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Abstract
When time series data follow a linear model, the innovations are often assumed to be
serially independent. However, many time series also frequently display an autore-
gression of error terms. When testing a hypothesis on regression parameters, the tests
can be distorted by a possible autoregression. Noting that we construct a class of non-
parametric tests for the hypothesis of serial independence of error terms in the linear
model against an alternative of linear autoregression. The main tool of the test criteria
is the regression rank scores corresponding to the hypothetical model. The remarkable
performance of the proposed tests is demonstrated by a simulation study and two real
data examples.
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1 Introduction

When time series data follow a linear model, the error terms are often assumed to
be serially independent. However, many time series often display an autoregression
along with regression on nonrandom covariates. This problem is considered in a recent
study by Wei et al. (2022), Alpuim and El-Shaarawi (2008), Basu and Michailidis
(2015) and they construct a new unified test based on the empirical likelihood method
for checking the AR error structure in autoregressive models. When the regression
parameters are ourmain interest, then the possible autoregression of error termsdistorts
the conclusions of the used tests.

An autoregression can indicate a possible increasing trend, even if it does not exist
(see Yu et al. 2002; Yue and Pilon 2003). Such a situation can be solved with two
possible outcomes:

(i) We can start with a preliminary test of the serial independence against a possible
autoregression of error terms, considering the linear model as a nuisance. Then,
we can continue with inference on parameters of the linear model, depending on
the conclusion of the test.

(ii) We can try developing the tests on parameters of the linear model, insensitive to a
possible autoregression of error terms.

The tests of significance for parameters in the linear model, invariant to the autoregres-
sion of error terms [group (ii)], were recently constructed in Jurečková et al. (2023).
The test criteria were based on the autoregression rank scores of the model under the
null hypothesis.

Our ultimate aim is a construction of preliminary tests of the hypothesis of serial
independence mentioned in group (i). We shall construct a family of nonparametric
tests for the alternative autoregression of innovations of a time series, while it is known
that the data themselves follow a linear model. The test criteria are based on the regres-
sion rank scores of the linear model under the null hypothesis of serial independence.
The tests are nonparametric, thus independent on the probability distribution of the
data. If such a test confirms a possible autoregression of error terms, our conclusions
on the parameters of the linear model should be taken with caution.

The paper is organized as follows. The statement of the model and the general prob-
lem of testing the hypothesis of serial independence of error terms in the linear model
against an alternative of linear autoregression is addressed in Sect. 2. In Sect. 3, we
propose a family of tests for the hypothesis of serial independence of error terms in the
linear model, based on regression rank scores. We analyze the asymptotic distribution
of the test criterion under the null hypothesis, as well as under local autoregression
alternatives. Monte Carlo simulations and real data analysis are presented in Sects. 4
and 5, respectively. Our concluding remarks are presented in Sect. 6.

2 Statement of themodel

Our model is a time series of observations that follows a linear model and may include
autoregressive error components:
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yt = β0 + x�
t β + et

= β0 + xt1β1 + ... + xtpβp + et

= β0 + x�
t β + ϕ1et−1 + . . . + ϕqet−q + ut , (1)

for t = 1, 2, . . . , n. Here the observed series are

y−q+1, . . . , y0, y1, . . . , yn of length (n + q), (2)

the regressors are xt = (
xt1, . . . , xtp

)� for t = −q + 1, . . . , n, and β0,β =
(
β1, . . . , βp

)� are unknown regression parameters. For the convenience, we shall
also denote

β∗ = (
β0, β1, . . . , βp

)�
,

x∗
t = (

xt0, xt1, . . . , xtp
)� ; xt0 = 1. (3)

Moreover, ϕ = (
ϕ1, . . . , ϕq

)� in (1) is an unknown autoregression parameter vector.
Our hypothesis H0 states that et , t = 1, . . . , n are serially independent, identically
distributed (i.i.d.) with distribution function F , density f , generally unknown. How-
ever, the circumstances of the experiment suggest that the error terms et can follow a
linear autoregressive model of a fixed order q, i.e.

