
a
o

DOI: 10.1515/ms-2025-0016

Math. Slovaca 75 (2025), No. 1, 205–214

AN ELEMENTARY PROOF OF

THE GENERALIZED ITÔ FORMULA
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ABSTRACT. For one-dimensional semimartingales, the Itô formula can be extended from C2-func-

tions to C1-functions with a locally absolutely continuous derivative. We propose a new, different

proof of this result, which is simple, straightforward and quite elementary, avoiding in particular the

extensive theory of local times for semimartingales.
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1. Introduction

Let X be a real-valued continuous semimartingale and f ∈ C2(R). Then f(X) is again a
semimartingale and the Itô formula provides its explicit decomposition into a local martingale and
a continuous process of locally bounded variation. The assumption that f is twice continuously
differentiable can be relaxed, in particular, the Itô formula holds without any change for functions
f ∈ C1(R) with a locally absolutely continuous derivative, although the second derivative f ′′ is,
in general, defined only almost everywhere on R and is merely locally integrable. This result finds
traditionally its application in the proof of the Feller test for non-explosion without unnecessary
continuity hypotheses on the drift and diffusion coefficients; recently it has been applied e.g. in
the study of the stochastic Camassa-Holm equation (see Remark 1.3 below for a more detailed
discussion). Surprisingly, it seems difficult to find this version of the Itô formula explicitly stated:
we know only about the proof in the third printing of the second edition of Protter’s book [6] and
as an exercise it appears in the textbook [3]. In both cases, it is derived as a consequence of the
Meyer-Itô formula for δ-convex functions f , hence it depends on the rather heavy machinery of
local times for semimartingales. In this paper we propose a direct proof that presupposes only
a basic knowledge of stochastic analysis. (In Remark 1.2 below we provide a comparison of our
approach with the standard one.)

It is worth mentioning that the generalized Itô formula is established in [6] in a more general
setting of càdlàg (i.e., right-continuous with left-limits) semimartingales. We consider the general
result as well and discuss the minor (and easy) changes that must be done in our proof.
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Let us fix some notation. By B we denote the Borel σ-algebra on R and by λ the Lebesgue
measure on B. Let I ⊆ R be an open interval, we set

AC1(I) = {f ∈ C1(I); f ′ absolutely continuous on Ī },
AC1

loc(R) = {f ∈ C1(R); f ∈ AC1(I) for any bounded open interval I ⊆ R}.

Recall that if f ∈ AC1
loc(R) then the second derivative f ′′(s) exists at almost every point s ∈ R,

f ′′ ∈ L1
loc(R) and f ′ is an absolutely continuous antiderivative of f ′′.

If f : I −→ R is a continuous nondecreasing function, we shall occasionally denote by µf the
Borel measure on I whose distribution function is f . By R⊗ Rn we denote the space of all 1× n
matrices over R.

We aim at proving the following generalized Itô formula.

Proposition 1.1. Let X be a real-valued continuous semimartingale defined on a stochastic basis
(Ω,F , (Ft),P ) with a normal filtration. Let f ∈ AC1

loc(R) and let g : R −→ R be a Borel function
satisfying g = f ′′ λ-almost everywhere on R. Then

f(Xt)− f(X0) =

t∫
0

f ′(Xs) dXs +
1

2

t∫
0

g(Xs) d〈X〉s (1.1)

for any t ≥ 0 P -almost surely.

In the course of the proof, we check that the second term on the right-hand side of (1.1) is well
defined; this fact deserves being stated as a separate corollary.

Corollary 1.2. Let X be a real-valued continuous semimartingale defined on a stochastic basis
(Ω,F , (Ft),P ) with a normal filtration. Then

P


t∫

0

|h(Xs)|d〈X〉s <∞ for any t ≥ 0

 = 1 (1.2)

whenever h ∈ L1
loc(R).

In particular, if W is a one-dimensional Wiener process, then

P


t∫

0

h(Ws) ds <∞ for any t ≥ 0

 = 1

for all nonnegative locally integrable Borel functions h : R −→ R+, thus, as a byproduct, we get
one implication in the Engelbert-Schmidt 0-1 law (see, e.g., [3: Proposition 3.6.27]).

Finally, let us turn to the extension of Proposition 1.1 to càdlàg semimartingales.

