
SankhyāA : The Indian Journal of Statistics
https://doi.org/10.1007/s13171-025-00389-7
© 2025, The Author(s)

A Class of Signed Rank Estimators in Regression Models

with Random Covariates

Jana Jurečková
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Abstract
This note proves the asymptotic uniform linearity of a weighted empirical
process of residual signed ranks and a class of linear residual signed rank
statistics with bounded scores in nonlinear parametric regression models
when covariates are random and independent of the errors. This result is
used to derive limiting distributions of a class of signed rank estimators of
the underlying regression parameters in these models. The latter result is
applied to the errors in variables linear regression model to show that these
estimators are robust against large measurement error in the sense that the
asymptotic relative efficiency of a class of signed rank estimators against the
bias corrected least square estimator tends to infinity as the measurement
error variance tends to infinity (in some cases monotonically), when covari-
ates and regression and measurement errors have Gaussian distributions.
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1 Introduction

Hodges and Lehmann (1963) proposed classes of estimators of the one and
two sample location parameters based on signed ranks and ordinary ranks
of the residuals, respectively. Some members of these classes of estimators
are asymptotically more efficient than the classical estimators based on the
sample means at several error distributions, while at the same time they
are robust against outliers. Jurečková (1969, 1971) developed analogs of
the estimators based on ranks for the regression parameter vector in linear
regression models with non-random covariates. A class of rank estimators for
a class of nonlinear parametric regression models, where the covariates are
random and independent of the regression errors, were developed in Koul
(1996). In this note we derive analogous results for a class of signed rank
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estimators defined as minimizers of the Euclidean norm of the given class of
linear residual signed rank statistics.

A crucial result needed for deriving the asymptotic distributions of these
estimators is the so called asymptotic uniform linearity (AUL) of the defin-
ing linear signed rank statistics of the residuals. In this note we derive such
a result for a weighted empirical process of residual signed ranks and a
class of linear residual signed rank statistics in a class of nonlinear para-
metric regression models, where random covariates are independent of the
regression errors. In the case of linear regression model with non-random
covariates, the AUL of a class of linear residual signed rank statistics was
established in Koul (1969, 2002) for bounded scores and by van Eeden (1972)
for general square integrable scores.

These results are in turn used to derive the asymptotic distributions
of a class of signed rank estimators of the regression parameter vector in a
linear errors in variables regression model. We show that the asymptotic rel-
ative efficiency of this class of estimators, relative to the bias corrected least
squares estimator, when covariates and errors are Gaussian, tends to infinity
as the measurement error variance tends to infinity, monotonically in some
cases. This is a desirable property to have from a practical point of view.
One may say that these estimators are robust against large measurement
error variance.

When there is no measurement error in covariates, several properties of
signed rank estimators or their variants have been studied in the literature.
Hettmansperger and McKean (1998) study their robustness against gross
errors in linear regression models. Abebe et al. (2012) proves consistency of
some variants of these estimators in some nonlinear regression models while
Abebe and Bindele (2016) use them in variable selection in linear regression.
Bindele (2014) derives the asymptotic distributions of a class of signed rank
estimators in a class of nonlinear regression models when covariates are
observable, independent of the regression errors that are dependent r.v.’s
and satisfy some mixing conditions. Bindele (2015) study these estimator
for nonlinear regression with responses missing at random while Bindele
and Nguelifack (2019) investigate some generalized signed-rank estimator in
regression models with non-ignorable missing responses. An application in
big data set up of some extensions of these estimators is discussed in Bindele
et al. (2022). Jureckova et al. (2016) derives asymptotic distributions of a
class of R estimators, the estimators based on ordinary ranks, in errors in
variables linear regression models where responses also have measurement
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error while Koul (2022) discusses an R estimator of the regression parameter
vector in the errors in variables linear regression model.

Some notation For any two stochastic processes Wnj(u, t), j = 1, 2, 0 ≤
u ≤ 1, t ∈ R

q and any sequence 0 < an → ∞, by Wn1(u, t) = Wn2(u, t) +
up

(
a−1

n

)
is meant that

sup
0≤u≤1,‖t‖≤b

an

∣
∣Wn1(u, t) − Wn2(u, t)

∣
∣ = op(1), ∀ 0 < b < ∞.

For any positive integer m, Nm(ν, C) denotes the m-dimensional normal
distribution with the mean vector ν and the covariance matrix C, N ≡ N1.

2 Nonlinear Parametric Regression Model

This section introduces the nonlinear parametric regression model of inter-
est. It also contains the proof of the AUL of a weighted empirical process of
residual signed ranks and of a class of linear residual signed rank statistics
for such a model.

To proceed further, let p, q be known positive integers, Θ ⊆ R
q and γ be

a known function from Θ×R
p to R such that γ(ϑ, z) is measurable in z ∈ R

p,
for every ϑ ∈ Θ. Let (Y, Z) be a random vector, where Y is 1-dimensional
response variable and Z is p-dimensional random vector of covariates. In the
nonlinear parametric regression model of interest here, these entities obey
the following relation for some θ ∈ Θ :

Y = γ(θ, Z) + e, where the random error eisindependentofZ. (2.1)

Let Yi, Zi, ei, 1 ≤ i ≤ n be iid copies of Y, Z, e of the model Eq. 2.1.
About γ, we assume the following: There exists a vector γ̇ of functions

from Θ×R
p to R

q such that for every ϑ ∈ Θ, γ̇(ϑ, z) is measurable in z and
the following conditions hold:

max
1≤i≤n,‖t‖≤b

n1/2
∣
∣γ(θ + n−1/2t, Zi) − γ(θ, Zi) − n−1/2t′γ̇(θ, Zi)

∣
∣ = op(1), ∀ 0 < b < ∞,

(2.2)

E
∥
∥γ̇(θ, Z)

∥
∥
2

< ∞. (2.3)
E

∥
∥γ̇(θ + n−1/2t, Z) − γ̇(θ, Z)

∥
∥
2

= o(1), ∀ t ∈ R
q. (2.4)

n1/2E
∥
∥γ̇(θ + n−1/2t, Z) − γ̇(θ, Z)

∥
∥ = O(1), ∀ t ∈ R

q. (2.5)
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Throughout this paper, for any vector x, x′ denotes its transpose.
As an example, consider the model where γ(θ, z) = θ1 + θ2e