et = ϕ1et−1 + . . . + ϕqet−q + ut , (4)

with autoregression parameters ϕ, where the innovations ut in (4) generate a sequence
of i.i.d. random variables with distribution function F and innovation density f . We
assume that F and f are generally unknown; only that f belongs to a family F of
densities satisfying

∫ ∞

−∞
xdF(x) = 0 , 0 <

∫ ∞

−∞
x2dF(x) = σ 2 < ∞. (5)

Alpuim and El-Shaarawi (2008) studied the least-squares (LS) estimate of (β0,β)

under (1), (4), as well as the maximum likelihood estimate under the normal distribu-
tion of ut . Tuaç et al. (2018) studied the conditional maximum likelihood estimate of
(β0,β), including possible asymmetric and heavy-tailed distributions of the t-type.

For the sake of simplicity, (4) is often written in the form

ut = �(B) et = et − ϕ1et−1 − . . . − ϕqet−q , (6)

where�(B) = 1−ϕ1B−ϕ2B2 − . . .−ϕq Bq , and B is called the backshift operator.
Theproblem is to verify thepossible autoregression in themodel (1).Moreprecisely,

we want to test the hypothesis of zero autoregression against an alternative of a local
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autoregression. Hence, we want to construct the tests of the following hypothesis on
the parameters of model (1):

H0 : ϕ = (
ϕ1, . . . , ϕq

)� = 0 with q fixed, under β∗ �= 0 unspecified. (7)

We propose a class of tests ofH0 based on the regression rank scores corresponding
to observations vectors ỹn = (y1, . . . , yn)� under the assumed validity of H0. The
tests are nonparametric in nature; however, the optimal test criterion contains the
unobservable error terms et as the weights. Hence, the error terms should be estimated
from the residuals yt − β0 − x�

t β̂ with estimates β̂0 and β̂ of the intercept β0 and
slopes vector β, calculated under H0. For F satisfying conditions given in (5) and
under conditions on the covariates (X1)-(X3) given in Sect. 3, we can estimate β∗
with the LS estimator based on observations (2). The LS estimator can be replaced
with another suitable estimator.

3 Rank tests for H0

Consider the hypothesis of serial independence in model (1), expressed as

H0 : ϕ = 0, β0, β unspecified.

Under H0, the observations follow the ordinary regression model

yt = x∗�
t β∗ + et = β0 + xt1β1 + ... + xtpβp + et , t = 1, . . . , n (8)

with i.i.d. error terms et . Wewant to verify the hypothesisH0 against the local autore-
gression alternative yt = x∗�

t β∗ + ϕ1et−1 + . . . + ϕqet−q + ut , t = 1, . . . , n with

ϕ = (
ϕ1, . . . , ϕq

)� satisfying

Kn : ϕ = ϕn = n−1/2ϕ∗, with ϕ∗ ∈ R, qis fixed, β∗ unspecified. (9)

We propose a nonparametric test based on regression rank scores corresponding to
observations ỹn = (y1, . . . , yn)� under the validity of H0.

The regression rank scores ân(α) = (
ân1(α), . . . , ânn(α)

)�
, 0 ≤ α ≤ 1 corre-

sponding to model (1) under hypothesis H0 are defined as the vector of solutions of
the linear programming problem

⎧
⎪⎪⎨

⎪⎪⎩

max
∑n

t=1 yt ânt (α)∑n
t=1(ânt (α) − (1 − α)) = 0∑n−1
t=1 xt j (ânt (α) − (1 − α)) = 0, j = 1, . . . , p

ân(α) ∈ [0, 1]n, 0 ≤ α ≤ 1.

(10)
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The regression rank scores are regression-invariant. Indeed, denoting the n × (p+ 1)
matrix

X∗
n =

⎡

⎣
x∗�
1

. . .

x∗�
n

⎤

⎦ =
⎡

⎣
1, x�

1
. . .

