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We propose a novel approach to enhance image demosaicking algorithms using implicit neural representations 
(INR). Our method employs a multi-layer perceptron to encode RGB images, combining original Bayer 
measurements with an initial estimate from existing demosaicking methods to achieve superior reconstructions. A 
key innovation is the integration of two loss functions: a Bayer loss for fidelity to sensor data and a complementary 
loss that regularizes reconstruction using interpolated data from the initial estimate. This combination, along with 
INR’s inherent ability to capture fine details, enables hig-fidelity reconstructions that incorporate information 
from both sources. Furthermore, we demonstrate that INR can effectively correct artifacts in state-of-the-art 
demosaicking methods when input data diverge from the training distribution, such as in cases of noise or blur. 
This adaptability highlights the transformative potential of INR-based demosaicking, offering a robust solution 
to this challenging problem.

1. Introduction

Digital camera sensors typically capture raw image data through a 
Color Filter Array (CFA), resulting in sub-sampled color information that 
requires reconstruction through a process known as demosaicking. Tra
ditional demosaicking algorithms, such as bilinear interpolation, Malvar 
[1], and Menon [2], offer computational efficiency but are prone to arti
facts like color Moiré, zippering, and false color patterns. These artifacts 
degrade image quality by introducing undesirable visual effects. Moiré 
patterns appear as repetitive interference patterns in areas with high
frequency textures. Zippering manifests as jagged edges along sharp 
transitions. False color patterns distort natural color representation, of
ten due to processing errors during demosaicking.

More advanced approaches have aimed to mitigate these issues by in
tegrating demosaicking with other image processing tasks. For instance, 
joint demosaicking and denoising or deblurring methods [3--8] employ 
model-based optimization techniques to achieve better reconstruction 
quality.

Recent advancements in deep learning have significantly enhanced 
the performance of demosaicking algorithms [9--15]. These techniques 
have set new benchmarks by leveraging Convolutional Neural Networks 
(CNNs) or Transformers to reduce artifacts and improve the fidelity 
of reconstructed images. However, these methods often struggle when 
faced with input data that diverge from their training distribution, such 
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as images affected by blur, common in both DSLR and mobile phone 
cameras (Fig. 1), even when the lens is in focus.

In response to these challenges, we propose a novel deep learning
based approach named INRID (Implicit Neural Representation for Image 
Demosaicking), which leverages Implicit Neural Representations (INR) 
[16] to enhance image reconstruction in both traditional and state-of
the-art demosaicking methods. By representing each individual image 
through the weights of a Multilayer Perceptron (MLP), our approach 
provides a more flexible and powerful reconstruction.

INRID reconstructs the image by adapting to the specific character
istics of two key inputs: the raw Bayer data and the initial demosaicked 
image from methods such as Malvar or Menon. A Bayer loss function 
enforces fidelity to the original raw sensor data, minimizing the mean 
squared error (MSE) between the reconstructed Bayer pattern and the 
raw measurements. Simultaneously, the complementary pixel values �- 
those missing in the Bayer pattern �- are reconstructed by aligning them 
with the initial estimate while ensuring consistency with the raw Bayer 
data. This combined process enables INRID to capture fine image de
tails and correct residual artifacts, that traditional methods often leave 
unaddressed.

For state-of-the-art deep learning methods, INRID extends beyond 
rfinement to address out-of-distribution scenarios, such as blurred or 
noisy inputs. By incorporating the forward degradation process—e.g., 
simulating blur or noise—directly into the optimization, INRID aligns 
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Fig. 1. Intrinsic camera blur (a combination of sensor blur and lens aberrations, 
present even when the lens is in focus): a) DSLR, b) mobile phone. These intrinsic 
blur kernels are about 7x7 pixels in size for 16 MPx images. Interpolation was 
used to magnify the blur kernels for visual presentation.

the reconstruction with both the degraded Bayer data and the initial 
estimate. This approach ensures robust adaptation to challenging con
ditions, recovering high-frequency details and reducing artifacts. As a 
result, INRID significantly enhances demosaicking performance, even 
when the input data diverge from the training distribution.

The rest of the paper is organized as follows: Section 2 reviews re
lated work. Section 3 describes the proposed methodology, including 
the inverse problem and definition of loss functions used for training. 
Section 4 presents experimental results that demonstrate our approach 
in enhancing existing methods. Section 5 discusses the limitations of our 
work and potential future directions for improvement. Finally, Section 6
offers concluding remarks.

2. Related work

2.1. Image demosaicking

Traditional demosaicking methods have predominantly relied on in
terpolation techniques, which, despite their computational efficiency, 
are prone to introducing artifacts, especially in regions with high
frequency content. Early methods, such as bilinear interpolation, pro
vided a simple yet effective approach for reconstructing missing color 
information [17]. The work by Malvar et al. [1] improved upon these 
techniques by introducing a gradient-corrected bilinear interpolation 
method, optimized using a Wiener filtering approach, which aimed to 
reduce the visibility of common artifacts. Menon et al. [2] further ad
vanced the field by incorporating directional filtering and a posteriori 
decision-making, which improved edge preservation and reduced color 
artifacts. However, these methods struggled with handling complex tex
tures and often produced noticeable artifacts, such as color Moiré pat
terns and zipper effects.

Optimization-based methods tackle demosaicking by formulating it 
as an inverse problem and integrating regularization terms to enhance 
reconstruction quality. For instance, the multiframe demosaicking and 
super-resolution method by Farsiu et al. [18] applies a maximum a pos
teriori (MAP) estimation framework. This approach effectively reduces 
artifacts and addresses degradations such as noise and blur, while re
quiring increased computational complexity compared to interpolation
based methods.

The advent of deep learning has led to significant advancements 
in demosaicking. One notable approach, commonly named DeepDemo
saick, is the method proposed by Kokkinos and Lefkimmiatis [10], which 
introduces a deep convolutional residual network designed to jointly 
perform demosaicking and denoising. This approach leverages a cas
cade of convolutional layers to model the underlying patterns in raw 
sensor data and predict a high-quality full-resolution RGB image. The 
network is inspired by optimization strategies from classical image reg
ularization methods and is trained end-to-end on a dataset of mosaicked 
and ground-truth images. This design enables the model to capture com

plex pixel-level dependencies, resulting in superior color reconstruction 
and reduced artifacts compared to previous methods.

Another state-of-the-art method, RSTCANet [11], currently a lead
ing method in the field, builds upon the Swin Transformer framework 
with the introduction of Residual Swin Transformer Channel Attention 
Blocks. This advanced design captures both spatial and channel-wise 
dependencies more effectively, thanks to its hierarchical structure and 
shifted windows, while the residual connections allow for deeper net
work architectures by mitigating the vanishing gradient problem. RST
CANet excels in preserving fine details and handling complex textures, 
delivering high-quality demosaicking results across various datasets.

These deep learning-based methods, including RSTCANet and Deep
Demosaick, are pre-trained on large datasets to learn a mapping from 
mosaiced inputs to full-color images. While effective on images similar 
to the training data, their reliance on pre-training limits their ability to 
generalize to out-of-distribution data, such as images with blur or noise 
not represented in the training set. Pre-trained models cannot easily 
adapt to variations not seen during training, which can lead to subopti
mal performance in challenging scenarios.