θ3z, θ1 ∈
R, θ2 > 0, θ3 > 0, z > 0. This type of model is used when relating the
concentration of a substance Y to elapsed time Z. In this case all of the above
conditions are satisfied with q = 3, p = 1 and γ̇(θ, z) = (1, eθ3z, θ2zeθ3z)′

provided E
(
Z2e2(θ3+δ)Z

)
< ∞, for some δ > 0. Other examples of interest

can be found in Seber and Wild (1989).
For the sake of brevity, let 0q denote the vector of q 0’s and

e(t) := Y − γ(θ + n−1/2t, Z), γi(t) := γ(θ + n−1/2t, Zi), di(t) := γi(t) − γi(0q),

eit := ei − di(t), γ̇i(t) := γ̇(θ + n−1/2t, Zi), γi := γi(0q), γ̇i := γ̇i(0q), 1 ≤ i ≤ n,

Σθ := E
(
γ̇(θ, Z)γ̇(θ, Z)′), Dγ(t) := n−1/2

∑

i

[
γ̇i(t) − γ̇i

]
, t ∈ R

q.

We also assume the following: For every α > 0, ∃ δ > 0 and Nα < ∞ such
that ∀ ‖s‖ ≤ b,

P
(

sup
‖t−s‖<δ

n−1/2
∑

i

∥
∥γ̇i(t) − γ̇i(s)

∥
∥ ≤ α

)
≥ 1 − α, ∀n > Nα. (2.6)

In this note the index of the summation varies from 1 to n, unless
specified otherwise. Note that ei ≡ Yi − γi, 1 ≤ i ≤ n are iid copies of
e = Y − γ(θ, Z) and for each t ∈ R

q and n ≥ 1, e(t), eit, 1 ≤ i ≤ n are
iid r.v.’s.

For the later use we note the following facts. By Eqs. 2.2 and 2.3,

sup
1≤i≤n,‖t‖≤b

∣
∣di(t)

∣
∣ ≤ sup

1≤i≤n,‖t‖≤b

∣
∣di(t)−n−1/2t′γ̇i

∣
∣+b n−1/2 max

1≤i≤n

∥
∥γ̇i

∥
∥=op(1),

(2.7)

sup
‖t‖≤b

∑

i

∣∣di(t)
∣∣ ≤

∑

i

∣∣di(t) − n−1/2t′γ̇i

∣∣ + b n−1/2
∑

i

∥∥γ̇i

∥∥ = Op(n1/2).

(2.8)

By Eqs. 2.3, 2.4 and 2.5, for every fixed t ∈ R
q,

max
1≤i≤n

n−1/2‖γ̇i(t)‖ ≤ max
1≤i≤n

n−1/2‖γ̇i(t) − γ̇i‖ + max
1≤i≤n

n−1/2‖γ̇i‖ = op(1),
∥
∥Dγ(t)‖ = Op(1).
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Hence, by the compactness of the ball {t ∈ R
q; ‖t‖ ≤ b} and Eq. 2.6,

sup
1≤i≤n,‖t‖≤b

n−1/2‖γ̇i(t)‖ = op(1), sup
‖t‖≤b

∥
∥Dγ(t)‖ = Op(1), ∀ 0 < b < ∞.

(2.9)

Next, define, for y ∈ R, t ∈ R
q,

Sγ(y, t) := n−1
∑

i

γ̇i(t)I
(
Yi ≤ y + γi(t)

)
= n−1

∑

i

γ̇i(t)I
(
ei ≤ y + di(t)

)
.

Let K denote the distribution function (d.f.) of e and assume the follow-
ing:

K has uniformly continuous density κ on R, κ > 0 a.e. (2.10)

Upon taking hni(θ + n−1/2t) ≡ γi(t), ḣi(θ + n−1/2t) ≡ γ̇i(t) and Xi ≡ Yi

in (1.8) of Lemma 1.1 of Koul (1996), we obtain the following lemma:
Lemma 2.1 Suppose the model Eq. 2.1 and the assumptions Eqs. 2.2–2.6
and 2.10 hold. Then, for every 0 < b < ∞,

sup
y∈R,‖t‖≤b

∥
∥n1/2(Sγ(y, t) − Sγ(y, 0)

) − Σθt κ(y) − Dγ(t)K(y)
∥
∥ = op(1). (2.11)

AUL of weighted empirical process of residual signed ranks From
now on assume additionally that the d.f.K is symmetric about the origin so
that K(0) = 1/2 and γ(θ, Z) is the conditional median of Y , given Z. Let
sgn(y) := I(y > 0) − I(y < 0). Define

R+
it :=

∑

j

I
(|ej − dj(t)| ≤ |ei − di(t)|

)

, si(t) := sgn
(

ei − di(t)
)

,

Z+
γ (u, t) := n−1

∑

i

γ̇i(t)I
(
R+

it ≤ nu
)
si(t), Jnt(x) := n−1

∑

i

I
(|ei − di(t)| ≤ x

)
,

J(x) := P (|e| ≤ x)=2K(x) − 1, x ≥ 0; ω(u) := κ
(

K−1(u)
)−κ(0), 0 ≤ u ≤ 1,

S+
γ (u, t) := n−1

∑

i

γ̇i(t)I
(|ei − di(t)| ≤ J−1(u)

)

si(t), t ∈ R
q.

For any function L(u, t) of u, t, L(u) will stand for L(u, 0q). The following
lemma gives the AUL of the weighted empirical process of residual signed
ranks Z+

γ (u, t).
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Lemma 2.2 Suppose the nonlinear regression model Eq. 2.1 and the
assumptions Eqs. 2.2–2.6, 2.10 hold and K is symmetric about 0. Then,

sup
0≤u≤1,‖t‖≤b

∣
∣n1/2(Z+

γ (u, t) − S+
γ (u)

) − 2Σθt ω(u) − Dγ(t)
∣
∣ = op(1), ∀ 0 < b < ∞.

(2.12)

Proof Fix a 0 < b < ∞. Recall that for any d.f. G,

G(G−1(u)) ≥ u, ∀ 0 ≤ u ≤ 1, with equality holding if G is continuous. (2.13)
G−1(G(x)) ≤ x, ∀ x ∈ R, with equality holding if G is strictly increasing.

Let

V+
γ (u, t) := n−1

∑

i

γ̇i(t)I
(
|ei − di(t)| ≤ J−1

nt (u)
)
si(t).