Proposition 1.3. Let X be a real-valued càdlàg semimartingale defined on a stochastic basis
(Ω,F , (Ft),P ) with a normal filtration. Let f ∈ AC1

loc(R) and let g : R −→ R be a Borel function
satisfying g = f ′′ λ-almost everywhere on R. Then

f(Xt)− f(X0) =

t∫
0

f ′(Xs−) dXs +
1

2

t∫
0

g(Xs−) d[X]cs +
∑
s∈(0,t]

[
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

]
(1.3)

for any t ≥ 0 P -almost surely.
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Recall that by [X]c the continuous part of the quadratic variation [X] of the semimartingale X
is denoted and ∆Xs = Xs −Xs−. Again, as a consequence of Proposition 1.3, we get that for any
real-valued càdlàg semimartingale X and h ∈ AC1

loc(R), the sum∑
s∈(0,t]

[
h(Xs)− h(Xs−)− h′(Xs−)∆Xs

]
converges absolutely.

Remark 1.1.

(i) Clearly, f ′ is an antiderivative of g.

(ii) Let X = X0 + A + M be the canonical decomposition of the semimartingale X into a
continuous process A of a locally bounded variation and a continuous local martingale M ,
A0 = M0 = 0. Then 〈X〉 = 〈M〉 and, by definition,

·∫
0

f ′(Xs) dXs =

·∫
0

f ′(Xs) dAs +

·∫
0

f ′(Xs) dMs.

Both integrals on the right-hand side are well defined. Indeed, let ω ∈ Ω be such that the
trajectories X(·, ω), A(·, ω) and 〈M〉(·, ω) are continuous and A(·, ω) has bounded variation

on [0, t]. Denote by Ã(u, ω) the variation of A(·, ω) on the interval [0, u], u ≥ 0. The set
L = {X(s, ω); 0 ≤ s ≤ t} is compact, f ′ is continuous, in particular locally bounded, so
f ′ ◦X(·, ω) is bounded on [0, t] and

t∫
0

|f ′(Xs(ω))|dÃs(ω) +

t∫
0

|f ′(Xs(ω))|2 d〈M〉s(ω) <∞.

This is, of course, well known, however, we shall use this argument so often that we decided
to state it explicitly. (See e.g. [3: § 3.2] or [6: Chapter II] for the very basic facts about
stochastic integrals we use in this paper.)

(iii) Proceeding in a completely analogous manner we can check that (1.2) is satisfied whenever h
is, in addition, locally bounded. Hence Corollary 1.2 is non-trivial only for functions h which
are locally integrable but not locally bounded.

(iv) Let N ∈ B, λ(N) = 0. Using Proposition 1.1 with the choice f = 0, g = 1N , we arrive at

t∫
0

1N (Xs) d〈X〉s = 0 P -almost surely, (1.4)

in particular,

P
{
ω ∈ Ω; (1N ◦X)(·, ω) = 0 µ〈X〉(ω)-almost everywhere on [0, t]

}
= 1.

(v) Let g̃ : R −→ R be another Borel function satisfying g̃ = f ′′ λ-almost everywhere on R. Set
M = {g̃ 6= g}, then λ(M) = 0 and by (1.4) we know that (g̃1M ) ◦ X = 0 µ〈X〉-almost
everywhere on [0, t] P -almost surely, whence

t∫
0

|g̃(Xs)|d〈X〉s ≤
t∫

0

|(g̃1R\M )(Xs)| d〈X〉s +

t∫
0

|(g̃1M )(Xs)|d〈X〉s ≤
t∫

0

|g(Xs)| d〈X〉s <∞
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P -almost surely; similarly we obtain

t∫
0

g̃(Xs) d〈X〉s =

t∫
0

g(Xs) d〈X〉s P -almost surely.

Therefore, in Proposition 1.1 we may replace g with g̃. In other words, Proposition 1.1 does
not depend on a particular choice of a Borel function g as far as g satisfies g = f ′′ λ-almost
everywhere on R.

(vi) The assumption f ∈ AC1
loc(R) is satisfied if f belongs to the Sobolev space W 2,∞

loc (R) or,
more generally, if the function f ∈ C1(R) has a locally Lipschitz continuous derivative.

(vii) Suppose that the assumptions of Proposition 1.1 are satisfied and, moreover, X is an Itô
process. That is, there exist an n-dimensional (Ft)-Wiener process W and (Ft)-progressively
measurable processes a and σ such that a ∈ L1

loc(R+), σ ∈ L2
loc(R+;R⊗Rn) P -almost surely

and

X = X0 +

·∫
0

a(s) ds+

·∫
0

σ(s) dWs P -almost surely.

Then

f(Xt) = f(X0) =

t∫
0

{
f ′(Xs)a(s) +

1

2
g(Xs)‖σ(s)‖2

}
ds+

t∫
0

f ′(Xs)σ(s) dWs (1.5)

P -almost surely.