In contrast, our hybrid approach employs an INR that is optimized 
individually for each input image. Instead of relying on pre-trained 
weights, we solve an optimization problem over the network parame
ters specific to each image, rather than over pixel values as in traditional 
methods. This per-image optimization allows our model to adapt to the 
unique characteristics of each image, providing robustness to out-of
distribution data such as noisy or blurred images. By optimizing over 
network parameters, our method can capture fine image details and cor
rect artifacts more effectively.

2.2. Implicit neural representation

INRs have emerged as a powerful tool in computer vision, repre
senting images and 3D shapes continuously through fully connected 
feed-forward networks. Early work, such as DeepSDF [19], showcased 
the effectiveness of ReLU-based MLPs for shape representation.

For images, INR maps spatial coordinates to RGB values using an 
MLP, enabling continuous image representation, unlike conventional 
pixel grids. This approach allows high-quality reconstructions, even 
from sparse or incomplete data.

However, ReLU-based networks, while foundational, struggle to cap
ture fine details, particularly high-frequency information, due to their 
piecewise linear structure.

To address this limitation, Fourier feature mapping, also known as 
positional encoding, was introduced [20]. This technique involves map
ping the input spatial coordinates into a higher-dimensional space using 
sinusoidal functions, which helps the MLP capture finer details and im
proves the reconstruction quality. This approach was popularized by 
works such as NeRF (Neural Radiance Fields) [21], where it was used 
to represent 3D scenes with high fidelity.

Building on these advancements, SIREN (Sinusoidal Representation 
Networks) [22] was introduced, which replaced ReLU with sine activa
tion functions. SIRENs demonstrated the ability to model high-frequency 
details with greater precision, as sine functions naturally encode os
cillatory patterns that are prevalent in image data. This architecture 
significantly improved the performance of MLPs as image decoders, en
abling them to achieve state-of-the-art results in various tasks, including 
image superresolution and inpainting.

Recently, WIRE (Wavelet Implicit Representations) [23] has pushed 
the boundaries of INR even further by introducing wavelet-based ac
tivation functions. WIRE leverages the multi-resolution properties of 
wavelets, allowing the MLP to model both coarse and fine details si
multaneously.

INCODE [24] further advances INR by introducing a harmonizer net
work that dynamically adjusts the activation functions based on prior 
knowledge. This innovation allows INCODE to adaptively fine-tune key 
parameters like amplitude and frequency of sinusoidal activation func
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tions, enabling the MLP to better capture details and broader signal 
patterns.

Ramasinghe and Lucey [25] proposed additional activation functions 
such as Gaussian, Laplacian, and so-called Quadratic to broaden the 
family of INRs, offering alternatives for capturing fine details without 
relying on periodic functions.

However, for our demosaicking approach, SIREN and INCODE re
main particularly promising due to their sinusoidal activation functions, 
which are well-suited for interpolating missing data and capturing the 
complex signal patterns required in this problem.

2.3. Implicit neural representation for image demosaicking

In our previous work, Neural field-based Demosaicking (NERD) [26], 
we extended the application of INR to the domain of demosaicking. 
NERD introduced a method that combined ResNet [27] and U-Net [28] 
architectures to condition the MLP using high-resolution image features 
extracted from ground-truth images and their corresponding Bayer pat
terns. This approach demonstrated the potential of INR in handling the 
challenging task of demosaicking by leveraging the strengths of coordi
nate based neural networks.

Compared to NERD, the approach presented in this paper signifi
cantly reduces computational complexity by eliminating the encoder 
component while also leveraging the strengths of existing demosaicking 
methods. Rather than merely introducing a new demosaicking tech
nique, the proposed hybrid framework is designed to substantially en
hance reconstruction capabilities and improve the robustness of both 
traditional and state-of-the-art methods.

3. Problem formulation

In the context of digital image processing, the forward problem in
volves modeling the degradation process that occurs during image ac
quisition with a digital camera. This process encompasses blurring due 
to the camera optical system, subsampling caused by the CFA, com
monly implemented as a Bayer pattern, and noise introduced by the 
sensor. The forward model for Bayer measurement 𝑏 is expressed as:

𝑏 = 𝑆𝐵𝐻𝑢+ 𝑛𝐵 (1)

where 𝑢 ∈ ℝ𝑀 represents the vectorized form of the unknown high
resolution sharp image, 𝐻(⋅) ≡ ℎ ∗ ⋅ denotes the channel-dependent 
blurring operator, where ℎ is the Point Spread Function (PSF) estimated 
from calibration data and ∗ indicates convolution. 𝑛𝐵 ≈ (0, 𝜎2

𝐵
) rep

resents additive white Gaussian noise with zero mean and variance 𝜎2
𝐵

, 
and 𝑆𝐵 is the down-sampling operator corresponding to the Bayer pat
tern (e.g. RGGB), resulting in the observed mosaiced image 𝑏 ∈ ℝ𝑃 , 
where 𝑀 = 3𝑃 .

Additionally, for the complementary pixel values, we can hypothe
size a forward model:

𝑐 = 𝑆𝐶𝐻𝑢+ 𝑛𝐶 (2)

where 𝑆𝐶 is the down-sampling operator corresponding to the remain
ing 2/3 of the original pixel values that are complementary to the Bayer 
pattern (therefore 𝑐 ∈ℝ2𝑃 ). The term 𝑛𝐶 ≈ (0, 𝜎2

𝐶
), with variance 𝜎2

𝐶
, 

represents additive noise associated with these complementary pixels.

3.1. Inverse problem

The inverse problem seeks to reconstruct the high-resolution image 
𝑢 from a degraded observation 𝑏. Our approach incorporates not only 
the forward model for the Bayer measurement 𝑏 (Equation (1)) but also 
a second forward model for the complementary pixel values 𝑐 (Equation 
(2)). Since 𝑐 is not directly available, we estimate a rough reconstruction 
𝑢0 =𝐷(𝑏) using an initial demosaicking method 𝐷. From this reconstruc
tion, the complementary pixel values are approximated as 𝑐 ≈ 𝑆𝐶𝑢0. 

The inverse problem is inherently ill-posed due to the combined effects 
of blur, noise, and incomplete color information, requiring a robust op
timization strategy.

In our framework, the inverse problem is formulated as training an 
INR, 𝑢𝜓 , to reconstruct the high-resolution image 𝑢 by parameteriz
ing it as a continuous function modeled by the weights 𝜓 of an MLP. 
Optimization of parameters 𝜓 ensures that the outputs of 𝑢𝜓 , when 
passed through the degradation models, match both the observed Bayer 
measurement 𝑏 and the complementary pixel estimates 𝑐. Furthermore, 
added regularization promotes smoothness and edge preservation. This 
optimization is carried out for each individual image using stochastic 
gradient descent or its variants, with backpropagation applied to mini
mize loss functions derived from the forward models of 𝑏 and 𝑐.