The continuity of K, see Eq. 2.10, and the independence of e and Z imply
that for every t ∈ R

q, the distribution of e(t) is continuous. Hence, the set of
ranks R+

it , 1 ≤ i ≤ n is a permutation of integers 1, · · · , n, for every t ∈ R
q,

with probability 1. This fact and Eq. 2.13 imply that, almost surely, for all
1 ≤ i ≤ n, 0 ≤ u ≤ 1, t ∈ R

q,
{

|ei − di(t)| ≥ J−1
nt (u)

}
=⇒

{
R+

it ≥ nu
}

=⇒
{

|ei − di(t)| ≥ J−1
nt (u)

}
.

(2.14)

Rewrite

Z+
γ (u, t) = n−1

∑

i

γ̇i(t)
{

1 − I
(

R+
it ≥ nt

)

+ I
(

R+
it = nu

)}

si(t),

V+
γ (u, t) = n−1

∑

i

γ̇i(t)
{

1 − I
(|ei − di(t)| ≥ J−1

nt (u)
)

+ I
(|ei − di(t)| = J−1

nt (u)
)}

si(t).

By Eq. 2.14,

n1/2(Z+
γ (u, t) − V+

γ (u, t)
)

=
∑

i

n−1/2γ̇i(t)
{

I
(

R+
it = nu

) − I
(|ei − di(t)| = J−1

nt (u)
)}

.

Hence, by Eq. 2.9,

sup
0≤u≤1,‖t‖≤b

n1/2
∣∣Z+

γ (u, t) − V+
γ (u, t)

∣∣ ≤ 2n−1/2 sup
1≤i≤n,‖t‖≤b

∥∥γ̇i(t)
∥∥ = op(1).
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Note that J−1(u) = K−1
(
(u + 1)/2

)
≥ 0, for all 0 ≤ u ≤ 1. Now, rewrite

S+
γ (u, t) := n−1

∑

i

γ̇i(t)
[

I
(
0 < ei − di(t) ≤ J−1(u)

) − I
( − J−1(u) ≤ ei − di(t) < 0

)]

= Sγ(J
−1(u), t) + Sγ(−J−1(u), t) − 2Sγ(0, t)

+ n−1
∑

i

γ̇i(t)
[

I
(
ei − di(t) = 0

) − I
(
ei − di(t) = J−1(u)

)]

.

Let Ŝγ(x, t) := Sγ(x, t) + Sγ(−x, t) − 2Sγ(0, t), x ≥ 0. Then, by Eq. 2.9,

sup
0≤u≤1,‖t‖≤b

n1/2
∣∣S+

γ (u, t)−Ŝγ(J−1(u), t)
∣∣ ≤ 2n−1/2 max

1≤i≤n,‖t‖≤b

∥∥γ̇i(t)
∥∥=op(1).

(2.15)

By Eqs. 2.11, 2.15, and the symmetry of K about 0, J−1(0) = 0, Dγ(0) ≡
0,

n1/2S+
γ (u, t) = n1/2Ŝγ

(
J−1(u), t

)
+ up(1) (2.16)

= n1/2
[
Sγ

(
J−1(u)

)
+ Sγ

(
− J−1(u)

)
− 2Sγ(0)

]

+ 2Σθ t
[
κ
(
J−1(u)

)
− κ

(
J−1(0)

)]
+ Dγ(t) + up(1)

= n1/2Ŝγ

(
J−1(u)

)
+ 2Σθ t ω(u)

)
+ Dγ(t) + up(1)

= n1/2S+
γ (u) + 2Σθ t ω(u)

)
+ Dγ(t) + up(1).

By the symmetry of K and the independence of Z and e, E
(
S+

γ (u)
)

≡ 0
and

nE
(
S+

γ (u)S+
γ (v)

)
= Σθ min(u, v), 0 ≤ u, v ≤ 1.

Let γ̇ij denote the jth coordinated of γ̇i, 1 ≤ i ≤ n and S+
γj(u) denote

the corresponding coordinate of S+
γ (u), 1 ≤ j ≤ q, so that S+

γ (u) ≡
(
S+

γ1(u), · · · , S+
γq(u)

)′ and

S+
γj(u) = n−1

∑

i

γ̇ijI
(
|ei| ≤ J−1(u)

)
sgn(ei), 0 ≤ u ≤ 1.

For each 1 ≤ j ≤ q, apply Theorem 1.1 of Koul and Ossiander (1994) with
ηni ≡ J

(
|ei|

)
and γni ≡ γ̇ijsgn(ei). By the symmetry of K about 0 and the

independence between Zi and ei, we see that this γni is independent of this



J. Jurečková and H. L. Koul

ηni, for each 1 ≤ i ≤ n. Also, Eq. 2.10 ensures the satisfaction of the other
assumptions of the above theorem in this case. Hence, by Theorem 1.1 of
Koul and Ossiander (1994), n1/2S+

γ (u), 0 ≤ u ≤ 1 converges weakly in the
Skorokhod space Dq[0, 1] and uniform metric to B :=

(
B1, · · · , Bq

)′, where
for each 1 ≤ j ≤ q, Bj is a continuous mean zero Gaussian process with
Cov

(B(u), B(v)
)

= Σθ min(u, v), 0 ≤ u, v ≤ 1. Moreover, for every ε > 0,
there exists a δ > 0 and Nε < ∞ such that

P
(

sup
|u−v|<δ

n1/2
∥
∥S+

γ (u) − S+
γ (v)

∥
∥ > ε

)
< ε, ∀n > Nε. (2.17)

We also need the following result:

sup
x≥0, ‖t‖≤b

∣
∣Jnt(x) − J(x)

∣
∣ = op(1). (2.18)

Proof of Eq. 2.18. Let J̄nt(x) := n−1
∑

i

[
K

(
x + di(t)

)
− K

(
− x + di(t)

)]
.

Write Jnt(x) − J(x) = Jnt(x) − J̄nt(x) + J̄nt(x) − J(x), x ≥ 0, so that

sup
x≥0, ‖t‖≤b

∣
∣Jnt(x) − J(x)

∣
∣ ≤ sup

x≥0, ‖t‖≤b

∣
∣Jnt(x) − J̄nt(x)

∣
∣ + sup

x≥0, ‖t‖≤b

∣
∣J̄nt(x) − J(x)

∣
∣.