1, x�
n

⎤

⎦ ,

we see that (10) implies that ân(α) can also be formally written as a solution of the
linear program

⎧
⎨

⎩

max
∑n

t=1 et ânt (α)

X∗�
n ân(α) = (1 − α)X∗�

n 1n
ân(α) ∈ [0, 1]n, 0 ≤ α ≤ 1.

(11)

We shall construct a family of tests of the hypothesis H0 for the model (1), based
on regression rank scores and analyze the asymptotic distribution of the test criterion
under the null hypothesis as well as under local (contiguous) autoregression alterna-
tives. The tests will function for the (unknown) densities f of ut belonging to the
family F of exponentially tailed densities, satisfying (5) and the following conditions
on the tails:

(F1) f is positive and absolutely continuous, with a.e. derivative f ′ and finite Fisher
information I( f ) = ∫ (

f ′(x)
f (x)

)2
f (x)dx < ∞; moreover, there exists K f ≥ 0

such that f has two bounded derivatives f ′ and f ′′ for all |x | > K f ;
(F2) f is monotonically decreasing to 0 as x → ±∞ and

lim
x→−∞

− log F(x)

b|x |r = lim
x→∞

− log(1 − F(x))

b|x |r = 1

for some b > 0 and r ≥ 1.

Moreover, we impose the following conditions on the regression matrix Xn :
(X1) The matrix Qn = n−1X�

n Xn is positive definite of order p for n ≥ n0;
(X2) n−1 ∑n

t=1 ‖xnt‖4 = O(1) as n → ∞;
(X3) limn→∞ max1≤t≤n

{
n−1x�

ntQ
−1
n xnt

} = 0.

The regression rank scores tests were developed in Gutenbrunner and Jurečková
(1992) and Gutenbrunner et al. (1993); they extend the ordinary rank tests to the linear
model. Similarly as in the ordinary rank tests, in the test criteria, the vectors ân (α)

are weighted with a non-decreasing, square-integrable score function J : (0, 1) →
R, such that J (1 − u) = −J (u) , 0 < u < 1,

∫ 1
0 J 2(u)du = A2

J < ∞. J ′(u)

exists for u ∈ (0, α0) ∪ (1 − α0, 1) and, in this domain, and satisfies the following
Chernoff-Savage condition.

|J ′ (u) |≤ c (u (1 − u))−1−δ , 0 < δ <
1

4
. (12)
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The test is based on the vector of scores J̃n =
(
J̃n;1, . . . , J̃n;n

)�
with

J̃n,t = −
∫ 1

0
J (u) dân,t (u) , t = 1, . . . , n. (13)

Efficient algorithms for the computation of such scores can be found in Koenker and
d’Orey (1987, 1994). The rank tests, most typical in the practice, are based on the
scores generated by the following functions J :

(i) TheWilcoxon scoreswith J (u) = u− 1
2 , efficient under the logistic F , but suitable

in many situations;
(ii) The Laplace or median test scores with J (u) = sign

(
u − 1

2

)
. They are effi-

cient under double exponential innovations and recommended under heavy-tailed
distributions;

(iii) The van der Waerden or normal scores J (u) = F−1 (u) (where F stands for
the standard normal distribution function), which are efficient under Gaussian
innovations.

The test is based on the vector of linear regression rank score statistics

SJ ;n = (
Sn1, . . . , Snq

)�
,

Snj = n− 1
2

n∑

t=1

êt− j J̃n,t , j = 1, . . . , q, (14)

where

êt = yt − x∗�
t β̂

∗
n, t = −q + 1, . . . , n − 1 (15)

are estimates of unobservable terms yt − x∗�
t β∗ with β∗ replaced with a suitable

estimate β̂
∗
n, t = −q + 1, . . . , n − 1. Because the distributions satisfying (F1)-(F2)

have finite second moments, we can use the LS estimator of β∗. Indeed,

êt = yt − x∗�
t β̂

∗
n = yt − x∗�

t (X∗�X∗)−1X∗�Y = et − h∗�
t et (16)

where h∗�
t is the t-th row of the projection matrix H∗

n = X∗(X∗�X∗)−1X∗�. Hence,
ê = (In−H∗

n)e is the orthogonal complement of e on the space spanned by the columns
of X∗

n .
However, for non-normal distributions, we recommend using the α-trimmed LS

estimator of β∗, (0 < α < 1/2), constructed in Koenker and Bassett Jr (1978) and
studied in Ruppert and Carroll (1980). It is the weighted least squares estimatorTn(α)

with the weights

ct = cnt = ânt (α) − ânt (1 − α), t = 1, . . . , n. (17)
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More explicitly,

