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AN ELEMENTARY PROOF OF
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ABSTRACT. For one-dimensional semimartingales, the It6 formula can be extended from C2-func-
tions to Cl-functions with a locally absolutely continuous derivative. We propose a new, different
proof of this result, which is simple, straightforward and quite elementary, avoiding in particular the
extensive theory of local times for semimartingales.
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1. Introduction

Let X be a real-valued continuous semimartingale and f € C?(R). Then f(X) is again a
semimartingale and the It6 formula provides its explicit decomposition into a local martingale and
a continuous process of locally bounded variation. The assumption that f is twice continuously
differentiable can be relaxed, in particular, the It6 formula holds without any change for functions
f € CY(R) with a locally absolutely continuous derivative, although the second derivative f” is,
in general, defined only almost everywhere on R and is merely locally integrable. This result finds
traditionally its application in the proof of the Feller test for non-explosion without unnecessary
continuity hypotheses on the drift and diffusion coefficients; recently it has been applied e.g. in
the study of the stochastic Camassa-Holm equation (see Remark below for a more detailed
discussion). Surprisingly, it seems difficult to find this version of the It6 formula explicitly stated:
we know only about the proof in the third printing of the second edition of Protter’s book [6] and
as an exercise it appears in the textbook [3]. In both cases, it is derived as a consequence of the
Meyer-I1t6 formula for d-convex functions f, hence it depends on the rather heavy machinery of
local times for semimartingales. In this paper we propose a direct proof that presupposes only
a basic knowledge of stochastic analysis. (In Remark below we provide a comparison of our
approach with the standard one.)

It is worth mentioning that the generalized It6 formula is established in [6] in a more general
setting of cadlag (i.e., right-continuous with left-limits) semimartingales. We consider the general
result as well and discuss the minor (and easy) changes that must be done in our proof.
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Let us fix some notation. By % we denote the Borel o-algebra on R and by A the Lebesgue
measure on . Let I C R be an open interval, we set

ACH(I) = {f € C*(I); f" absolutely continuous on I},
ACL (R) = {f € CY(R); f € AC*(I) for any bounded open interval I C R}.
Recall that if f € ACL_(R) then the second derivative f”(s) exists at almost every point s € R,
f" € LL (R) and f’ is an absolutely continuous antiderivative of f”'.
If f: I — R is a continuous nondecreasing function, we shall occasionally denote by ps the

Borel measure on I whose distribution function is f. By R ® R™ we denote the space of all 1 x n
matrices over R.

loc

We aim at proving the following generalized It6 formula.

PROPOSITION 1.1. Let X be a real-valued continuous semimartingale defined on a stochastic basis
(2,7, (F:), P) with a normal filtration. Let f € ACL_(R) and let g: R — R be a Borel function
satisfying g = f"” A-almost everywhere on R. Then

f(Xe) — f(Xo) :/f’ )dX, +2/g(XS)d<X>S (1.1)
0 0

for any t > 0 P-almost surely.

In the course of the proof, we check that the second term on the right-hand side of (1.1]) is well
defined; this fact deserves being stated as a separate corollary.

COROLLARY 1.2. Let X be a real-valued continuous semimartingale defined on a stochastic basis
(2, F,(%#), P) with a normal filtration. Then

/|h/(Xs)| d(X)s <oo foranyt>0p =1 (1.2)

whenever h € L{ _(R).

In particular, if W is a one-dimensional Wiener process, then
¢
P /h(Ws)ds<oo foranyt >0, =1
0
for all nonnegative locally integrable Borel functions h: R — R, thus, as a byproduct, we get
one implication in the Engelbert-Schmidt 0-1 law (see, e.g., |3t Proposition 3.6.27]).
Finally, let us turn to the extension of Proposition to cadlag semimartingales.