Formally, the optimization problem is expressed as:

𝜓̂ = argmin
𝜓

{
𝛼Bayer

(
𝑏̂, 𝑏

)
+ 𝛽Demo

(
𝑐,𝑆𝐶𝑢0

)

+ 𝛾
(
𝑢𝜓

)}
,

(3)

where 𝑢𝜓̂ is the final reconstruction. 𝑏̂ = 𝑆𝐵𝐻𝑢𝜓 represents the pre
dicted INR that is subject to the given degradation and corresponds to 
the Bayer pattern. To perform the degradation we sample 𝑢𝜓 at all pixel 
locations and consider its vectorized form. The Bayer loss Bayer(𝑏̂, 𝑏)
ensures fidelity to the original sensor data. Additionally, 𝑐 = 𝑆𝐶𝐻𝑢𝜓
denotes the degraded INR at complementary pixel locations, which lack 
direct Bayer measurements. The complementary loss, Demo, minimizes 
the error between 𝑐 and the corresponding values in the initial demo
saiced image 𝑢0. The overall optimization is balanced by the weighting 
factors 𝛼, 𝛽, and 𝛾 , which control the contributions of the Bayer loss, 
complementary loss, and the Total Variation (TV) regularization (𝑢𝜓 ).

In our ablation study for selecting optimal weighting factors (Sec
tion 4.4), 𝛽 is fixed at 1 while 𝛼 is varied to balance the Bayer and com
plementary losses. The parameter 𝛾 , when set to values between 10−6
and 10−5, is used specifically for joint demosaicking, and deblurring 
tasks, as described in Section 4.6. The specific values of these weighting 
factors are further detailed in the experimental section.

3.2. Bayer loss

The Bayer loss Bayer is dfined as the MSE between the predicted 
Bayer image and the observed (inherently blurred) mosaiced image 𝑏:

Bayer

(
𝑏̂, 𝑏

)
= 1 
𝑃
‖𝑆𝐵𝐻𝑢𝜓 − 𝑏‖22. (4)

3.3. Complementary loss

The complementary loss Demo is calculated as the MSE between the 
predicted complementary pixel values and the corresponding values in 
the initial demosaiced (inherently blurred) image 𝑢0 :

Demo

(
𝑐,𝑆𝐶𝑢0

)
= 1 

2𝑃
‖𝑆𝐶𝐻𝑢𝜓 −𝑆𝐶𝑢0‖22. (5)

3.4. Total variation regularization

We apply Color TV regularization (𝑢𝜓 ) to ensure smoothness while 
preserving edges [29]. Total variation measures the gradient magnitude 
across the image, penalizing rapid intensity changes to reduce noise and 
retain key features. In INR models, the continuous image representation 
allows gradient computation at any point using automatic differentia
tion, enabling efficient total variation minimization. In our framework, 
TV regularization proves especially benficial for tasks such as joint de
mosaicking and deblurring, where it not only stabilizes the reconstruc
tion process but also helps preserve important image details, making it 
particularly impactful for processing real-world images.
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Table 1
Configurations for INR Models.

Parameter Gauss ReLU FFN SIREN WIRE INCODE 
Activation Gaussian ReLU ReLU Sine Wavelet Sine 
Modulation �- �- Positional Encoding (Gaussian) �- �- Harmonizer (ResNet34) 
Hidden Layers 5 5 5 5 5 5 
Neurons per Layer 256 256 256 256 256 256 
Learning Rate 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 7 × 10−4 1 × 10−4
Batch Size 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 
Trainable Parameters 330499 330499 461059 330499 330499 568359

Special Parameters �- �- �-
𝜔first = 30, 
𝜔hidden = 30

𝜔 = 30, 
𝜎 = 10

𝑎 = 0.1993, 
𝑏 = 0.0196, 
𝑐 = 0.0588, 
𝑑 = 0.0269

Table 2
Image Reconstruction With INR: Average PSNR values for image representation using different INR models on the Kodak dataset, across 
various image sizes and training iterations. Bold and underline highlight the highest and second highest values, respectively.

INR Model
Original size (768 × 512) 1/2 Resize (384 × 256) 1/4 Resize (192 × 128) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 31.01 33.68 35.99 34.26 38.97 43.25 60.24 90.23 80.24
ReLU 21.92 22.52 23.07 21.79 22.82 23.61 21.60 23.22 24.60 
SIREN 37.89 40.29 41.92 39.62 46.46 49.88 44.50 51.73 60.52 
WIRE 37.32 40.51 42.65 41.71 43.04 46.79 56.73 66.70 74.74 
FFN 32.83 34.98 36.88 35.15 40.05 43.76 37.60 45.29 52.35 
Incode 39.65 41.35 42.87 52.78 50.21 51.93 72.23 79.72 90.94

Fig. 2. Illustration of INRID: The proposed approach performs demosaicking us
ing an implicit neural representation 𝑢𝜓 ∶ ℝ2 → ℝ3, optimized by minimizing 
the mean squared error 𝐵𝑎𝑦𝑒𝑟 between the reconstruction 𝑢𝜓 and the Bayer 
measurement 𝑏, as well as between the reconstruction 𝑢𝜓 and the initial demo
saicked image 𝑢0 (𝐷𝑒𝑚𝑜). The INR consists of five layers, each with 256 neurons, 
and employs sinusoidal activations to effectively capture high-frequency im
age details. Unlike traditional activation functions such as ReLU or sigmoid, 
sinusoidal activations enable a more expressive representation, improving the 
reconstruction of fine structures and textures critical for accurate demosaicking 
(see ablation study in Section 4.3).

We call the algorithm that solves (3) INRID, standing for Implicit 
Neural Representation for Image Demosaicking. Fig. 2 provides a con
ceptual overview of the INRID framework. It highlights the key compo
nents: the raw Bayer measurement 𝑏, the initial demosaicked image 𝑢0, 
and the learned implicit representation 𝑢𝜓 . This high-level visualization 
is intended to help readers grasp the primary relationships and flow of 
the optimization process. 

4. Experimental results

To solve the minimization in (3), we employ a self-supervised ap
proach where the INR is trained directly on the degraded image data 

without requiring ground truth high-resolution images. This enables the 
INR model to reconstruct the high-resolution image solely based on the 
observed mosaiced image and complementary pixel information.

We begin by demonstrating image representation using INR and 
comparing various architectures. Next, we show that using the Bayer 
loss only for image representation exceeds basic demosaicking ap
proaches such as nearest neighbor and bilinear interpolation, and in 
some cases outperforms traditional methods like Malvar and Menon. We 
then illustrate how the combination of Bayer and complementary loss 
within the INRID framework significantly improves reconstruction per
formance and exceeds all traditional methods. Furthermore, we show
case the joint demosaicking, denoising, or deblurring capabilities of 
INRID, enhancing state-of-the-art demosaicking methods such as Deep
Demosaick and RSTCANet. Finally, we demonstrate the effectiveness of 
our approach on real-world data from mobile phone cameras.

4.1. Experimental setup

Table 1 summarizes the hyperparameter cofigurations for all INR 
models used in our experiments. Each model consists of five hidden lay
ers with 256 neurons per layer. The Gauss and ReLU models employ 
Gaussian and ReLU activation functions, respectively, while the Fourier 
Feature Networks (FFN) utilize Gaussian positional encoding with ReLU 
activations. The SIREN model uses sine activation functions, parame
terized by frequency terms 𝜔 for the first and hidden layers. The WIRE 
model incorporates a wavelet activation function, characterized by a fre
quency term 𝜔 and a scale term 𝜎, which enable the balance of global 
and local signal representation. The INCODE model builds on a modi
fied SIREN architecture, augmented with a harmonizer network based 
on the ResNet34 [27] backbone. The specific parameters, including fre
quency and scale terms for SIREN, WIRE, and INCODE, are summarized 
in Table 1 and detailed in their respective original works [22--24].