Tn(α) = (X∗�
n CnX∗

n)
−1X∗�

n CnYn (18)

whereCn = diag(ct ) is the diagonal matrix with diagonal (c1, . . . , cn). If the inverse
in (18) does not exist, it is replaced by a generalized inverse. Under the above con-
ditions, n1/2

(
Tn(α) − β∗ − e1δ(α)

)
is asymptotically normal with zero expectation

and covariance matrix (1 − 2α)−1Qσ 2(α, F), where e1 = (1, 0, . . . , 0)� ∈ Rp+1

and δ(α) = (1 − 2α)−1
∫ 1−α

α
F−1(u)du < ∞. Under F symmetric, Tn(α) is an

asymptotically unbiased estimator of β∗.
The test criterion is a specific quadratic form of SJ ;n . The asymptotic behavior of

statistics (14) is analyzed in Gutenbrunner and Jurečková (1992) and Gutenbrunner
et al. (1993). Koul and Saleh (1995) introduced the autoregression rank scores and the
tests based on them were developed in Hallin and Jurecková (1999) and Hallin et al.
(2007), among others. For applications of these tests in climatology, we refer e.g. to
Hallin et al. (1997) and Hallin et al. (1999).

Summarizing, as the test criterion forH0 against the linear autoregression of order
q we propose the quadratic form

TJ ;n = nA−2
J S�

J ;n

(
n−1∑

t=0

êt ê�
t

)−1

SJ ;n, A2
J =

∫ 1

0
J 2(u)du (19)

where

êt = (êt , êt−1, . . . êt−q+1)
�, t = 0, . . . , n − 1. (20)

Inserting the R-estimate β̂nq in (14) and (20), we obtain the asymptotic central χ2

distribution of TJ ;n under H0. Under the local (Pitman) alternative Kn , we get the
asymptotic noncentral χ2 distribution, in view of (5). More precisely, we can state the
following theorem.

Theorem 1 Assume that the observations follow the model (1) with the parent distri-
bution of model errors satisfying conditions (F1) and (F2) and the regression matrix
X satisfying (X1)-(X3). Then

(i) Under the hypothesis, H0, the criterion TJ ;n has asymptotically the central χ2

distribution with q degrees of freedom.
(ii) Under the local alternative, Kn, the asymptotic distribution of the criterion TJ ;n

is the non-central χ2 distribution with q degrees of freedom and non-centrality
parameter

η2 = γ 2(J , F)

A2
J

σ 2ϕ∗�ϕ∗, where

γ (J , F) = −
∫ 1

0
J (u)d f (F−1(u)). (21)
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The proof of the theorem is omitted, because it follows the lines of the proofs of
analogous results in Gutenbrunner and Jurečková (1992) and Gutenbrunner et al.
(1993).

4 Computation and simulation study

In order to evaluate the performance of the proposed testing procedure, a simulation
study and a real data application have been provided. In the simulation study, we take
a simple linear regression model with only one covariate and an AR(1) error structure.
That is, we consider the following linear regression model

yt = β0 + xt1β1 + et , (22)

et = φ0 − φ1et−1 + ut , t = 1, 2, . . . , n. (23)