PROPOSITION 1.3. Let X be a real-valued cadlag semimartingale defined on a stochastic basis
(2, F,(F:), P) with a normal filtration. Let f € ACL_(R) and let g: R — R be a Borel function
satisfying g = f"” A-almost everywhere on R. Then
1 / ,
FX0) ~ £(X0) / PO AX 5 [ AN+ Y [F06) - f(X) - F(Xe)AX]
0 s5€(0,t]

(1.3)

for any t > 0 P-almost surely.
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Recall that by [X]¢ the continuous part of the quadratic variation [X] of the semimartingale X
is denoted and AX; = Xs — X,_. Again, as a consequence of Proposition we get that for any

real-valued cadlag semimartingale X and h € ACL_(R), the sum

37 [h(Xs) — h(Xo) — W (X,2)AX,]
s€(0,t]

converges absolutely.

Remark 1.1.

(i) Clearly, f’ is an antiderivative of g.

(ii) Let X = Xo+ A 4+ M be the canonical decomposition of the semimartingale X into a
continuous process A of a locally bounded variation and a continuous local martingale M,
Ay = My =0. Then (X) = (M) and, by definition,

/f )dX, = /f dA+/f ) dM,.

Both integrals on the right-hand side are well defined. Indeed, let w € {2 be such that the
trajectories X (-, w), A(-,w) and (M)(-,w) are continuous and A(-,w) has bounded variation
n [0,¢]. Denote by A(u,w) the variation of A(-,w) on the interval [0,u], v > 0. The set
L = {X(s,w); 0 < s <t} is compact, f' is continuous, in particular locally bounded, so
f' o X (-,w) is bounded on [0, t] and
t t
J1reepladie) + [ 17X . < .
0 0

This is, of course, well known, however, we shall use this argument so often that we decided
to state it explicitly. (See e.g. [3: §3.2] or [6: Chapter II] for the very basic facts about
stochastic integrals we use in this paper.)

(iii) Proceeding in a completely analogous manner we can check that (|1.2)) is satisfied whenever h
is, in addition, locally bounded. Hence Corollary is non-trivial only for functions A which
are locally integrable but not locally bounded.

(iv) Let N € &, A\(N) = 0. Using Proposition with the choice f =0, g = 1y, we arrive at
t
/1N(Xs) d(X)s =0 P-almost surely, (1.4)
0

in particular,
P{we 2; (1o X)(-,w) =0 px)(w)-almost everywhere on [0,¢]} = 1.

(v) Let g: R — R be another Borel function satisfying § = f” A-almost everywhere on R. Set
M = {g # g}, then \(M) = 0 and by (1.4) we know that (§la/) o X = 0 p(x)-almost
everywhere on [0,¢] P-almost surely, whence

/\g( ) /|91R\M Old(x é+/|g1M >\d<>s/\g<xs>|d<x>s<oo
0 0 0 0
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P-almost surely; similarly we obtain

t t

/g(Xs) d(X)s Z/g(XS) d(X)s; P-almost surely.
0 0

Therefore, in Proposition we may replace g with g. In other words, Proposition does
not depend on a particular choice of a Borel function g as far as g satisfies g = f” A-almost
everywhere on R.

(vi) The assumption f € ACL_ (R) is satisfied if f belongs to the Sobolev space W2>*(R) or,

loc
more generally, if the function f € C'(R) has a locally Lipschitz continuous derivative.
(vil) Suppose that the assumptions of Proposition are satisfied and, moreover, X is an Ito
process. That is, there exist an n-dimensional (.%;)-Wiener process W and (.%;)-progressively
measurable processes a and o such that a € L] (R;), o0 € L (Ry;R®R") P-almost surely

and
X=Xo+ /a(s) ds + /U(s) dW,s P-almost surely.
0 0
Then
t t
£ = 1X0) = [{F(Xa) + Go(Xlos)|P}ds+ [ FXolaw.  (15)
0 0

P-almost surely.