The training was conducted using an Nvidia L40s GPU. All models 
were optimized using the MSE loss function, and the Adam optimizer, 
with decay rates for gradient and squared gradient averages set to 0.9 
and 0.999, respectively. A learning rate scheduler was applied to gradu
ally reduce the learning rate during training. The initial learning rate 
was set to 0.0001 for most models, except for WIRE, which used a 
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Table 3
Image Reconstruction With INR: Average PSNR values for image representation using different INR models on the McM 
dataset (500×500 version), across various image sizes and training iterations. Bold and underline highlight the highest 
and second highest values, respectively.

INR Model
Original size (500 × 500) 1/2 Resize (250 × 250) 1/4 Resize (125 × 125) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 29.65 32.75 36.14 36.50 45.51 51.32 86.48 113.20 117.79
ReLU 20.81 21.67 22.47 19.82 21.14 22.31 18.61 20.49 22.34 
SIREN 39.10 41.79 43.61 39.19 46.08 51.71 44.07 52.38 62.06 
WIRE 37.28 41.05 44.17 46.10 49.58 47.83 53.00 58.83 65.72 
FFN 35.16 37.67 39.47 35.89 41.24 46.02 32.70 43.02 52.30 
Incode 41.56 43.17 44.64 64.79 67.54 53.96 107.24 116.99 117.33

learning rate of 0.0007. Batch sizes were fixed at 128 × 128 for all ex
periments.

To evaluate the performance of the INR models, we tested on the Ko
dak [30] and McMaster [31] datasets. The evaluation metrics included 
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Mea
sure (SSIM).

The source code used in this study is publicly available at https://
github.com/kereptom/inrid2024.

4.2. Image reconstruction with INR

In the image reconstruction experiment, we evaluated the perfor
mance of different INR architectures in representing images. In other 
words, we trained INR models in a self-supervised manner to fit the 
original image. This corresponds to setting 𝛼 = 1, 𝛽 = 2, and 𝛾 = 0 in 
Equation (3), with the initial reconstruction 𝑢0 replaced by the original 
ground truth pixel values 𝑢. We set 𝛽 = 2 because the complementary 
loss involves twice as many pixels as the Bayer loss.

Specifically, we tested six different INR architectures across three 
image sizes and three different numbers of iterations, calculating aver
age PSNR results for both the Kodak and McM datasets. The results, as 
shown in Tables 2 and 3, indicate that the INR model with ReLU activa
tion consistently performed the worst across all conditions. On average, 
INCODE delivered the best results in nearly all scenarios. SIREN and 
WIRE were strong contenders, especially at the original size and half 
size. While both Gauss and FFN showed moderate results overall, FFN 
performed slightly better at the original size, whereas Gauss was particu
larly effective for smaller images. SIREN, although not always achieving 
the highest scores, produced stable and reliable results across different 
image sizes and iteration counts, making it a strong performer in a wide 
range of conditions.

The visual demonstration in Fig. 3 supports these findings, showing 
the reconstruction of Kodak image #23 at its original size after 2000 it
erations. The ReLU INR model shows significant blurring, particularly 
in areas with fine textures. In contrast, the other methods produce vi
sually pleasing and accurate reconstructions, with INCODE, WIRE, and 
SIREN standing out for their near-perfect results (see Fig. 3, especially 
in the close-ups).

We also analyzed the progression of PSNR values with extended 
training on the McM dataset (500 × 500 version) beyond 2000 iter
ations, as shown in Fig. 4. The results reveal continued improvement 
across all models, but with a diminishing rate of gain after 2000 iter
ations. Models such as INCODE, WIRE, and SIREN exhibit high perfor
mance and retain their advantage. Given this diminishing improvement, 
it becomes important to consider the trade-off between further enhanc
ing reconstruction quality and the associated computational cost, which 
will be discussed further in Section 5.

Although WIRE showed competitive performance, we encountered 
instability with the learning rate, making its training less reliable com
pared to other models. Based on these results, we chose to proceed with 
two INR architectures for further experiments: INCODE, which domi
nated in most scenarios, and SIREN, which consistently performed well 

Fig. 3. Image reconstruction using different INR architectures on an example 
from the Kodak dataset. The Bayer Pattern (top left) shows the raw subsam
pled data for demonstration purposes. All INR models were trained in a self
supervised manner to fit the original image (top right). ReLU INR struggles to 
model high-frequency details, resulting in noticeable blurring, especially in re
gions with fine textures, such as the bird’s feathers. In contrast, INCODE, SIREN 
and WIRE architectures provide the most visually pleasing reconstructions, cap
turing details with higher fidelity. This example illustrates the results after 2000 
training iterations for each INR architecture. The corresponding average PSNR 
values for the entire dataset are reported in Table 2, 4th column.

and demonstrated stability across various conditions; and also included 
FFN and Gauss for reference.

4.3. Image demosaicking with INR

Following our image representation study, we extended our exper
iments to image demosaicking using INR architectures, focusing solely 
on Bayer measurements, which is equivalent to setting 𝛼 = 1, 𝛽 = 0, and 
𝛾 = 0 in Equation (3). The results, shown in Tables 4 and 5, indicate a 
decline in PSNR values as image size decreases, contrasting with the full 

https://github.com/kereptom/inrid2024
https://github.com/kereptom/inrid2024
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Table 4
Image Demosaicking With INR: Average PSNR values for image demosaicking using various INR models on the Kodak 
dataset. The models were ovefitted on Bayer measurements across different image sizes and training iterations, as 
opposed to Table 2, where all image pixels were taken into account. In this setup, minimization was performed using 
the objective in (3), where the complementary loss was neglected (𝛽 = 0) and 𝛾 = 0. Bold and underline highlight the 
highest and second highest values, respectively.

INR Model
Original size (768 × 512) 1/2 Resize (384 × 256) 1/4 Resize (192 × 128) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 25.66 26.76 27.75 16.23 16.04 17.91 14.23 14.43 14.29 
SIREN 34.21 34.11 33.96 31.25 31.19 30.93 31.11 31.38 31.33
FFN 31.36 33.13 34.41 28.75 29.93 30.22 25.34 25.16 25.40
Incode 33.38 33.64 33.95 26.54 28.23 30.10 20.28 20.37 20.47 

Table 5
Average PSNR values for image demosaicking using various INR models on the MCM dataset, following the same setup 
as described for Table 4. Bold and underline highlight the highest and second highest values, respectively.

INR Model
Original size (500 × 500) 1/2 Resize (250 × 250) 1/4 Resize (125 × 125) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 21.83 22.48 23.57 13.71 13.82 14.13 12.30 12.27 12.23 
SIREN 34.87 34.75 34.71 31.49 31.63 31.48 29.48 29.88 29.88
FFN 32.26 33.15 33.75 25.34 26.29 26.64 19.09 20.19 20.33
Incode 33.99 34.65 35.16 21.99 22.89 25.49 15.45 15.58 15.50 

Fig. 4. Image Reconstruction With INR: Average PSNR values with increasing 
training iterations for various INR models on the McM dataset (500 × 500 ver
sion). The plot demonstrates continued improvement in PSNR with additional 
iterations, though the rate of gain decreases over time for all models.

image representation results in the previous section. This decline is due 
to the reduced availability of ground truth pixels and increased impact 
of CFA degradation in smaller images.