(2.19)

Let δn := sup1≤i≤n,‖t‖≤b

∣
∣di(t)

∣
∣. By Eq. 2.7, n1/2δn = Op(1). Hence, by

Eq. 2.10

Kn := sup
1≤i≤n,‖t‖≤b,x∈R

n1/2
∣
∣K

(
x + di(t)

) − K(x) − di(t)κ(x)
∣
∣

= sup
1≤i≤n,‖t‖≤b,x∈R

n1/2

∣
∣
∣
∣

∫ di(t)

0

[
κ(x + z) − κ(x)

]
dz

∣
∣
∣
∣
≤ n1/2δn sup

|y−z|≤δn

∣
∣κ(y) − κ(z)

∣
∣ = op(1).

By the symmetry of K, κ(x) ≡ κ(−x), so that

J̄nt(x) − J(x) = n−1
∑

i

[
K

(
x + di(t)

)
− K(x) − di(t)κ(x) (2.20)

− K
(

− x + di(t)
)

+ K(−x) + di(t)κ(−x)
]
,

sup
x≥0,‖t‖≤b

n1/2
∣
∣J̄nt(x) − J(x)

∣
∣ ≤ 2Kn = op(1).
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Next, to deal with the first term in the upper bound of Eq. 2.19, let

Knt(y) := n−1
∑

i

I
(
ei ≤ y + di(t)

)
, K̄nt(y) := n−1

∑

i

K
(
y + di(t)

)
,

Δn(y, t) := Knt(y) − K̄nt(y), Kn(y) := Kn0(y), Dn(y) := Kn(y) − K(y), y ∈ R.

By the Glivenko-Cantelli Lemma,

sup
y∈R

∣
∣Dn(y)

∣
∣ → 0, a.s. (2.21)

Rewrite, Jnt(x) − J̄nt(x) = Δn(x, t) + Δn(−x, t) − 2Δn(0, t), n ≥ 1, x ≥
0, t ∈ R

q. With δn as above, −δn ≤ di(t) ≤ δn, for all 1 ≤ i ≤ n, ‖t‖ ≤ b.
Hence, by the monotonicity of the indicator and d.f.’s, for all x ≥ 0,

Kn(±x − δn) ≤ Knt(±x) ≤ Kn(±x + δn), K(±x − δn) ≤ K̄nt(±x) ≤ K(±x + δn).

These bounds in turn imply that for all x ≥ 0, ‖t‖ ≤ b,

∣
∣Δn(±x, t)

∣
∣ ≤ ∣

∣Dn(±x + δn)
∣
∣ +

∣
∣Dn(±x − δn)

∣
∣ +

[
K

( ± x + δn
) − K

( ± x − δn)
]
.

Hence, by Eqs. 2.7 and 2.21, supx≥0,‖t≤b

∣
∣Δn(±x, t)

∣
∣ ≤ 2 supy∈R

∣
∣Dn(y)

∣
∣ +

2‖κ‖∞δn = op(1) and supx≥0,‖t‖≤b

∣
∣Jnt(x) − J̄nt(x)

∣
∣ = op(1). Combine this

fact with Eqs. 2.20 and 2.19 to conclude Eq. 2.18.
To proceed further we need the following fact implied by Eq. 2.18.

sup
0≤u≤1

∣∣JJ−1
nt (u) − u| = sup

0≤u≤1

∣∣JJ−1
nt (u) − JntJ

−1
nt (u) + JntJ

−1
nt (u) − u

∣∣

(2.22)

≤ sup
x≥0

∣
∣Jnt(x) − J(x)

∣
∣ + n−1 = op(1).

Next, consider the process V+
γ . By Eq. 2.10, J = 2K−1 is continuous and

strictly increasing, J−1J(x) ≡ x and V+
γ (u, t) ≡ S+

γ

(
JJ−1

nt (u), u
)
. Therefore,

by Eqs. 2.16, 2.17, 2.22 and the uniform continuity of ω on [0, 1],

n1/2V+
γ (u, t) = n1/2S+

γ

(
JJ−1

nt (u)
)

+ 2Σθt ω
(
JJ−1

nt (u)
)

+ Dγ(t) + up(1)

= n1/2S+
γ (u) + 2Σθt ω(u) + Dγ(t) + up(1).

This completes the proof of Eq. 2.12 and of Lemma 2.2 also.
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AUL of linear residual signed rank statistics We shall use the AUL
result Eq. 2.12 to derive the AUL of a class of linear residual signed rank
statistics. Let Ω :=

{
ψ : ψ a real valued nondecreasing right continuous

function on [0, 1] having left limits such that ψ(1) = 1
}

and Ωs :=
{
ψ : ψ ∈

Ω such that ψ(u) ≡ −ψ(1 − u), 0 ≤ u ≤ 1
}
. For a ψ ∈ Ωs, the function

ϕ(u) := ψ
(
(u + 1)/2

)
is a d.f. on [0, 1]. The linear residual signed rank

statistic corresponding to a score function ψ is defined to be

Z+
γ (ψ, t) := n−1

∑

i

γ̇i(t)ϕ
(R+

it

n

)
si(t), t ∈ R

q.

To proceed further, we recall the following fact. Let U1, U2 be two right
continuous functions of locally bounded variations on [0, ∞). Then, for any
0 ≤ v < ∞,

∫

u∈(0,v]
U2(u)dU1(u) = U1(v)U2(v) − U1(0)U2(0) −

∫

u∈(0,v]
U1(u−)dU2(u).

Apply this formula with U1(u) = Z+
γ (u, t), U2(u) = ϕ(u), v = 1 and use the

fact that Z+
γ (0, t) ≡ 0 to obtain that that uniformly in ψ ∈ Ω and ‖t‖ ≤ b,

Z+
γ (ψ, t) =

∫ 1

0

ϕ(u)Z+
γ (du, t) = Z+

γ (1, t) −
∫ 1

0

Z+
γ (u−, t)dϕ(u).

By Eq. 2.9,

sup
‖t‖≤b,ψ∈Ω

∥
∥
∥

∫ 1

0

n1/2[Z+
γ (u−, t) − Z+

γ (u, t)
]

dϕ(u)
∥
∥
∥ ≤ sup

‖t‖≤b,1≤i≤n

n−1/2‖γ̇i(t)‖ = op(1).