(viii) Another generalized Itd6 formula for Itd processes was proposed by N.V. Krylov, see |4}
§11.10]. It is a very useful result which holds for R%valued processes as well. However, for
d = 1 it is weaker than Proposition in the form as, roughly speaking, one has to
assume also that " € L (R) and, P-almost surely, a and ||o|| are bounded and ||o]|? > 0
on [0,¢].

Remark 1.2. Let us compare briefly our proof of Proposition with the standard one (see
|6t Theorem IV.71] or [3: Problem 3.7.3 and a hint on p. 236]). If f € ACL.(R), then f is -
convex and the Radon measure f”’) is its second derivative in the sense of distributions. Let
g be as in Proposition and X a continuous (real-valued) semimartingale, let us denote by
L(X) = (L%X), a € R,s > 0) its local time. By the Meyer-It6 formula

F(X0) — F(Xo) = /f DX+ 5 [ Ligla)da (1.6)
P-almost surely. Properties of the local time L(X) imply
00 t
[ st@ricde= [gix)ax). (17)
—o00 0

by [6: Corollary 1 to Theorem IV.70] or [3: Theorem 3.7.1(iv)]. Applying we see that
implies (1.1)). (Note that is proved in [6] only for bounded functions g; in [3], the equality
is stated for nonnegative functions g but no argument why the integrals are finite is provided.
However, it is easy to fill the gaps once we take into account that L$(X) has a compact support
P-almost surely).
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The proof of the Meyer-It6 formula, however, is much less elementary than the direct proof of
Proposition [I.I] we propose in this paper.

Remark 1.3.

(a)

()

In our view, a basic application of Proposition is in Feller’s theory of one-dimensional
diffusions when an approach via stochastic differential equations is adopted (see e.g. |3t
§5.5C] for a brief introduction to the topic). There one needs to apply the It6 formula to
(Carathéodory) solutions of ordinary differential equations Lu = 0, Lu = +1 and Lu = u
(with suitable initial or boundary conditions) where L is the Kolmogorov operator associated
with a stochastic differential equation

dX =b(X)dX + o(X)dW
and b,0: R — R are Borel functions such that

1+ ||
0-2

€ Lioe(R).

These solutions are in ACL (R) but they belong to C?(R) only under an additional assump-
tion that b,0 € C(R) and 0? > 0 on R. This can be seen easily if explicit solutions are
available as in the case of the scale function p solving Lp = 0, since

z y
Pz /exp(—/ ZS(T) dr) dy
a?(r)

a

for some a € R.

In the paper [1], the generalized It6 formula is applied many times to functions from the
space WIQO’COO(R), either to functions of the type z — z(|z| + 1)* with a € (0,1) (see e.g. |1
Proposition 3.2]), or to various cut-offs of unbounded smooth functions, see e.g. |1 formula
(4.1)] for a typical choice.

Lyapunov function like V,, = | - |P with p < 2 are used in nonexplosion and stability criteria
for stochastic differential equations, see e.g. [2: §V.5] or [5; §4.1]. If p € (1,2) then V], €
ACi(R)\ C2(R).

We shall provide a detailed proof of Proposition [I.I]and Corollary [1.2]in Section [2] and a sketch
of the proof of Proposition in Section [3}

2. Proof of Proposition (1.1

Proof. Clearly, we may fix a ¢t > 0.
Step 1. Let V: R — R be a locally bounded Borel function, we define

S
eV:R — R, s»—>/Vd/\, eaV =e(eV).
0

s 0
(Henceforward, we use the convention [---d\ = — [ -+ dA for s < 0.) Obviously, ¢V is locally
S

0 ‘s
absolutely continuous and eV € ACL _(R). Let us denote by .# the set of all locally bounded

loc
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Borel function V: R — R such that
¢ ) t
eV (X)) — eV (Xo) = /eV(XS) aX, + 5 / V(X,)d(X),
0 0