Interestingly, while INCODE excelled in full image representation, 
the SIREN architecture outperforms it in the demosaicking task, partic
ularly with smaller images. SIREN’s superior PSNR values highlight its 
robustness in scenarios requiring significant interpolation.

The visual demonstration is presented in Figs. 5 and 6. In the orig
inal size (Fig. 5), only Gauss exhibits improper reconstruction. When 
resized to half the original size (Fig. 6), SIREN begins to handle the re
construction more effectively, producing a more colorful image. As the 
image size is reduced further, SIREN becomes the only model capable 
of adequately managing the interpolation.

The naive approach to INR-based demosaicking explained in this 
section, especially when using the SIREN architecture, surpasses basic 
algorithms like nearest neighbor and bilinear interpolation (see Table 6). 
As will be seen in the next section, it also highlights the potential of 
SIREN for boosting traditional demosaicking methods when initial in
formation about missing pixels is provided.

Fig. 5. Image Demosaicking With INR: Demosaicking results for Kodak image 
#23 (original size) using various INR architectures trained on Bayer measure
ments (Fig. 3, top-left). INCODE, SIREN, and FFN outperform the Gaussian 
model after 2000 iterations. PSNR values are listed in Table 4, 4th column.

4.4. Enhancing image demosaicking with INR

We now take full advantage of the INRID framework by incorpo
rating both Bayer and complementary loss functions. This experiment 
corresponds to setting 𝛽 = 1 in Equation (3), while varying 𝛼 to balance 
the contributions of the Bayer and complementary losses. We keep the 
TV regularization turned off.

The inclusion of complementary loss leverages initial demosaicking 
reconstructions, regularizing the problem and, with the aid of Bayer 
loss, ultimately boosting the demosaicking capabilities of the original 
methods. This approach helps the INR model to learn from not only the 
available Bayer data but also the estimated values from the initial de
mosaicking process, thus improving the overall reconstruction quality.

Optimal Alpha Selection: To determine the optimal value for 𝛼, 
we conducted experiments using various demosaicking methods. Fig. 7
shows the average PSNR and SSIM from the McM dataset as a function of 
𝛼 for traditional demosaicking methods such as Malvar and Menon. The 
results indicate that, while the complementary loss plays a crucial role 
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Fig. 6. Image Demosaicking With INR: Kodak image #23 resized to 384 × 256. 
SIREN INR produces the best visual outcome after 2000 iterations, while Gaus
sian INR shows significant artifacts. PSNR values are in Table 4, 7th column.

Fig. 7. Optimal Alpha Selection: Average PSNR and SSIM vs Alpha for SIREN
based demosaicking over the McM dataset (500 × 500). The plots show the 
performance of SIREN models to improve Malvar and Menon demosaicking 
methods as a function of 𝛼. The solid lines represent SIREN results, while the 
dotted lines show the baseline performance. The results indicate that for 𝛼 > 1, 
our INRID framework enhances demosaicking quality, with peak improvements 
around 𝛼 = 60, as seen in both PSNR and SSIM. As 𝛼 approaches ifinity, per
formance approaches the naive INR-based demosaicking.

Table 6
Enhancing Image Demosaicking with INR: Average PSNR and SSIM values for 
different demosaicking methods on the McM (500 × 500) dataset after 2000 it
erations and the Kodak (192 × 128) dataset after 10000 iterations with 𝛼 = 60.
Bold indicates the highest values.

Method
McM (500 × 500) Kodak (192 × 128) 
PSNR/SSIM PSNR/SSIM 

Nearest Neighbor 27.54/0.8594 25.11/0.7973 
Bilinear 30.41/0.9276 26.61/0.8685 
Bayer INRID 34.71/0.9348 31.33/0.9283

Malvar 33.62/0.9330 31.68/0.9420 
Malvar INRID 35.31/0.9433 32.58/0.9449

Menon 33.91/0.9263 33.29/0.9571 
Menon INRID 35.80/0.9438 33.74/0.9586

RSTCANet 40.06/0.9739 38.40/0.9839
RSTCANet INRID 36.95/0.9501 38.38/0.9836 

in guiding the training process, the Bayer loss remains more dominant. 
When 𝛼 is below 1, which emphasizes the complementary loss more than 
the Bayer loss, performance degrades compared to the baseline (dotted 
line), providing no enhancement at all. However, when 𝛼 is greater than 
1, INRID begins to enhance the original demosaicking methods, with the 
most significant improvements occurring when 𝛼 is within the range of 
(10,200). As 𝛼 increases further towards ifinity, the complementary 
loss ifluence diminishes, and the model essentially reverts to the naive 
INR demosaicking approach discussed in the previous section. Based 
on these findings, we selected 𝛼 = 60, which yielded the best average 
improvements in both PSNR and SSIM.

Boosting Demosaicking Performance: Table 6 highlights the im
pact of the INRID approach in improving traditional demosaicking tech
niques, specifically Malvar and Menon, using the SIREN architecture. 
The results are consistent across both the Kodak and McM datasets, 
where the INRID framework significantly boosts the performance, lead
ing to noticeable improvements in both PSNR and SSIM. For both tradi
tional demosaicking methods, Malvar and Menon, integrating the INRID 
approach results in visibly better reconstruction quality, particularly in 
challenging areas with fine details or high-frequency content, as illus
trated in Fig. 8.

Basic demosaicking algorithms like nearest neighbor and bilinear in
terpolation are surpassed by even the naive INR demosaicking (Bayer 
INRID) introduced in the previous section. For these methods, incorpo
rating initial reconstruction degrades the enhancement.

It is worth noting, however, that INRID has limitations. Once the 
initial demosaicking reconstruction reaches a certain level of accuracy, 
further improvement of a given method is limited. This is evident in 
the PSNR values for the Transformer-based demosaicking method RST
CANet, as seen in Table 6. However, for state-of-the-art methods, the 
INRID framework can still be valuable when addressing joint problems 
such as demosaicking combined with denoising or deblurring.

4.5. Joint demosaicking and denoising

While INRID may not directly enhance state-of-the-art demosaick
ing methods, like RSTCANet, it shows significant improvements when 
dealing with out-of-distribution data, such as images corrupted by noise. 
To demonstrate this robustness, we conducted experiments on the joint 
demosaicking and denoising task using the Kodak dataset resized to 
192 × 128. We introduced varying levels of Gaussian noise, with signal
to-noise ratios (SNRs) ranging from 10 dB to 40 dB, and then applied 
our INRID framework with RSTCANet as the initial demosaicking re
construction.

We compared our approach against a baseline and two specialized 
methods for joint demosaicking and denoising. The first is a classi
cal method that builds upon the demosaicking technique of Farsiu et 
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Fig. 8. Enhancing Image Demosaicking with INR: Visual Comparison of Demosaicking Methods with and without INRID Enhancement (applied to McM image #1, 
500 × 500). The top row showcases traditional demosaicking results from Nearest Neighbor, Bilinear, Malvar, and Menon methods. The bottom row starts with the 
original image. The Bayer INRID approach ovefits directly to the Bayer measurement without initial demosaicking, demonstrating a higher reconstruction quality 
compared to Nearest Neighbor and Bilinear methods. INRID significantly boosts the performance of the Malvar and Menon methods, particularly in high-frequency 
regions, such as along the stained glass edges (see red close-ups).