Simulation Settings. The regression covariate xt1 is generated from U(0, 1). Both
interceptsβ0, andφ0 are set to 0, and the regression parameterβ1 is set to 3.We should
note that different values of the regression parameter have been used in the simulation
study, and it has beenobserved that the value of the regression coefficient does not cause
any significant difference in the power of the test. We used Wilcoxon, Median, and
Van derWaerden scores to compute the test statistics and compare their performances.
The null hypothesis H0 : φ1 = 0 is rejected if the calculated test score is higher than
the central value χ2 with q degrees of freedom and level 5% in each case. To compute
the regression rank scores, we employed the “quantreg” package (Koenker (2021)) for
R. Throughout this simulation study, for each experiment we ran 10,000 replications.
The rejected cases in each run are counted, and the calculated powers of the test are
given in the tables for different error distribution assumptions. The empirical power of
the proposed test is compared for different values of autoregressive parameters given
as follows: φ = −0.9,−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5, 0.9

To illustrate the behavior of the proposed method, we used different distribution
assumptions for innovations ut . We considered symmetric and asymmetric distribu-
tions to see the strength of the proposed test under different error distribution structures.
We used the following symmetric distributions.

(i) ut ∼ N (0, 1),
(ii) ut ∼ t(3),
(iii) ut ∼ Cauchy(0, 1),
(iv) ut ∼ Laplace(0, 1).

The asymmetric distributions areAzzalini-type skew-normal (Azzalini 1985, 1986)
ut ∼ sn(0, 1, λ = 0.5) and Azzalini type skew-t (Azzalini 2005) ut ∼ st3(0, 1, λ =
0.5) with the sample sizes n = 20, 100, 300, 500. To generate random samples from
the distributions in R, we used the "VGAM" package (Yee 2010) for Laplace dis-
tribution and the "sn" package (Azzalini 2023) for Azzalini-type skew-normal and
Azzalini-type skew-t distributions. Note that in this simulation study, the degrees of
freedom (ν) of the t and the skewt distributions are taken as fixed (ν = 3). Throughout
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the simulation study and real data examples, R statistical software (Team 2024) is
used.

Simulation results. Table 1 summarizes the calculated powers of the test when the
error term has different symmetric distributions. First, it is easily seen that when the
sample size gets larger, the proposed test results get better in every scenario. Con-
sidering the score functions, even if there are slight differences between the results
of three scores for the small sample size, the results from all the score functions are
satisfactory for the proposed hypothesis test. It can be easily seen from Table 1 that
if the autoregression parameter takes a value close to zero, which means the autore-
gression parameter is insignificant, the power of the test reduces drastically, which is
an expected result. Also, the performance of the proposed technique is not affected
when the distribution assumption is changed with another symmetric distribution like
t, Laplace, or even Cauchy. This result shows that the proposed method can be used in
any distribution assumption. In the second case of the simulation, the performance of
the test is investigated under the assumption of asymmetric error distribution. Table 2
shows the power of the test results under the assumptions of Azzalini-type asymmetric
distribution. Azzalini-type skew distributions are flexible distributions because they
have skew-symmetric properties. The results of the skew distributions are also promis-
ing. The power of the test has nearly the same performance as the symmetric case.
If we compare the performance of the scores used in each distribution, the Wilcoxon
score gave more accurate results even with small sample sizes compared to the other
two scores. Under the symmetric thick-tailed assumption, the Median score showed
superior success compared to the other two scores. In the cases of Cauchy and Laplace
distribution assumptions, as in the normal distribution, the Wilcoxon score exhibited
better performance than the other two scores. For the skew-distributed assumptions,
the Wilcoxon and Median scores showed comparable performance under the skew-
normal assumption, while the Wilcoxon score outperformed the other two scores in
the skew-t distribution assumption.

In summary, the proposed test method for the autoregressive error term regression
model is effective under various sample sizes and distribution-free even for asymmetric
cases. The proposed test based on all the considered scores is powerful for rejecting
the null hypothesis, while the error term has an autoregressive structure.

5 Real data examples

In this section, we provide two real-data examples to illustrate the performance of the
proposed method in the application.

The first real data set consists of the number of formal education students and the
housing capacity from the Turkish Higher Education Loans and Dormitories Institu-
tion. The data contain an annual basis between 1992-2021 with a sample size n = 30
and available online at National Education Statistics, Formal Education 2020/’21
report (T.C.MEB 2021).

