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1. EXISTENCE OF SOLUTIONS OF QUASILINEAR
DELAYED PARABOLIC EQUATIONS

Partial differential equations with delays are a topic that
has not been so far sufficiently explored, see, e.g., Aibinu
et al. (2021); Kryspin and Mierczyński (2024); Lv et al.
(2019).

This contribution is focused at investigation of the ex-
istence of solutions and their stability for quasilinear
parabolic partial differential equations, i.e., for equations
of type

∂

∂t
u− div a(x, u,∇u, uτ ) + c(x, u, uτ ) = f(t, x) (1)

for t ∈ [0,∞), x ∈ Ω where N = 1, 2, 3, Ω ⊂ RN is a (fixed)
bounded domain with Lipschitz booundary and τ > 0 is
a fixed time delay and, finally, uτ (t, x) = u(t − τ, x). The
initial conditions are

u(t) = u0(t) ∈ L2(Ω), t ∈ [−τ, 0]

The main tools to prove existence of the solutions are
the weak formulation in suitable Sobolev spaces. For this
reason the following weak formulation is of importance:

⟨ ∂
∂t
u, v⟩ − ⟨a(x, u,∇u, uτ ),∇v⟩+ ⟨c(x, u, uτ ), v⟩ = ⟨f, v⟩

(2)
with v being a function from a suitable space of functions
defined on Ω (to be precised in the paper) and the ⟨., .⟩
is the generic symbol that denotes the duality pairing
between a space and its dual (which may be different in
each term).

Moreover, another tool to the existence of the solutions is
the Galerkin method, modified from the theory of nonlin-
ear parabolic equations without delay, see, e.g., Roubicek
(2013). This method, based on the weak formulation,
allows us to approximate the solution by the sequence
of ordinary differential equations with delay. First, let
there exist a sequence of k-dimensional Banach spaces
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Hk ⊂ H1
0 (Ω), k ∈ N such that for all k ∈ N holds

Hk ⊂ Hk+1 and ∪∞
k=1Hk is dense in H1

0 (Ω). The finite-
dimensional approximations of the function u, denoted by
uk, satisfying uk ∈ Hk, obey the equation

u̇k = Ak(uk, uk,τ ) + fk (3)

where uk is the k-dimensional finite-dimensional (in the
space domain) approximation of function u, Ak is the
approximation of the differential operator and fk is the
discretized right-hand side (constructed as a projection of
function f on the finite-dimensional space Hk).

Assume the functional Ak is Lipschitz continuous in the
first variable. Then, one can see that the solution of (3)
exists on the interval [0, τ ]. Continuing this procedure sub-
sequently on intervals [τ, 2τ ], [2τ, 3τ ],. . . yields conditions
guaranteeing existence of solutions on [0,∞).

Let I = [kτ, (k+1)τ ] for some k ∈ N. The Galerkin method
thus guarantees that

uk ⇀ u

in H1
0 (I,Ω) u is the solution of the original equation.

Hence, existence of a solution of the original quasilinear
parabolic equation with delays can be inferred from exis-
tence of the finite-dimensional solutions in Hk by a limit
k → ∞. Conditions guaranteeing correctness of this limit
passage will also be presented.

2. RAZUMIKHIN FUNCTIONAL

The second part of the contribution is devoted to investi-
gation of stability of the quasilinear parabolic equations.

To prove stability, a Razumikhin functional V : H1
0 →

[0,∞) for such equations is presented. This functional is
supposed to be everywhere Gateaux-differentiable, more-
over, V(0)=0.

Note that weak convergence of approximations uk(t) inH
1
0

implies a strong convergence in L2(Ω), hence, one can also
apply these approximations to the investigation of stability
of the function u. Namely, we can substitute the discrete
solutions uk into the functional V .



To facilitate the considerations, namely to apply the well-
known theory of Razumikhin functionals for ordinary
differential equations, one considers a discretized (in the
space domain) functional Vk defined on the k-dimensional
space in which the functions uk live. To be specific, the
functional Vk satisfies

Vk(v) = V (v) for all v ∈ Hk.

Let Π : H1
O → Hk be the projection from H1

0 on Hk. Then
we define Vk(v) = Vk(Π(v)).

To prove stability of the solution of the original equation,
one needs a sort of uniqueness with respect to k. Under
this assumption and the fact that the discretized (in space)
solutions converge to the solution of the original equation
strongly in L2(Ω) yields stability of the functions u.

Now, using the well-known Razumikhin theorem (Hale and
Verdyun-Lunel (1993); Fridman (2015) or others), one can
infer asymptotic stability of the discrete systems.

To be specific, we prove:

Theorem let ψ1, ψ2 : [0,∞) → [0,∞) be strictly in-
creasing continuous functions such that ψi(0) = 0, let
w : [0,∞) → [0,∞) be a nondecreasing function.

Assume ω > 1 and let the functionals Vk satisfy

ψ1(∥η∥) ≤ Vk(η) ≤ ψ2(∥η∥),
Vk(uk(t+ h)) ≤ ωVk(uk(t))∀h ∈ [−τ, 0]
⇒ V̇k(uk) < w(∥uk(t)∥)

then the solution u = 0 of the original equation with f = 0
is asymptotically stable.

3. INPUT-TO-STATE STABILITY

Finally, robustness issues will be tackled. Using standard
arguments from the (finite-dimensional) control theory,
we obtain input-to state stability of the approximations
according to the following formula:

∥uk∥2 ≤ βk(∥uk(0)∥, t) + γk(∥fk∥)
for some βk ∈ KL, γk ∈ K.

Thanks to uniformness of the estimate above, one can see
that there exist one par of functions β, γ : L2(Ω) → [0,∞)
so that

∥uk∥2 ≤ β(∥uk(0)∥, t) + γ(∥fk∥)

Under these conditions, one has

ψ1(∥η∥) ≤ V (η) ≤ψ2(η),

V̇ (u(t)) <− χ(∥ϕ(t)∥)
for some class-K functions ψi and χ. where the symbol
ϕ denotes the flow of the solution of the original partial
differential equation.

Thus, the quasilinear parabolic equation is Input-to-state
stable.

As already known, the interconnection of two ISS systems
is also ISS provided γ1(γ2(s)) < s for all s > 0 (equiv-
alently, γ2(γ1(s)) < s. This statement gives a condition
for the stability of the interconnection of two systems
described by quasilinear parabolic equations.

The contribution is augmented by practical numerically
solved examples demonstrating how the theoretical results
can be applied in practice.
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