Table 7
Joint Demosaicking and Denoising: Average PSNR and SSIM values for different iterations and SNR 
levels on the Kodak dataset (192 × 128). The parameters are: 𝛼 = 1, 𝛽 = 1, and 𝛾 = 0, with noise 
levels in SNR (dB). INRID uses initial reconstruction from RSTCANet.

Model Iterations
PSNR / SSIM 
10 dB 20 dB 30 dB 40 dB 

Classical (HQ) - 23.68/0.5826 27.75/0.7934 30.20/0.9063 30.78/0.9348

DeepDemosaick - 17.80/0.2985 28.83/0.8076 34.27/0.9489 35.70/0.9666

RSTCANet - 17.51/0.2878 26.57/0.6620 34.31/0.9225 37.74/0.9777

INRID 
(RSTCANet init)

500 Iter 23.75/0.6352 29.19/0.8238 33.20/0.9247 33.94/0.9385 
1000 Iter 23.73/0.6324 29.17/0.8250 34.67/0.9415 36.48/0.9661 
2000 Iter 23.69/0.6309 29.11/0.8238 34.77/0.9425 37.63/0.9770 

al. [18], formulated via half-quadratic (HQ) approximation in a mul
tiplicative form [32] and solved by alternating minimization. While 
this approach can also integrate deblurring using a suitable kernel, we 
used a delta kernel here to focus solely on denoising and demosaick
ing. The second method is DeepDemosaick (introduced in Section 2), 
a deep convolutional residual network designed for joint demosaicking 
and denoising.

Since RSTCANet already provides high-quality initial reconstruc
tions, we placed equal emphasis on the Bayer and complementary losses, 
setting 𝛼 = 1 and 𝛽 = 1. To showcase the denoising capabilities of INR, 
TV regularization was disabled (𝛾 = 0). To mitigate ovefitting to noisy 
measurements, an early-stopping mechanism is employed for INRID, 
with training concluding after 500 to 2000 iterations.

Table 7 presents a comparative analysis of the four methods across 
various noise levels. For heavy to moderate noise conditions (10--30 dB 
SNR), INRID consistently surpasses RSTCANet and outperforms both 
the classical and deep-learning-based approaches. While the classi
cal method delivers competitive results under severe noise conditions 
(10--20 dB SNR), its performance diminishes as noise levels decrease. 
Notably, DeepDemosaick closely matches INRID’s performance at 20 dB 
SNR.

At 20 dB SNR, INRID achieves a PSNR of 29.19 dB after 500 iter
ations, outperforming RSTCANet’s 26.57 dB and the classical method’s 
27.75 dB. DeepDemosaick achieves 28.83 dB at this noise level and its vi
sual quality is comparable to INRID (see Fig. 9). Visually, RSTCANet and 
the classical method exhibit noticeable artifacts, whereas INRID effec
tively removes noise, especially around detailed regions such as window 
shutters.

Under extreme noise conditions (10 dB SNR), the advantage of IN
RID becomes more pronounced, with a PSNR of 23.75 dB compared to 
RSTCANet’s 17.51 dB, representing a significant improvement. At 30 dB 
SNR, where noise levels are lower, the performance gap between IN
RID and its initial RSTCANet reconstruction narrows. Finally, at 40 dB 
SNR, where noise is minimal, RSTCANet achieves the highest PSNR 
(37.74 dB), and further rfinement by INRID does not yield additional 
improvements. These results align with the conclusions drawn in the 
preceding section.

4.6. Joint demosaicking and deblurring

This experiment evaluates INRID’s impact on traditional and ad
vanced demosaicking methods when integrated with deblurring. Image 
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Fig. 9. Joint Demosaicking and Denoising: The first row presents the original image, its noisy counterpart (input SNR = 20 dB), and the output from the Classical 
method (HQ minimization). The second row showcases results from DeepDemosaick, RSTCANet, and RSTCANet INRID. The corresponding PSNR and SSIM results 
are shown in Table 7, 4th column. The image is from the Kodak dataset (resized to 192 × 128), with INRID parameters set to 𝛼 = 𝛽 = 1 and 𝛾 = 0.

Table 8
Joint Demosaicking and Deblurring with Uniform Kernel: Average PSNR and SSIM for joint demo
saicking and deblurring on the Kodak dataset (resized to 192 × 128) with a uniform kernel (3 × 3), 
50 dB noise after 10,000 iterations. + TV indicates that total variation with 𝛾 = 10−6 was added in the 
minimization problem (3). Significant improvements with INRID are particularly evident in meth
ods like RSTCANet and DeepDemosaick, with the best results highlighted in bold. Italicized entries 
indicate demosaicking results without deblurring.

Method Original
INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 25.71/0.7701 27.51/0.8232 27.56/0.8236 31.57/0.9113 31.58/0.9115
Bilinear 25.06/0.7999 26.52/0.8420 26.52/0.8413 31.32/0.9120 31.36/0.9124
Malvar 27.34/0.8293 30.84/0.9071 30.96/0.9120 32.40/0.9252 32.44/0.9257
Menon 27.03/0.8159 31.19/0.9093 31.34/0.9144 32.67/0.9272 32.74/0.9285
DeepDemosaick 27.29/0.8232 32.17/0.9198 32.27/0.9211 32.95/0.9289 33.01/0.9302
RSTCANet 27.31/0.8251 33.38/0.9374 33.60/0.9409 33.24/0.9324 33.35/0.9344

Wiener Filtering 26.53/0.7959 �- �- �- �- 
IWFT 26.48/0.8330 �- �- �- �- 
D3Net 29.86/0.8736 �- �- �- �- 
HQ 31.66/0.9280 �- �- �- �- 
Bayer INRID 32.59/0.9241 �- �- �- �- 

quality degradation in such scenarios primarily arises from convolu
tion operations, which introduce blur during image acquisition. Since 
initial demosaicking guides INRID in interpolating missing data, the ef
fectiveness of deconvolution critically depends on the quality of this 
preliminary interpolation.

Experiments were conducted on the Kodak dataset using Gaussian 
and uniform blur kernels with added noise at 50 dB to simulate the for
ward problem (1). Results are summarized in Tables 8 and 9 for 3 × 3
kernels and in Tables 10 and 11 for 7×7 kernels. First, it shows that IN
RID enhancement of traditional techniques, such as Nearest neighbor, 
Bilinear interpolation and Malvar’s method, is suboptimal and outper
formed by INRID deblurring with Bayer measurements alone (Bayer 
INRID). The traditional approaches produce initial reconstructions that 
fail to adequately match the original image distribution, leading to in
sufficient deconvolution performance.

In contrast, state-of-the-art methods, such as DeepDemosaick and 
RSTCANet, deliver more accurate initial demosaicking results, which, 
when enhanced with INRID, yield significantly improved deblurring 
performance. For instance, under Uniform 3×3 blur (Table 9), DeepDe
mosaick improves from 27.29 dB to 33.01 dB, and RSTCANet improves 
from 27.31 dB to 33.60 dB.