(viii) Another generalized Itô formula for Itô processes was proposed by N. V. Krylov, see [4:
§ II.10]. It is a very useful result which holds for Rd-valued processes as well. However, for
d = 1 it is weaker than Proposition 1.1 in the form (1.5) as, roughly speaking, one has to
assume also that f ′′ ∈ L2

loc(R) and, P -almost surely, a and ‖σ‖ are bounded and ‖σ‖2 > 0
on [0, t].

Remark 1.2. Let us compare briefly our proof of Proposition 1.1 with the standard one (see
[6: Theorem IV.71] or [3: Problem 3.7.3 and a hint on p. 236]). If f ∈ AC1

loc(R), then f is δ-
convex and the Radon measure f ′′λ is its second derivative in the sense of distributions. Let
g be as in Proposition 1.1 and X a continuous (real-valued) semimartingale, let us denote by
L(X) = (Las(X), a ∈ R, s ≥ 0) its local time. By the Meyer-Itô formula

f(Xt)− f(X0) =

t∫
0

f ′(Xs) dXs +
1

2

∞∫
−∞

Lat (X)g(a) da (1.6)

P -almost surely. Properties of the local time L(X) imply

∞∫
−∞

g(a)Lat (X) da =

t∫
0

g(Xs) d〈X〉s (1.7)

by [6: Corollary 1 to Theorem IV.70] or [3: Theorem 3.7.1(iv)]. Applying (1.7) we see that (1.6)
implies (1.1). (Note that (1.7) is proved in [6] only for bounded functions g; in [3], the equality
(1.7) is stated for nonnegative functions g but no argument why the integrals are finite is provided.
However, it is easy to fill the gaps once we take into account that L•t (X) has a compact support
P -almost surely).
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The proof of the Meyer-Itô formula, however, is much less elementary than the direct proof of
Proposition 1.1 we propose in this paper.

Remark 1.3.

(a) In our view, a basic application of Proposition 1.1 is in Feller’s theory of one-dimensional
diffusions when an approach via stochastic differential equations is adopted (see e.g. [3:
§ 5.5C] for a brief introduction to the topic). There one needs to apply the Itô formula to
(Carathéodory) solutions of ordinary differential equations Lu = 0, Lu = ±1 and Lu = u
(with suitable initial or boundary conditions) where L is the Kolmogorov operator associated
with a stochastic differential equation

dX = b(X) dX + σ(X) dW

and b, σ : R −→ R are Borel functions such that

1 + |b|
σ2

∈ L1
loc(R).

These solutions are in AC1
loc(R) but they belong to C2(R) only under an additional assump-

tion that b, σ ∈ C(R) and σ2 > 0 on R. This can be seen easily if explicit solutions are
available as in the case of the scale function p solving Lp = 0, since

p : z 7−→
z∫
a

exp
(
−

y∫
a

2b(r)

σ2(r)
dr
)

dy

for some a ∈ R.

(b) In the paper [1], the generalized Itô formula is applied many times to functions from the

space W 2,∞
loc (R), either to functions of the type x 7→ x(|x| + 1)α with α ∈ (0, 1) (see e.g. [1:

Proposition 3.2]), or to various cut-offs of unbounded smooth functions, see e.g. [1: formula
(4.1)] for a typical choice.

(c) Lyapunov function like Vp = | · |p with p < 2 are used in nonexplosion and stability criteria
for stochastic differential equations, see e.g. [2: §V.5] or [5: § 4.1]. If p ∈ (1, 2) then Vp ∈
AC1

loc(R) \ C2(R).

We shall provide a detailed proof of Proposition 1.1 and Corollary 1.2 in Section 2 and a sketch
of the proof of Proposition 1.3 in Section 3.

2. Proof of Proposition 1.1

P r o o f. Clearly, we may fix a t > 0.

Step 1. Let V : R −→ R be a locally bounded Borel function, we define

eV : R −→ R, s 7−→
s∫

0

V dλ, e2V = e(eV ).

(Henceforward, we use the convention
s∫
0

· · · dλ = −
0∫
s

· · · dλ for s < 0.) Obviously, eV is locally

absolutely continuous and e2V ∈ AC1
loc(R). Let us denote by I the set of all locally bounded
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Borel function V : R −→ R such that

e2V (Xt)− e2V (X0) =

t∫
0

eV (Xs) dXs +
1

2

t∫
0

V (Xs) d〈X〉s

P -almost surely. Plainly, I is a vector space and C(R) ⊆ I by the classical Itô formula.