Therefore,

Z+
γ (ψ, t) = Z+

γ (1, t) −
∫ 1

0

Z+
γ (u, t)dϕ(u) + up

(

n−1/2) (2.23)

= S+
γ (1)+2Σθt ω(u)+Dγ(t)−

∫ [

S+
γ (u)+2Σθt ω(u) + Dγ(t)

]

dϕ(u) + up

(

n−1/2)

=
[

S+
γ (1) −

∫ 1

0

S+
γ (u)dϕ(u)

]

+ 2Σθ t
{

ω(1) −
∫ 1

0

ω(u)dϕ(u)
}

+ up

(

n−1/2).

For ψ ∈ Ωs, ϕ
(
2K(x) − 1

)
= ψ

(
K(x)

)
and

ω(1) −
∫ 1

0

ω(u)dϕ(u) = −κ(0) −
∫ 1

0

[

κ
(

J−1(u)
) − κ(0)

]

dϕ(u) = −
∫ 1

0

κ
(

J−1(u)
)

dϕ(u)
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= −
∫ 1

0

κ
(

K−1(u + 1

2

))

dϕ(u) = −
∫ ∞

0

κ(x)dϕ
(

2K(x) − 1
)

= −
∫ ∞

0

κ(x)dψ
(

K(x)
)

.

Let I(ψ) :=
∫ ∞
−∞ κ(x)dψ

(
K(x)

)
. By changing x = −y and using

the symmetry of κ, K about 0 and the symmetry of ψ about 1/2,∫ ∞
0

κ(x)dψ
(
K(x)

)
=

∫ 0
−∞ κ(y)dψ(K(y)), for all ψ ∈ Ωs. Hence, 2

∫ ∞
0

κ(x)dϕ(
K(x)

)

=
∫ ∞
−∞ κ(x)dψ

(
K(x)

)
= I(ψ). Moreover,

Ŝ+
γ (ψ) := S+(1) −

∫ 1

0

S+
γ (u)dϕ(u) =

∫ 1

0

ϕ(u)dS+
γ (u) = n−1

∑

i

γ̇i ψ
(

K(|ei|)
)

sgn(ei).

Because the r.v. e is symmetrically distributed around 0 and indepen-
dent of Z, E

(
Ŝ+

γ (ψ)
)

≡ 0 and nE
(
Ŝ+

γ (ψ)Ŝ+
γ (ψ)′) = Σθτ

2
ψ, where τ2

ψ :=
E

(
ψ2(K(|e|)

)
= 2

∫ 1
1/2 ψ2(u)du =

∫ 1
0

ψ2(v)dv. The last equality is obtained
by changing the variable u = 1 − v and using the assumption ψ(v) ≡
−ψ(1−v) so that

∫ 1
1/2 ψ2(u)du =

∫ 1/2
0

ψ2(v)dv. By the classical CLT, under
the assumption Eq. 2.3,

n1/2Ŝ+
γ (ψ) →D Nq

(
0, Σθτ

2
ψ

)
. (2.24)

The above derivations together then yield the following theorem describ-
ing the AUL of a class of linear residual signed rank statistics Z+

γ (ψ, t),
uniformly in ψ ∈ Ωs and ‖t‖ ≤ b:
Theorem 2.1 For the nonlinear regression model Eq. 2.1 and under the
assumptions Eqs. 2.2–2.6, 2.10 and symmetry of the error d.f. K about 0,
the following holds:

sup
ψ∈Ωs,‖t‖≤b

∥
∥n1/2(Z+

γ (ψ, t) − Ŝ+
γ (ψ)

)
+ ΣθtI(ψ)

∥
∥ = op(1), ∀ 0 < b < ∞.

(2.25)

Consequently, by Eq. 2.24, for every ψ ∈ Ωs, t ∈ R
q, Z+

γ (ψ, t) →D Nq

(
−

ΣθtI(ψ), Σθτ
2
ψ

)
.

This theorem does not require the existence of any moment of the regression
error e.
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3 Signed Rank Estimators

In this section we shall define a class of signed rank estimators and describe
their asymptotic distributions. Recall, ϕ(u) ≡ ψ

(
(u+1)/2

)
, ψ ∈ Ωs. Define,

r+iϑ :=
∑

j

I
(
|Yj − γ(ϑ, Zj)| ≤ |Yi − γ(ϑ, Zi)|

)
, 1 ≤ i ≤ n,

Tψ(ϑ) := n−1/2
∑

i

γ̇(ϑ, Zi)ϕ
(r+iϑ

n

)
sgn

(
Yi − γ(ϑ, Zi)

)
, ϑ ∈ R

q,

Mψ(ϑ) :=
∥
∥Tψ(ϑ)

∥
∥2

, θ̂ψ := arginfϑ∈ΘMψ(ϑ).

Because of the assumed independence of Z and e and the symmetry of
e about 0, the r.v.’s Zi, |ei| and sgn(ei) are mutually independent for every
i = 1, · · · , n, and

E
(
Tψ(θ)

)
= n−1/2

∑

i

E
(
γ̇(θ, Zi)ϕ

(r+iθ
n

))
E

(
sgn

(
ei

))
= 0. (3.1)

Hence the corresponding signed rank estimator θ̂ψ will not have any asymp-
totic bias.

We are interested in deriving the asymptotic distribution of ϑ̃ψ :=
n1/2

(
θ̂ψ−θ

)
. But ϑ̃ψ ≡ arginft∈RqMψ

(
θ+n−1/2t

)
. If we let R+

it := r+
i,θ+n−1/2t

,
then Mψ

(
θ + n−1/2t

)
≡ Z+

γ (ψ, t). Let

Qψ(t) :=
∥
∥Ŝ+

γ (ψ) − ΣθtI(ψ)
∥
∥2 = M(θ) − 2I(ψ)t′ΣθŜ

+
γ (ψ) + I2(ψ)t′ΣθΣθt,

t̃ψ := arginft∈RqQψ(t) ≡
(
ΣθI(ψ)

)−1
Ŝ+

γ (ψ).

By Eq. 2.25, for every 0 < b < ∞,

sup
ψ∈Ωs,‖t‖≤b

∣
∣Mψ

(
θ + n−1/2t

)
− Qψ(t)

∣
∣ = op(1). (3.2)

In other words, the sequence of objective functions Mψ

(
θ+n−1/2t

)
, n ≥ 1

of t is asymptotically uniformly quadratic in t over all bounded sets and
ψ ∈ Ωs. The sequence of the corresponding minimizers ϑ̃ψ will be close to
the sequence of minimizers t̃ψ of Qψ(t) if we can verify that ‖ϑ̃ψ‖ = Op(1)
and ‖t̃ψ‖ = Op(1). But this claim about t̃ψ follows from Eq. 2.24, which
yields that t̃ψ →D Nq

(
0, Σ−1

θ τ2
ψ

/
I2(ψ)

)
. To establish the former condition,
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we need the following additional assumption:

For every ε > 0, 0 < α < ∞, there exist Nε and bε,α such that (3.3)

P
(
inf‖t‖>bε,α

Mψ

(
θ + n−1/2t

)
≥ α

)
≥ 1 − ε, ∀n > Nε.