In most scenarios, choosing 𝛼 = 60 yields higher PSNR and SSIM 
values, as discussed in Section 4.4. However, when using RSTCANet 
initialization for images blurred with a smaller 3 × 3 kernel, the best 
results occur at 𝛼 = 1.

The addition of TV regularization with 𝛾 = 10−6 provides a modest 
improvement in PSNR for all methods (except RSTCANet with Gaussian 
3 × 3 blur). Notably, for all tested scenarios, DeepDemosaick and RST
CANet paired with INRID outperform Bayer INRID, underscoring the 
importance of accurate initial demosaicking. For state-of-the-art meth
ods, the complementary loss in INRID plays a significant role in enhanc
ing reconstruction quality. Fig. 10 demonstrates how INRID integration 
performs demosaicking and deblurring effectively. Nevertheless, with 
larger blur kernels, the INRID enhancement of state-of-the-art demo
saicked methods is less significant compared to the Bayer INRID (see 
Table 10).

We further compared INRID with other joint demosaicking and de
blurring methods. Specifically, we extended Iterative Wiener Filtering 
and Thresholding (IWFT) [33] to handle demosaicking and deblurring 
by incorporating formation model (1) into equation (1) in [33]. After 
integrating the new degradation model, the algorithm was modfied 
accordingly, and the rest follows the original IWFT pipeline. The first 
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Table 9
Joint Demosaicking and Deblurring with Gaussian Kernel: Average PSNR and SSIM for joint demo
saicking and deblurring on the Kodak dataset (resized to 192 × 128) with a Gaussian kernel (3 ×
3), 50 dB noise after 10,000 iterations. + TV indicates that total variation with 𝛾 = 10−6 was added 
in the minimization problem (3). Significant improvements with INRID are particularly evident in 
methods like RSTCANet and DeepDemosaick, with the best results highlighted in bold. Italicized en
tries indicate demosaicking results without deblurring.

Method Original
INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 25.98/0.7877 27.57/0.8314 27.56/0.8311 31.54/0.9142 31.54/0.9145

Bilinear 25.54/0.8218 26.77/0.8552 26.77/0.8548 31.31/0.9152 31.34/0.9155

Malvar 28.48/0.8666 31.02/0.9125 31.03/0.9145 32.80/0.9319 32.85/0.9320

Menon 28.24/0.8600 31.32/0.9141 31.33/0.9158 32.89/0.9331 32.90/0.9336

DeepDemosaick 28.39/0.8567 32.22/0.9249 32.15/0.9234 33.15/0.9354 33.17/0.9359

RSTCANet 28.64/0.8693 33.84/0.9440 33.66/0.9415 33.74/0.9401 33.71/0.9398

Wiener Filtering 28.13/0.8336 �- �- �- �- 
IWFT 28.18/0.8540 �- �- �- �- 
D3Net 31.06/0.8988 �- �- �- �- 
HQ 32.45/0.9399 �- �- �- �- 
Bayer INRID 33.07/0.9329 �- �- �- �- 

Table 10
Joint Demosaicking and Deblurring with Uniform Kernel: Average PSNR and SSIM on the Kodak 
dataset (resized to 192×128) with a uniform kernel (7×7), 50 dB noise after 10,000 iterations. +TV
indicates that total variation with 𝛾 = 10−6 was added in the minimization problem. Each row’s best 
PSNR/SSIM is in bold. Italicized entries indicate demosaicking results without deblurring.

Method Original
INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 23.32/0.5986 26.57/0.7627 26.61/0.7666 29.60/0.8450 29.72/0.8499

Bilinear 22.60/0.6078 24.47/0.6804 24.47/0.6812 28.94/0.8274 28.96/0.8291

Malvar 23.55/0.6084 27.87/0.8071 27.97/0.8125 29.94/0.8514 30.10/0.8574

Menon 23.50/0.6065 29.25/0.8422 29.38/0.8474 30.12/0.8559 30.36/0.8637

DeepDemosaick 23.55/0.6105 29.06/0.8329 28.87/0.8273 30.11/0.8545 30.31/0.8615

RSTCANet 23.55/0.6096 30.16/0.8587 29.97/0.8548 30.14/0.8549 30.39/0.8623

Wiener Filtering 25.28/0.7129 �- �- �- �- 
IWFT 25.21/0.7114 �- �- �- �- 
D3Net 26.16/0.7266 �- �- �- �- 
HQ 30.01/0.8773 �- �- �- �- 
Bayer INRID 30.11/0.8540 �- �- �- �- 

Table 11
Joint Demosaicking and Deblurring with Gaussian Kernel: Average PSNR and SSIM on the Kodak 
dataset (resized to 192 × 128) with a Gaussian kernel (7 × 7), 50 dB noise after 10,000 iterations. 
+TV indicates that total variation with 𝛾 = 10−6 was added in the minimization problem. Each row’s 
best PSNR/SSIM is in bold. Italicized entries indicate demosaicking results without deblurring.

Method Original
INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 24.03/0.6509 26.58/0.7752 26.43/0.7718 29.22/0.8420 29.29/0.8448

Bilinear 23.24/0.6619 24.87/0.7180 24.87/0.7190 28.58/0.8275 28.64/0.8305

Malvar 24.47/0.6734 27.58/0.8092 27.41/0.8048 29.35/0.8441 29.37/0.8465

Menon 24.37/0.6681 28.79/0.8360 28.28/0.8227 29.46/0.8451 29.55/0.8489

DeepDemosaick 24.41/0.6685 28.45/0.8248 27.84/0.8087 29.44/0.8456 29.49/0.8482

RSTCANet 24.44/0.6716 29.50/0.8480 28.55/0.8249 29.49/0.8459 29.55/0.8488

Wiener Filtering 25.34/0.7487 �- �- �- �- 
IWFT 25.78/0.7909 �- �- �- �- 
D3Net 26.58/0.7334 �- �- �- �- 
HQ 29.06/0.8543 �- �- �- �- 
Bayer INRID 29.46/0.8445 �- �- �- �- 
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Fig. 10. Joint Demosaicking and Deblurring: Visual example of INRID’s performance on Kodak image #1 (192 × 128), degraded with 3 × 3 Gaussian blur and 50 dB 
noise. Corresponding PSNR, SSIM, and other metrics are in Table 9.

reconstruction step in IWFT corresponds to Wiener Filtering, a popular 
deconvolution technique. When applied to our test set, this method in
troduced ringing artifacts around edges due to its linear nature (clearly 
visible around the window shutters in Fig. 10).

The complete IWFT algorithm then uses non-linear update steps to 
rfine the Wiener-based reconstruction, effectively suppressing these 
artifacts and producing smoother images. However, IWFT tends to over
smooth images, leading to a slight reduction in PSNR (specifically in the 
case of uniform blur) despite the noticeable visual improvements.

D3Net [9] is an end-to-end CNN developed for joint demosaick
ing, deblurring, and deringing. It surpasses IWFT in terms of PSNR but 
remains constrained by its lightweight architecture, which targets em
bedded devices with limited computational resources. HQ is a robust 
optimization framework for joint demosaicking and deblurring method 
introduced in Section 4.5. While HQ outperforms D3Net, it still does not 
reach the reconstruction quality offered by INRID methods.