First, we consider a linear regression model with a housing capacity (yt ) as
dependent and No. students (xt ) as explanatory variables. Here, we assume that
the distribution has a finite second moment and use the LS estimation method to
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Table 2 Powers of the test (τn with Wilcoxon, Median, and Van der Waerden scores) for various sample
sizes, β1 = 3 for different autoregressive values and asymmetric error distributions

φ1 n Skew normal Skew-t
Wilcoxon Median Vaerden Wilcoxon Median Vaerden

−0.9 20 0.8947 0.8581 0.6160 0.9420 0.8682 0.6221

100 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000

300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

−0.5 20 0.4342 0.3652 0.1389 0.5342 0.4253 0.1727

100 0.9999 0.9779 0.9927 1.0000 0.9976 0.9953

300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

−0.3 20 0.2041 0.1669 0.0427 0.2655 0.2029 0.0636

100 0.8385 0.6752 0.7584 0.9300 0.8540 0.8569

300 0.9615 0.9859 0.9992 0.9521 0.9997 0.9995

500 0.9871 1.0000 1.0000 1.0000 1.0000 1.0000

−0.1 20 0.0551 0.0685 0.0115 0.0691 0.0649 0.0134

100 0.1967 0.1389 0.1307 0.2733 0.1961 0.1966

300 0.4220 0.2908 0.3913 0.6684 0.5076 0.5605

500 0.6132 0.3561 0.5028 0.8212 0.6927 0.7811

0 20 0.0358 0.0518 0.0072 0.0356 0.0404 0.0063

100 0.0475 0.0497 0.0336 0.0322 0.0435 0.0312

300 0.0452 0.0530 0.0465 0.0591 0.0469 0.0448

500 0.0500 0.0574 0.0487 0.0604 0.0475 0.0485

0.1 20 0.0347 0.0483 0.0054 0.0312 0.0419 0.0055

100 0.1112 0.1021 0.0964 0.1897 0.1671 0.1566

300 0.3775 0.2576 0.3291 0.6143 0.4932 0.5260

500 0.5586 0.4125 0.5114 0.8195 0.7280 0.7547

0.3 20 0.0754 0.0924 0.0188 0.0711 0.1067 0.0237

100 0.7697 0.6044 0.6921 0.9053 0.8108 0.8599

300 0.9821 0.9822 0.9986 0.9999 0.9996 0.9999

500 0.9941 0.9617 1.0000 1.0000 1.0000 1.0000

0.5 20 0.2462 0.2274 0.0643 0.2674 0.2665 0.0923

100 0.9963 0.9683 0.9898 1.0000 0.9954 0.9965

300 1.0000 0.9981 0.9997 1.0000 0.9999 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9 20 0.8165 0.7461 0.4692 0.8323 0.7434 0.4665

100 1.0000 1.0000 1.0000 0.9967 1.0000 1.0000

300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Fig. 1 ACF and PACF of the
residuals of the students and the
housing capacity data

estimate the parameters. When the simple linear regression model is considered
without an autoregressive error term, we obtain the intercept as insignificant and
β̂1 = 0.1151. We further examined the residuals in terms of error distribution and
the AR structure. In Fig. 1, the autocorrelation function (ACF) and the partial auto-
correlation function (PACF) plots of the residuals obtained from the LS estimates
are presented. We observe from these plots that ACF decays exponentially to zero
and PACF cuts off after lag 1. Therefore, these results suggest a significant AR(1)
correlation structure. The result from the Durbin-Watson (DW) statistic of the data
(DW = 0.1993, p − value < 0.001) also supports the presence of positive autocor-
relation among residuals. “auto.arima” function in R package “forecast” (Hyndman
and Khandakar 2008) is used to determine whether there is an ARIMA process on the
data, and the function estimates an AR(1) structure in the residuals with φ̂1 = 0.9226.