By arguing as in the proof of Theorem 5.4.1 of Chapter 5.4 in Koul (2002),
we can verify that under Eqs. 2.24, 3.2 and 3.3, ‖n1/2(θ̂ψ − θ)‖ = Op(1), for
every ψ ∈ Ωs.

Summarizing, we state the following theorem giving the asymptotic dis-
tribution of θ̃ψ :
Theorem 3.1 Suppose assumptions Eqs. 2.1, 2.2–2.6, 2.10 and 3.3 hold.
Then, for every ψ ∈ Ωs,

∥∥n1/2
(
θ̂ψ − θ

)∥∥ = Op(1) and

n1/2
(
θ̂ψ − θ

)
= I−1(ψ)Σ−1

θ n1/2Ŝ+
γ (ψ) + op(1) →D Nq

(
0, Σ−1

θ

τ2
ψ

I2(ψ)

)
.

(3.4)

Argue as in the proof of Lemma 5.5.4 on pages 183-186 of Koul (2002)
to show that the following condition Eq. 3.5 implies Eq. 3.3.

η′Tψ

(
θ+n−1/2sη

)
is monotonic in s ∈ R, foreveryη ∈ R

q, ‖η‖ = 1, n≥1, a.s.
(3.5)

Least Absolute Deviation Estimator Let

T (ϑ) := n−1/2
∑

i

γ̇(ϑ, Zi)sgn
(
Yi − γ(ϑ, Zi)

)
, θ̂
ad := arginfϑ∈Θ

∥
∥T (ϑ)

∥∥2
.

The entity θ̂
ad is equivalent to the least absolute deviation (LAD) estimator.
Using the arguments similar to those used in the proof of Theorem 3.1, one
can verify that the following holds under the assumptions Eqs. 2.1, 2.2–
2.6, 3.3 and the assumption that K has density κ that is continuous in a
neighborhood of 0 and κ(0) > 0:

n1/2
(
θ̂
ad−θ

)
=− 1

2κ(0)
Σ−1

θ n1/2S+
γ (1, 0) + op(1) →D Nq

(
0, Σ−1

θ

/(
4κ2(0)

))
.
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Remark 3.1 Linear Model. Suppose q = p and h is a p-dimensional vec-
tor of real valued measurable functions defined on R

p. In Eq. 2.1, take
γ(ϑ, Z) ≡ ϑ′h(Z). Assume E

(
‖h(Z)‖2

)
< ∞ and that E

(
h(Z)h(Z)′) is

positive definite. Then, n−1/2 max1≤i≤n ‖h(Zi)‖ = op(1), γ̇i(t) ≡ γ̇i ≡ h(Zi)
and the assumptions Eqs. 2.2–2.6 are all trivially satisfied. Here,

R+
it =

∑

j

I
(
|ej − n−1/2t′h(Zj)| ≤ |ei − n−1/2t′h(Zi)|

)
, (3.6)

Tψ

(
θ + n−1/2t

)
:= n−1/2

∑

i

h(Zi)ϕ
(R+

it

n

)
sgn

(
ei − n−1/2t′h(Zi)

)
,

n1/2
(
θ̂ψ − θ) := arginft∈Rq

∥∥Tψ

(
θ + n−1/2t

)∥∥2
.

From van Eeden (1972), we deduce that η′Tψ(θ + n−1/2ηs) is monotonic
in s ∈ R, ∀ ‖η‖ = 1, ∀ψ ∈ Ωs, so that Eq. 3.5 is satisfied here and the
estimator θ̂ψ satisfies Eq. 3.4 with Σθ ≡ Σ = E

(
h(Z)h(Z)′).

4 Errors in Variables Linear Regression

In this section we use the above results to derive the limiting distributions
of a class of signed rank estimators of the regression parameter in an errors
in variables (EIVs) linear regression model and discuss their asymptotic
relative efficiencies compared to the bias corrected least square estimator.

Consider the EIVs linear regression model where the response Y , unob-
servable predictor X and its observable cohort Z obey the following relations
for some θ ∈ R

p.

Y = θ′X + ε, Z = X + U, X, ε, U mutually independent and E(U) = 0.

The importance of this model in environmental, health and social sciences
is well illustrated in the monographs of Carroll et al. (2006), Cheng and Van
Ness (1999), Fuller (1987) and Yi (2017).

Here we shall additionally assume that E
(
‖X‖2 + ‖U‖2

)
< ∞ and the

distributions of X and U are known. In the absence of any additional infor-
mation, for model identifiability, one often assumes that some characteris-
tics of the distribution of U are known. Here, to illustrate the robustness of
signed rank estimators against large measurement error, we assume the full
knowledge of the distributions of X and U .

Then h(z) := z − E(U |Z = z), z ∈ R
p is a known function of z,

E(‖h(Z)‖2) < ∞, and the above model becomes the parametric regression
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model

Y = θ′h(Z) + e, e = ε − θ′V, V := U − E(U |Z). (4.1)

Let Yi, Xi, εi, Ui, 1 ≤ i ≤ n be iid copies of Y, X, ε, U obeying the model Eq.
4.1.

Let F denote the d.f. of ε and assume the following:

F is symmetric around 0 and has uniformly continuous density f, f > 0a.e.
(4.2)

V is independent of Z and , with H denoting the d.f. of V, (4.3)
dH(−v) = −dH(v), ∀ v ∈ R

p, i.e., V is symmetric around the origin.

