Expert
Syst Appl 188:116013

60. Weber P, Medina-Oliva G, Simon C, Iung B (2012) Overview on Bayesian networks applica-
tions for dependability, risk analysis and maintenance areas. Eng Appl Artif Intell 25(4):671–
682

61. Wong CW, Lirn T-C, Yang C-C, Shang K-C (2020) Supply chain and external conditions under
which supply chain resilience pays: an organizational information processing theorization. Int
J Prod Econ 226:107610

62. Wu DD, Chen S-H, Olson DL (2014) Business intelligence in risk management: some recent
progresses. Inform Sci 256:1–7

63. Xie X, Guo D (2018) Human factors risk assessment and management: process safety in
engineering. Process Saf Environ Protect 113:467–482



Improved Industrial Risk Analysis via a Human Factor-Driven . . . 39

64. Zhang Z, Chu X (2011) Risk prioritization in failure mode and effects analysis under uncer-
tainty. Expert Syst Appl 38(1):206–214

65. Zoullouti B, Amghar M, Nawal S (2019) Using Bayesian networks for risk assessment in
healthcare system. In: Bayesian networks-advances and novel applications. IntechOpen

Silvia Carpitella Silvia Carpitella holds a Ph.D. in Technological Innovation Engineering and
a Ph.D. in Mathematics. She has been an assistant professor at the Department of Manufacturing
Systems Engineering and Management of the California State University, Northridge since August
2022. Silvia’s activity has been internationally recognized through the Outstanding Engineering
Achievement Merit Award by the Engineers’ Council and the Otto Wichterle Award by the Czech
Academy of Sciences. Her doctoral thesis has been awarded in the area of industrial plants and in
the area of sciences.

Joaquín Izquierdo Joaquín Izquierdo, Ph.D. in Mathematics and full professor (currently Emer-
itus Professor) of Applied Mathematics at the Universitat Politècnica de València (UPV). Educa-
tional career developed in the UPV and research activity as the Director of the research group
FluIng, devoted to mathematical modelling, knowledge-based systems and DSSs in Engineering.
Author and editor of several books, author or co-author of more than 300 research papers, book
chapters and contributions to international events. Tutor of 16 Doctoral Dissertations, wide expe-
rience in consulting and R&D projects.

Martin Plajner Martin Plajner is a junior researcher at the Institute of Information Theory and
Automation under the Czech Academy of Sciences. As a member of the department of Decision
Making Theory he solves mathematical modelling challenges. At the same time he is a director
of the Research & Development department for the private consultancy company Logio working
on optimization of supply chains.
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