ŷt = 0.1151xt , (24)

êt = 0.9226et−1, t = 1, 2, . . . , 30. (25)
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Fig. 2 Q–Q plot of the residuals
of the students and the housing
capacity data

Just as in the simulation study, we used Wilcoxon, Median, and Van der Waerden
scores to compute the test statistics for the real data. We compute the scores, and
the null hypothesis is rejected if the calculated test score is higher than the central
χ2 value with q degrees of freedom and level 5%. Since all three scores reject the
null hypothesis, we can conclude that the autoregressive parameter is significant for
the housing capacity and number of students in these data according to the proposed
method.

The Q–Q graph given in Fig. 2 was drawn to determine the distribution type of the
residuals. According to this graph, it can be said that the data are light-tailed with
right-skewed. The proposed method was able to accurately detect autocorrelation in
real-life skewed data.

The second example, taken from the book by Kutner et al. (1983) is an economic
case study featuring the “Blaisdell Company.” The dataset contains two variables
with a sample size of n = 20. We fit a simple linear regression model with com-
sales (company sales in $ millions) as the response and indsales (industry sales in $
millions) as the predictor. Similar to the previous example, we assume that the dis-
tribution has a finite second moment and the LS estimation method is employed to
estimate the model parameters without considering any autocorrelation structure. By
conducting further analysis on the residuals, focusing on the AR structure and the
distribution in error terms, we first used ACF and the PACF plots. Figure3 displays
that ACF decays exponentially to zero and PACF cuts off after lag 1. These findings
strongly suggest a significant AR(1) correlation structure in the residuals. Also, the
result of the DW test indicates a significant positive autocorrelation among the resid-
uals (DW = 0.1839, p − value < 0.001) . The result of DW statistics supports the
interpretation of the ACF and PACF plots. The results obtained from the ”auto.arima”
function showed that the residuals had a first-order significant autocorrelation with a
coefficient of 0.6052. According to these results, the proposed hypothesis tests were
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Fig. 3 ACF and PCF of the
residuals of the Blaisdell
Company data

applied using the following fitted models.

ŷt = −1.4547 + 0.1762xt , (26)

êt = 0.6052et−1, t = 1, 2, . . . , 20. (27)

Wilcoxon,Median, andVanderWaerden scores are also calculated for the “Blaisdell
Company” data. The null hypothesis is rejected by all three scores, leading to the
conclusion that the autoregressive parameter is significant for the linear regressionwith
the autocorrelated error term. The Q–Q graph generated for the “Blaisdell Company”
data in Fig. 4 indicates an approximately normal distribution for the residuals. This
indicates that, under normality assumptions, the proposed tests performed successfully
as expected.
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Fig. 4 Q–Q plot of the residuals
of the Blaisdell Company data

6 Conclusion

Our main goal was to verify the hypothesis of serial independence of model errors
in the linear regression model, to prevent a possible distortion caused by a possi-
ble autoregression of model errors. We construct a class of non-parametric tests for
hypothesis H0 in (7) against the local autoregression alternative of model errors. The
construction of tests follows the general idea of non-parametric tests on selected com-
ponents of the regression parameter, proposed in Gutenbrunner et al. (1993). The test
criterion TJ ;n in (19) is based on the regression rank scores of the model (1) with
estimated unobservable innovations. We reject H0 on the level α if

TJ ;n ≥ χ2
q (1 − α)

with χ2
q (1 − α) is the (1 − α) quantile of the χ2 distribution with q degrees of

freedom. The asymptotic efficiency of the test against the series of local alternatives
Kn is characterized by the non-centrality parameter (21).

The computation of the proposed non-parametric tests based on regression rank
scores is illustrated in a simulation study. The behavior of the tests is illustrated in two
real-data examples. The power of the test has been estimated under various values of
the autoregressive parameter and several different assumptions on innovation distri-
butions, including the symmetric and skew distributions. The results of the numerical
studies showed that the proposed test works well for all of these simulation scenarios.
In addition, the test works for the Cauchy distribution, even when it does not fulfill
our conditions. Therefore, the conjecture says that asymptotic results can be proven
under weaker conditions, while the proof is still an open problem.
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Hallin M, Jurečková J, Kalvova J, Picek J, Zahaf T (1997) Nonparametric AR order identification with
application to climatic data. Environmetrics 8:651–660
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