Note that we do not assume the finiteness of any moment of ε.
Let K, κ denote the d.f. and density of the e of Eq. 4.1, respectively. By

the independence of ε and V and by Eqs. 4.2 and 4.3,

K(x) ≡
∫

F (x + θ′v)dH(v) is symmetric around 0 and κ(x) ≡
∫

f(x + θ′v)dH(v). (4.4)

The EIVs model Eq. 4.1 with the above assumptions is an example of the
linear regression model of Remark 3.1. And by Eq. 3.1, the corresponding
signed rank statistics Tψ of Eq. 3.6 satisfy E

(
Tψ(θ)

)
= 0. Hence, unlike the

R estimators studied in Koul (2022) or the least squares estimator, there is
no need to do any bias correction for defining the signed rank estimators θ̂ψ

in the above EIV’s model. Thus, Eq. 3.4 holds for this θ̂ψ with Σθ ≡ Σ :=
E

{(
Z − E(U |Z)

)(
Z − E(U |Z)

)′}.
Example 4.1 We shall discuss an example of linear EIV regression model
where the distributions of X, ε, U are such that the assumption Eq. 4.3 of
the independence between Z and V is satisfied. We shall also show that in
this case, if the regression errors are Gaussian then the asymptotic relative
efficiency (ARE) of a class of signed rank estimators relative to the bias cor-
rected least squares (BCLS) estimator tends to infinity as the measurement
error variance tends to infinity, monotonically in some cases.

Suppose p = 1, X ∼D N (μX , σ2
X), U ∼D N (0, σ2

U ), with μX , σ2
X > 0 and

σ2
U ≥ 0 known, and X and U are independent r.v.’s. Then μZ := E(Z) = μX ,
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Z = X + U ∼D N (μX , σ2
X + σ2

U ), Cov(Z, U) = σ2
U so that

(Z
U

)
∼D N2

((μZ

0

)
,
(σ2

X + σ2
U σ2

U

σ2
U σ2

U

))
.

Let r2 := σ2
U/(σ2

X +σ2
U ). The conditional distribution of U , given Z = z,

is N ((z − μZ)r2, r2σ2
X). Hence, E(U |Z = z) = (z − μZ)r2 and h(z) =

z−E(U |Z = z) = z−r2(z−μZ). For any z ∈ R, the conditional distribution
of V = U − E(U |Z = z) = U − (z − μZ)r2, given Z = z, is N (0, r2σ2

X),
which does not depend on z, so that V is independent of Z and symmetrically
distributed around zero. Hence, e = ε − θ′V is also independent of Z. Its
density is κ(x) =

∫
f(x + θv)dΦ

(
v/rσX

)
, where Φ is the d.f. of a N (0, 1)

r.v. Moreover, because 0 ≤ r2 < 1 and σ2
X > 0,

Σ = σ2
h := Eh2(Z) = (1 − r2)2(σ2

X + σ2
U ) + μ2

Z ≥ (1 − r2)2(σ2
X + σ2

U ) > 0.

To summarize: Suppose F satisfied Eq. 4.2 and (X, U) satisfy the above
normality assumption. Then, 0 < σ2

h := Eh2(Z) < ∞ and n1/2
(
θ̂ψ − θ

)
→D

N
(
0, τ2

ψ

/(
σ2

hI2(ψ)
))

.

Now suppose further that F (y) ≡ Φ(y/σε), for some σε > 0. Let w2 :=
σ2

ε + θ2r2σ2
X . Then, e = ε − θV ∼D N (0, w2), i.e., K(x) ≡ Φ(x/w).

Take ψ(u) ≡ 2u − 1 and write θ̂I for the corresponding θ̂ψ. Then, τ2
ψ =

∫ 1
0
(2u − 1)2du = 1/3 and I(ψ) = 1/w

√
π, τ2

ψ/I2(ψ) = πw2/3.
Next, consider the BCLS estimator of θ defined as follows. For any set of

bivariate r.v.’s (ξi, ζi), 1 ≤ i ≤ n, let ξ̄ := n−1
∑

i ξi and Sξζ := n−1
∑

i(ξi −
ξ̄)(ζi − ζ̄). Then, θ̂bcls := SZY

/(
SZZ − σ2

u

)
, θ̂bcls − θ =

(
SZY − θSZZ +

θσ2
U

)/(
SZZ − σ2

u

)
.

Theorem 2.2.1 (page 108) of Fuller (1987) applied with p = 1 yields that
n1/2

(
θ̂bcls − θ

)
→D N (0, σ2

bc
s), where

σ2
bc
s :=

w2(σ2
X + σ2

U ) + 2θ2σ4
U

σ4
X

.

Therefore,

ARE(θ̂I , θ̂bc
s) =
3
π

σ2
hσ2

bc
s

w2
.
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Use r2 = σ2
U/(σ2

X +σ2
U ) to rewrite σ2

h = (1−r2)2(σ2
X +σ2

U )+μ2
Z =

(
σ4

X

σ2
X+σ2

U

+

μ2
Z

)
and

σ2
hσ2

bc
s

w2
=

{ σ4
X

(σ2
X + σ2

U )
+ μ2

Z

}{σ2
X + σ2

U

σ4
X

+ 2θ2
σ4

U

σ4
Xw2

}

= 1 + 2θ2
σ4

U

(σ2
X + σ2

U )w2
+ μ2

Z

{σ2
X + σ2

U

σ4
X

+ 2θ2
σ4

U

σ4
Xw2

}
.

Use w2 = σ2
ε + θ2{σ2

U/(σ2
X + σ2

U )}σ2
X to rewrite

σ4
U

(σ2
X + σ2

U )w2
=

σ2
U

σ2
ε (σ2

X

σ2
U

+ 1) + θ2σ2
X

,
σ4

U

w2
=

σ2
U (σ2

X + σ2
U )

σ2
ε σ2

X

σ2
U

+ σ2
ε + θ2σ2

X

.

Both of these expressions are increasing in σ2
U . Both tend to 0 and ∞, as

σ2
U tends to 0 and ∞, monotonically and respectively. Moreover, (σ2

X +
σ2

U )/σ4
X → 1/σ2

X , ∞, as σ2
U → 0, ∞, monotonically and respectively. Hence,

using the fact μZ = μX ,

ARE(θ̂I , θ̂bc
s) =
3
π

σ2
hσ2

bc
s

w2

{
↓ 3μ2

X

πσ2
X

, as σ2
U ↓ 0,

↑ ∞, as σ2
U ↑ ∞.

Similarly, using the fact that here 4κ2(0) = 2/(πω2), we obtain that

ARE(θ̂
ad, θ̂bc
s) = 4κ2(0)σ2
hσ2

bc
s =
2
π

σ2
hσ2

bc
s

w2

{
↓ 2μ2

X

πσ2
X

, as σ2
U ↓ 0,

↑ ∞, as σ2
U ↑ ∞.