Step 2. We claim: if Vn ∈ I , n ≥ 1,

sup
n≥1

sup
s∈L
|Vn(s)| <∞ for any compact set L ⊆ R, (2.1)

and V : R −→ R is a function such that V = lim
n→∞

Vn pointwise on R then V ∈ I . By the

dominated convergence theorem, which may be used owing to the assumption (2.1), we obtain

lim
n→∞

eVn(u) = eV (u) and lim
n→∞

e2Vn(u) = e2V (u) for all u ∈ R, (2.2)

moreover, a straightforward computation shows that

sup
n≥1

sup
s∈L
|eVn(s)| <∞ and sup

n≥1
sup
s∈L
|e2Vn(s)| <∞ for any compact set L ⊆ R. (2.3)

By (2.2)

lim
n→∞

[
e2Vn(Xt)− e2Vn(X0)

]
= e2V (Xt)− e2V (X0) P -almost surely,

and the dominated convergence theorem implies

lim
n→∞

t∫
0

eVn(Xs) dAs =

t∫
0

eV (Xs) dAs P -almost surely,

where we used (2.3) with the choice L = {X(u, ω); 0 ≤ u ≤ t} to get an integrable majorant.
Similarly,

lim
n→∞

t∫
0

∣∣eVn(Xs)− eV (Xs)
∣∣2 d〈M〉s = 0 P -almost surely,

whence

lim
n→∞

t∫
0

eVn(Xs) dMs =

t∫
0

eV (Xs) dMs in P -probability.

Finally, the same reasoning yields

lim
n→∞

t∫
0

Vn(Xs) d〈X〉s =

t∫
0

V (Xs) d〈X〉s P -almost surely

and our claim follows.

Step 3. Let U ⊆ R be an arbitrary open set, then there exist fn ∈ C(R) such that 0 ≤ fn ↗ 1U ,
thus 1U ∈ I by Step 2. Set A = {B ∈ B; 1B ∈ I }. To prove that A = B it suffices to show
that A is a Dynkin class as A contains the Euclidean topology which is a π-system. However, if
Γ,Λ ∈ A , Λ ⊇ Γ then Λ \ Γ ∈ A due to the linear structure of I , and if Γn ∈ A , Γn ↗ Γ , then
1Γ ∈ I by Step 2. Therefore, all simple Borel functions on R are in I and invoking Step 2 twice
we can check easily that all bounded Borel functions and then all locally bounded Borel functions
are in I .
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Step 4. Let f and g satisfy the hypotheses of Proposition 1.1. Then the functions gn = g1{|g|≤n},
n ≥ 1, are bounded, so we know from Step 3 that

e2gn(Xt)− e2gn(X0) =

t∫
0

egn(Xs) dXs +
1

2

t∫
0

gn(Xs) d〈X〉s (2.4)

P -almost surely. Plainly, we may assume that g ≥ 0, otherwise we would consider the nonnegative
and nonpositive parts of g separately. Since 0 ≤ gn ≤ g, a simple calculation shows that

|egn| ≤ |eg| and |e2gn| ≤ |e2g| on R. (2.5)

As g is locally integrable, the functions eg and e2g are continuous and (2.5) implies that

sup
n≥1

sup
s∈L
|egn(s)| ≤ sup

s∈L
|eg| <∞

and

sup
n≥1

sup
s∈L
|e2gn(s)| ≤ sup

s∈L
|e2g| <∞

for every compact set L ⊆ R, moreover,

lim
n→∞

egn(u) = eg(u) and lim
n→∞

e2gn(u) = e2g(u) for all u ∈ R (2.6)

by the dominated convergence theorem. Therefore, an argument analogous to that employed in
Step 2 shows that

lim
n→∞

[
e2gn(Xt)− e2gn(X0)

]
= e2g(Xt)− e2g(X0) P -almost surely

and

lim
n→∞

t∫
0

egn(Xs) dXs =

t∫
0

eg(Xs) dXs in P -probability.

Assume further that the estimate
t∫

0

|g(Xs)| d〈X〉s <∞ P -almost surely (2.7)

has been already established. Then we may use g as an integrable majorant to get

lim
n→∞

t∫
0

gn(Xs) d〈X〉s =

t∫
0

g(Xs) d〈X〉s P -almost surely,

hence passing to the limit n→∞ in (2.4) we arrive at

e2g(Xt)− e2g(X0) =

t∫
0

eg(Xs) dXs +
1

2

t∫
0

g(Xs) d〈X〉s

P -almost surely. However,

e2g : s 7−→ f(s)− f(0)− f ′(0)s,

therefore

f(Xs)− f ′(0)Xs − f(X0) + f ′(0)X0 =

t∫
0

{
f ′(Xs)− f ′(0)

}
dXs +

1

2

t∫
0

g(Xs) d〈X〉s

P -almost surely and (1.1) follows.
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It remains to check (2.7). Recall that we denoted by X = X0 +A+M the canonical decompo-

sition of X and by Ã the variation of the process A.