P-almost surely. Plainly, .# is a vector space and C(R) C .# by the classical It6 formula.
Step 2. We claim: if V,, € &, n > 1,

sup sup |V,,(s)] < oo for any compact set L C R, (2.1)
n>1 selL

and V: R — R is a function such that V = lim V,, pointwise on R then V € .#. By the
n—oo

dominated convergence theorem, which may be used owing to the assumption (2.1, we obtain

lim eV, (u) =eV(u) and lim eV, (u) = eV (u) for all u € R, (2.2)
n—oo n—oo
moreover, a straightforward computation shows that
sup sup eV, (s)] < oo and supsup eV, (s)| < oo for any compact set L C R. (2.3)
n>1 seL n>1 selL

By (2.2)
ILm [egVn(Xt) - BQVn(Xo):| = eV (X¢) — eV (Xp) P-almost surely,

and the dominated convergence theorem implies

t t

lim [ eV, (X,)dAs = / eV (Xs)dAs P-almost surely,

n—o00
0 0

where we used ([2.3)) with the choice L = {X(u,w); 0 < u < t} to get an integrable majorant.
Similarly,

n—oo

t
lim /|eVn(X5) — eV(XS)’2 d(M)s =0 P-almost surely,
0

whence
t t

le eV, (Xs)dM, = /eV(XS) dM, in P-probability.
0 0
Finally, the same reasoning yields

t t

lim | Vo (X,)d(X)s = /V(XS) d(X)s P-almost surely

n—00
0 0

and our claim follows.

Step 3. Let U C R be an arbitrary open set, then there exist f,, € C(R) such that 0 < f,, 1y,
thus 1y € .# by Step 2. Set & = {B € #; 15 € #}. To prove that & = £ it suffices to show
that 7 is a Dynkin class as &/ contains the Euclidean topology which is a m-system. However, if
I'N'Ae o/, ADT then A\ I € & due to the linear structure of ., and if I, € o/, I, /I, then
1, € .# by Step 2. Therefore, all simple Borel functions on R are in .# and invoking Step 2 twice
we can check easily that all bounded Borel functions and then all locally bounded Borel functions
are in .#.

210



GENERALIZED 1ITO FORMULA

Step 4. Let f and g satisfy the hypotheses of Proposition Then the functions g, = gl{4/<n},
n > 1, are bounded, so we know from Step 3 that
t t

1
6290 (X0) — €290 X0) = [ eu (X)X, + 5 [ 0alX) A1), (24)
0 0
P-almost surely. Plainly, we may assume that g > 0, otherwise we would consider the nonnegative

and nonpositive parts of g separately. Since 0 < g,, < g, a simple calculation shows that
legn| < leg| and [ezgn| < le2g] onR. (2.5)
As g is locally integrable, the functions eg and esg are continuous and implies that
sup sup |eg,(s)| < sup |eg|] < oo
n>1 sel s€L
and

sup sup |eagn(s)| < sup [eag| < oo
n>1 seL seL

for every compact set L C R, moreover,
lim eg,(u) =eg(u) and lim epg,(u) =eog(u) forallueR (2.6)
n—oo n—oo

by the dominated convergence theorem. Therefore, an argument analogous to that employed in
Step 2 shows that

lim {ezgn(Xt) = eggn(Xo)} = e29(Xy) — e29(Xo) P-almost surely

n—oo

and
t t

lim [ eg,(X,)dX, = /eg(XS) dX, in P-probability.
n o0
0 0

Assume further that the estimate
t
/|g(XS)\ d(X)s < oo P-almost surely (2.7)
0

has been already established. Then we may use g as an integrable majorant to get
t t

lim [ g,(X,)d(X)s = /g(XS) d(X)s P-almost surely,
n—oo

0 0
hence passing to the limit n — oo in (2.4]) we arrive at

t t
1

29 (X0) = e29(Xo) = [sg(X) X, + 5 [ g(X)a(x).