In other words, the estimators θ̂I , θ̂
ad are asymptotically far more effi-
cient, compared to the BCLS estimator, against the increasing measurement
error, at the above chosen Gaussian distributions of ε, X, U . One may say
that for the large samples, these signed rank estimators are robust against
the large measurement errors at the given Gaussian distributions, a highly
desirable property to have from a practical point of view.

Let Ω̇s := {ψ ∈ Ωs, ψ is differentiable having continuous derivative ψ̇

on [0, 1]}. Then, more generally, ARE(θ̂ψ, θ̂bc
s) → ∞, as σ2
U → ∞, for all
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ψ ∈ Ω̇s. To see this, rewrite

ARE
(
θ̂ψ, θ̂bc
s) =

σ2
bc
sσ

2
hI2(ψ)
τ2
ψ

.

Let φ denote the density of Φ and δ2 := σ2
ε + θ2σ2

X . Note that w2 = σ2
ε +

θ2σ2
Xσ2

U

/
(σ2

X +σ2
U ) → σ2

ε , δ2, as σ2
U → 0, ∞, respectively. This fact together

with the continuity of φ,Φ, ψ̇ and the Dominated Convergence Theorem
yield that

Iw(ψ) := I(ψ) =
1
w

∫ ∞

−∞
φ
( x

w

)
dψ

(
Φ

( x

w

))
=

1
w2

∫ ∞

−∞
φ2

( x

w

)
ψ̇

(
Φ

( x

w

))
dx

→ 0 < Iσ2
X
(ψ) < ∞, as σ2

U → 0,

→ 0 < Iδ2(ψ) < ∞, as σ2
U → ∞.

Moreover,

σ2
bc�sσ

2
h :=

w2(σ2
X + σ2

U ) + 2θ2σ4
U

σ4
X

[

(1 − r2)2(σ2
X + σ2

U ) + μ2
Z

]

→
⎧

⎨

⎩

μ2
X , as σ2

U → 0,

∞, as σ2
U → ∞.

Therefore, ARE
(
θ̂ψ, θ̂bc
s) → ∞, as σ2

U → ∞.
Of course an advantage of the BCLS estimator is that its definition needs

only σ2
U to be known and no other knowledge of the distributions of X and

U .
It is interesting to note that the ARE(θ̂I , θ̂
ad) is the same as in the case of

no measurement error, because ARE
(
θ̂I , θ̂
ad

)
=

(
πw2/2σ2

h

)/(
πw2/3σ2

h

)
=

3/2. More generally, for any ψ1, ψ2 ∈ Ω̇s,

ARE
(
θ̂ψ1 , θ̂ψ2

)
=

τ2
ψ2

I(ψ1)
τ2
ψ1

I(ψ2)
→

{
τ2
ψ2

Iσ2
X
(ψ1)

/
τ2
ψ1

Iσ2
X
(ψ2), as σ2

U → 0,

τ2
ψ2

Iδ2(ψ1)
/
τ2
ψ1

Iδ2(ψ2), as σ2
U → ∞.

We shall now describe the above ARE’s in the case p > 1 briefly. Let X, U
be independent random vectors with X ∼D Np(μX , ΣX), U ∼D Np(0, ΣU ),
where ΣX , ΣU are known p × p positive definite matrices. Then, Z = X +
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U ∼D Np(μZ , ΣX + ΣU ), Cov(Z, U) = ΣU and because μX = μZ ,

(Z, U) ∼D N2p

(
(μZ

0

)
,
(

ΣX + ΣU ΣU

ΣU ΣU

)
)

.

Hence, the conditional distribution of U , given Z = z, is

Np

(
ΣU (ΣX + ΣU )−1(z − μZ), ΣU − ΣU (ΣX + ΣU )−1ΣU

)
.

Let R := ΣU (ΣX+ΣU )−1. Then E(U |Z = z) = R(z−μZ) and the conditional
distribution of V = U − R(Z − μZ), given Z, is Np(0, ΣU − RΣU ), which
again does not depend on Z and hence V is independent of Z. Note that
ΣU − RΣU =

[
I − ΣU (ΣX + ΣU )−1

]
ΣU = ΣX(ΣX + ΣU )−1ΣU .

Moreover, with Zc := Z−μZ , E(ZcZ
′
c) = ΣX+ΣU , h(Z) = Z−E(U |Z) =

(I −R)Zc +μZ and Σ = E(h(Z)h(Z)′) = (I −R)(ΣX +ΣU )(I −R)′ +μZμ′
Z .

Since ε ∼ N (0, σ2
ε ), then ζ = ε − θ′V ∼ N

(
0, ω2

)
, where now ω2 := σ2

ε +
θ′ΣX(ΣX + ΣU )−1ΣUθ. Hence,

√
n(θ̂I − θ) →D N

(
0, (πω2/3)Σ−1

)
.

Here the BCLS estimator is θ̂bc
s = (Σ̂Z − ΣU )−1Σ̂Y Z ,where Σ̂Z :=
n−1

∑n
i=1(Zi − Z̄)(Zi − Z̄)′, Σ̂Y Z := n−1

∑n
i=1(Zi − Z̄)(Yi − Ȳ ). By The-

orem 2.2.1 (page 108) of Fuller (1987),
√

n(θ̃bc
s − θ) →D N (0, D), where
D = Σ−1

X α + Σ−1
X [ΣUα + ΣUθθ′ΣU ]Σ−1

X , α = σ2
ε + θ′ΣUθ.

Suppose θ̂j , j = 1, 2 are the two estimators of a p-dimensional param-
eter θ such that n1/2(θ̂j − θ) →D Np(0, Σj), j = 1, 2. Let |Σj | denote the
determinant of Σj , j = 1, 2. Suppose |Σj | �= 0, j = 1, 2. Then ARE(θ̂2, θ̂1) =
(|Σ1|/|Σ2|)1/p. See, e.g., Lehmann (1999). Using this definition, from the
above facts we readily obtain the following:

ARE(θ̃I , θ̃bc
s) = (3/(ω2π))1/p(|D|/|Σ−1|)1/p = (3/(ω2π))1/p
{

|D| × |Σ|
}1/p

.

Suppose ΣX and ΣU are diagonal matrices with all positive entries. One
can verify that as the diagonal elements of ΣU tend to infinity, α → ∞,
ω2 → σ2

ε + θ′ΣXθ > 0 and ARE(θ̃I , θ̃bc
s) → ∞.
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