While INRID significantly enhances demosaicking and achieves supe
rior reconstruction quality compared to baseline and joint techniques, its 
computational cost remains a notable drawback. Fig. 11 illustrates the 
average PSNR and processing time for RSTCANet INRID over the Kodak 

dataset. The PSNR improves steadily up to approximately 11,000 itera
tions, after which it saturates, whereas the runtime continues to increase 
linearly, exceeding 100 seconds for 11,000 iterations on an NVIDIA L40S 
GPU. In contrast, traditional methods such as Wiener filtering, IWFT, 
and HQ are significantly faster, completing reconstruction in just a few 
seconds. D3Net achieves similar inference times to these methods but 
requires several minutes of pretraining for each specific blur and noise 
level. Despite the superior reconstruction quality of INRID-enhanced 
methods, their computational cost limits their practicality for scenarios 
demanding fast or resource-e˙icient processing, a limitation that will be 
further addressed in Section 5.

4.7. Real data

To further validate the reconstruction effectiveness of our INRID ap
proach, we tested it on real raw data captured from an LG Nexus 5 
camera. The blur kernels (displayed in Fig. 1b) were estimated from 
calibration data.

This experiment demonstrates the practical benfits of applying joint 
demosaicking and deblurring on actual image data. As shown in Fig. 12, 
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Fig. 11. Computational cost of RSTCANet-INRID with 𝛼 = 𝛽 = 1 and 𝛾 = 0 on 
the Kodak dataset (resized to 192 × 128). The figure shows the average PSNR 
(green dashed line) and runtime (blue solid line) as a function of the number 
of iterations, using the parameters described in Table 9. The PSNR improves 
steadily until saturating around 11,000 iterations, while the runtime increases 
linearly, reaching 2 minutes for 12,000 iterations on an NVIDIA L40S GPU.

the INRID framework, combined with prior information about the cam
era’s PSFs, yields a significant improvement over both the standard JPEG 
output and the advanced RSTCANet model.

The raw Bayer data are seen in the second column of Fig. 12. The 
JPEG output (third column) exhibits considerable compression artifacts 
and blurring, especially in magnfied areas. RSTCANet, shown in the 
fourth column, improves the reconstruction quality but still leaves some 
residual blurring and noise.

In contrast, the final column illustrates the result of applying RST
CANet in conjunction with the INRID framework, leveraging PSF priors 
for all four RGGB channels in the raw Bayer data. By setting 𝛼 = 1 and 
𝛽 = 1, and enabling TV regularization with a value of 10−5, our ap
proach effectively removes noise and reduces blurring. This leads to a 
visually sharper and more accurate reconstruction, as highlighted by 
the red close-up in Fig. 12. Zoomed-in views of the green and blue bor
dered regions show further evidence of INRID’s ability in enhancing the 
baseline RSTCANet method.

5. Discussion and future work

The results demonstrate the significant potential of INRID in enhanc
ing traditional and state-of-the-art demosaicking methods. However, 
the computational cost associated with per-image training remains a 
notable limitation, particularly for large datasets or high-resolution im
ages. While this study focuses on reconstruction quality, addressing 
efficiency is a crucial challenge for expanding the practical utility of 
INRID, especially in real-time applications.

Training INRID for each image is time-intensive. For example, pro
cessing a 192×128 image required approximately 96 seconds for 10,000 
iterations on an NVIDIA L40s GPU, using around 1 GB of memory. 
This is orders of magnitude slower than traditional methods like Malvar 
or Menon, which complete within milliseconds for similar resolutions. 
Similarly, pre-trained models like RSTCANet offer real-time inference 
but fail to handle scenarios involving corrupted inputs, such as blurred 
or noisy data. In contrast, iterative joint demosaicking and deblurring 
methods process images within seconds but may not match INRID’s re
construction fidelity.

To make INRID more practical, future efforts should aim to reduce 
its computational overhead. Promising approaches include multiresolu
tion hash encoding [34], which could cut training times to seconds, and 
dictionary-based representations like Neural Implicit Dictionary (NID) 

[35], which leverage pre-learned basis functions for efficient reconstruc
tions without a long per-image training.

Scaling INRID to gigapixel-resolution images also presents chal
lenges due to the extensive training times required for basic architec
tures. Techniques such as tiling, which processes overlapping sections of 
an image with smaller MLPs, can enable parallel computation but may 
introduce stitching artifacts at boundaries. Rfinements like KiloNeRF 
[36], which divides scenes into thousands of compact neural networks, 
and Multiscale Implicit Neural Representation (MINER) [37], which pro
cesses images hierarchically, offer promising solutions. Additionally, hy
brid frameworks like ACORN [38] dynamically allocate resources based 
on local signal complexity, optimizing both memory usage and training 
time for high-resolution applications.

Beyond computational improvements, extending INRID to related 
tasks such as super-resolution and inpainting is a natural progression, 
given the similar challenge of reconstructing missing data. Integrating 
conditioning mechanisms, such as activation function modulations [39] 
or meta-learning paradigms [40], could further enhance generalization 
across diverse images while reducing per-image training requirements. 
This is particularly relevant for rfining state-of-the-art methods in sce
narios with out-of-distribution data, such as blur or noise.

Theoretical advancements addressing spectral bias [41]�-a tendency 
of MLPs to prioritize low-frequency components over high-frequency 
details—are also essential. A structured dictionary perspective [40], 
where MLPs learn representations from a set of predfined basis func
tions, offers a promising direction to improve high-frequency detail re
construction and overall image fidelity.

Ultimately, while INRID achieves superior reconstruction quality, its 
computational demands highlight clear challenges and opportunities for 
future work. Advances in training efficiency, scalability, and generaliza
tion will be crucial in realizing the broader applicability of INRID across 
diverse image reconstruction tasks while preserving its fidelity.

6. Conclusion

This paper introduced INRID, a novel framework leveraging Implicit 
Neural Representations for image demosaicking. By integrating Bayer 
loss to enforce fidelity to sensor data and complementary loss to utilize 
initial reconstructions, INRID significantly enhances traditional meth
ods like Malvar and Menon, achieving PSNR improvements of up to 2 
dB. The framework also addresses limitations in deep learning-based 
methods, effectively correcting artifacts and demonstrating resilience in 
challenging scenarios, including blur and noise. Real-world validation 
on raw sensor data from mobile cameras further underscored INRID’s 
capability to produce sharper and more accurate reconstructions com
pared to standard outputs and advanced pipelines like RSTCANet.

While INRID achieves state-of-the-art reconstruction fidelity, its 
computational demands highlight opportunities for further optimiza
tion. Future work will focus on improving efficiency through approaches 
such as multiresolution encoding and dictionary-based representations, 
and scaling to gigapixel images using advanced frameworks like MINER. 
Extending INRID to tasks like super-resolution and inpainting represents 
a promising direction, leveraging its capacity to adapt to diverse input 
characteristics while maintaining high fidelity.

In conclusion, INRID demonstrates the potential of implicit neural 
representations to not only improve demosaicking quality but also tackle 
joint problems such as denoising and deblurring, paving the way for 
their integration into advanced image reconstruction pipelines.
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