0 0
P-almost surely. However,

e2g: s — f(s) = f(0) — f'(0)s,

therefore
FOX) = 10X, = (o) + FOX0 = [{7/(X) = FO}aX.+ 5 [ g(xX) ().

P-almost surely and (|1.1)) follows.
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It remains to check (2.7]). Recall that we denoted by X = Xq+ A+ M the canonical decompo-
sition of X and by A the variation of the process A.
By the monotone convergence theorem,

t t

lim [ g,(Xs)d(X), = /g(Xs)d<X>s P-almost surely,

n—00
0 0

therefore, it suffices to prove that the sequence

</gn(Xs) d<X>s> = <e29n(Xt) _QQQn(XO) _/egn(Xs) dXs)

0 n=1 0 n=1
P-almost surely has a bounded subsequence. By (2.5))
|e2gn (X¢) — e2gn(Xo)| < [e29(X1)| + |e2g(Xo)|

and the sequence (e2g,(Xt) — e29n(X0))52, is bounded P-almost surely. Further, we get

’/egn )dA, /\egn S| dA,

(2.8)
< / leg(X,)|dA, P-almost surely.
0
Finally, owing to (2.5)), (2.6) and the dominated convergence theorem, we obtain
lim /|egn(Xs) - eg(Xs)|2 d(M), =0 P-almost surely,
n—oo
consequently
¢ t
lim [ eg,(Xs)dMs = /eg(Xs) dM, in P-probability,
n—oo
0 0
and there exists a subsequence (gn, ) such that
klim egn, (Xs)dM, = / ¢g(X;)dM, P-almost surely. (2.9)
—>oo
Convergent sequences are bounded, so combining ([2.8)) and ([2.9), we complete the proof. ]

3. Proof of Proposition

Proof. We shall use the notation introduced in the proof of Proposition [[.I} By the usual It6
formula,

eV (X)) — &2V (Xo) = /eV(XS_)dXs + %/V(Xs_)d[X]§+6tV
0 0
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with
GV =) [eV(X,) - V(X ) -V (X, )AX,]
0<s<t

P-almost surely whenever V' € C(R). We have to show that exactly the same approximation
procedure as in the continuous case may be employed, i.e., that we can handle the additional
term &,V using the same approximations. We may assume from the beginning of the proof that
g > 0. Then, tracing the proof of Proposition we can check easily that it suffices to consider
only nonnegative nondecreasing approximating sequences. Hence to check that Step 2 of the proof
remains valid, we have to prove that if V,, € £, n > 1, issatisfiedand 0 < Vi < Vo <.-- AV
pointwise on R, then

lim &;V,, = &,V P-almost surely. (3.1)

n— oo

Note that if h € ACE

L (R) with A" > 0 A-almost everywhere on R, then a straightforward calcula-
tion shows that

h(z) — h(y) — b (y)(x —y) = //h"(r) drdz >0 forall z,y € R. (3.2)

Therefore, if hy, ho € ACL (R) and 0 < kY < hY A-almost everywhere on R, then

ha(2) = ha(y) — ha(y)(x —y) > hi(x) —hi(y) — hi(y)(z —y) forallz,y €R

by (3.2). Consequently, 0 < &;V; < &,V < --- and follows by the monotone convergence
theorem. Once Step 2 is established, Step 3 and the first part of Step 4 require no essential changes.
To complete the proof of it remains to show that the sequence (S:g,)%2 ; P-almost surely
has a bounded subsequence, where g, = gl{,<n}, n > 1. However,

(/gn(Xs—)d[X]g + Gtgn> = <e2gn(Xt) - eQQn(XO) - /egn(Xs—)dXs> ’

0 n=1 0 n=1

the sequence on the left-hand side consists of sums of two nonnegative terms and P-almost sure
existence of a bounded subsequence of the sequence on the the right-hand side may be justified as
in the proof of Proposition (1.1 O
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