By the monotone convergence theorem,

lim
n→∞

t∫
0

gn(Xs) d〈X〉s =

t∫
0

g(Xs) d〈X〉s P -almost surely,

therefore, it suffices to prove that the sequence( t∫
0

gn(Xs) d〈X〉s

)∞
n=1

=

(
e2gn(Xt)− e2gn(X0)−

t∫
0

egn(Xs) dXs

)∞
n=1

P -almost surely has a bounded subsequence. By (2.5)∣∣e2gn(Xt)− e2gn(X0)
∣∣ ≤ |e2g(Xt)|+ |e2g(X0)|

and the sequence (e2gn(Xt)− e2gn(X0))∞n=1 is bounded P -almost surely. Further, we get∣∣∣ t∫
0

egn(Xs) dAs

∣∣∣ ≤ t∫
0

|egn(Xs)| dÃs

≤
t∫

0

|eg(Xs)|dÃs P -almost surely.

(2.8)

Finally, owing to (2.5), (2.6) and the dominated convergence theorem, we obtain

lim
n→∞

t∫
0

∣∣egn(Xs)− eg(Xs)
∣∣2 d〈M〉s = 0 P -almost surely,

consequently

lim
n→∞

t∫
0

egn(Xs) dMs =

t∫
0

eg(Xs) dMs in P -probability,

and there exists a subsequence (gnk
) such that

lim
k→∞

t∫
0

egnk
(Xs) dMs =

t∫
0

eg(Xs) dMs P -almost surely. (2.9)

Convergent sequences are bounded, so combining (2.8) and (2.9), we complete the proof. �

3. Proof of Proposition 1.3

P r o o f. We shall use the notation introduced in the proof of Proposition 1.1. By the usual Itô
formula,

e2V (Xt)− e2V (X0) =

t∫
0

eV (Xs−) dXs +
1

2

t∫
0

V (Xs−) d[X]cs + StV

212

 
 AUTHOR C

OPY 



GENERALIZED ITÔ FORMULA

with

StV =
∑

0<s≤t

[
e2V (Xs)− e2V (Xs−)− eV (Xs−)∆Xs

]
P -almost surely whenever V ∈ C(R). We have to show that exactly the same approximation
procedure as in the continuous case may be employed, i.e., that we can handle the additional
term StV using the same approximations. We may assume from the beginning of the proof that
g ≥ 0. Then, tracing the proof of Proposition 1.1, we can check easily that it suffices to consider
only nonnegative nondecreasing approximating sequences. Hence to check that Step 2 of the proof
remains valid, we have to prove that if Vn ∈ I , n ≥ 1, (2.1) is satisfied and 0 ≤ V1 ≤ V2 ≤ · · · ↗ V
pointwise on R, then

lim
n→∞

StVn = StV P -almost surely. (3.1)

Note that if h ∈ AC1
loc(R) with h′′ ≥ 0 λ-almost everywhere on R, then a straightforward calcula-

tion shows that

h(x)− h(y)− h′(y)(x− y) =

x∫
y

z∫
y

h′′(r) dr dz ≥ 0 for all x, y ∈ R. (3.2)

Therefore, if h1, h2 ∈ AC1
loc(R) and 0 ≤ h′′1 ≤ h′′2 λ-almost everywhere on R, then

h2(x)− h2(y)− h′2(y)(x− y) ≥ h1(x)− h1(y)− h′1(y)(x− y) for all x, y ∈ R

by (3.2). Consequently, 0 ≤ StV1 ≤ StV2 ≤ · · · and (3.1) follows by the monotone convergence
theorem. Once Step 2 is established, Step 3 and the first part of Step 4 require no essential changes.
To complete the proof of (1.3) it remains to show that the sequence (Stgn)∞n=1 P -almost surely
has a bounded subsequence, where gn = g1{g≤n}, n ≥ 1. However,( t∫

0

gn(Xs−) d[X]cs + Stgn

)∞
n=1

=

(
e2gn(Xt)− e2gn(X0)−

t∫
0

egn(Xs−) dXs

)∞
n=1

,

the sequence on the left-hand side consists of sums of two nonnegative terms and P -almost sure
existence of a bounded subsequence of the sequence on the the right-hand side may be justified as
in the proof of Proposition 1.1. �
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